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ABSTRACT

Background: The RUNX family of transcription factors plays an important regulatory role
in tumor development. Although the importance of RUNX in certain cancer types is well
known, the pan-cancer landscape remains unclear. Materials and Methods: Data from The
Cancer Genome Atlas (TCGA) provides a pan-cancer overview of the RUNX genes. Hence,
herein, we performed a pan-cancer analysis of abnormal RUNX expression and deciphered
the potential regulatory mechanism. Specifically, we used TCGA multi-omics data combined
with multiple online tools to analyze transcripts, genetic alterations, DNA methylation,
clinical prognoses, miRNA networks, and potential target genes. Results: RUNX genes are
consistently overexpressed in esophageal, gastric, pancreatic, and pan-renal cancers. The
total protein expression of RUNXT in lung adenocarcinoma, kidney renal clear cell carcinoma
(KIRC), and uterine corpus endometrial carcinoma (UCEC) is consistent with the mRNA
expression results. Moreover, increased phosphorylation on the T14 and T18 residues of
RUNX1 may represent potential pathogenic factors. The RUNX genes are significantly
associated with survival in pan-renal cancer, brain lower-grade glioma, and uveal melanoma.
Meanwhile, various mutations and posttranscriptional changes, including the RUNX7 D96
mutation in invasive breast carcinoma, the co-occurrence of RUNX gene mutations in UCEC,
and methylation changes in the RUNX2 promoter in KIRC, may be associated with cancer
development. Finally, analysis of epigenetic regulator co-expression, miRNA networks, and
target genes revealed the carcinogenicity, abnormal expression, and direct regulation of
RUNX genes. Conclusions: We successfully analyzed the pan-cancer abnormal expression
and prognostic value of RUNX genes, thereby providing potential biomarkers for various
cancers. Further, mutations revealed via genetic alteration analysis may serve as a basis for
personalized patient therapies.
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INTRODUCTION

Transcription factors (TFs), which account
for approximately 8% of all human
genes, function as master regulators in
multiple signaling pathways in eukaryotic
cells. In fact, approximately 20% of TFs
are associated with at least one human
phenotype.l! However, TF regulation is
highly dynamic, where only a single TF can

control the transcription of multiple genes in
different cell types. Therefore, dysregulated
TFs contribute to the pathogenesis of
many maladies, including cardiovascular
diseases, inflammatory diseases, and various
cancers,” thus highlighting the physiological
importance of the gene regulatory
mechanisms mediated by TFs. The activity
of TFs can be directly modulated by
numerous mechanisms, including point
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mutations, gene amplification or deletion, and disordered
expression. Moreover, indirect changes in noncoding DNA
mutations may affect the activity of TFs.’! Therefore,
considering that TFs are gradually being considered as
cancer treatment targets,”* characterizing TF abnormalities
within a pan-cancer context using a multi-omics approach,
although daunting, is necessary. Particularly, these findings
would provide insights regarding TF pathophysiology,
while helping to decode specific functions of the genome.

The RUNX family comprises metazoan TFs, which
serve as the primary development regulators. However,
they are often dysregulated in human cancers and play
an important, and often contradictory, role in cancer
pathogenesis.”! Three RUNX proteins, namely, RUNX1,
RUNX2, and RUNX3, exhibit different tissue-specific
expression profiles in mammals! and possess the Runt
and Runx inhibition (RunxI) domains. The Runt domain
is an evolutionarily conserved protein domain responsible
for DNA-binding and protein—protein interactions.*
Moreover, RUNX-related TFs contain a RUNXI domain
at the C-terminus, which might interact with functional
cofactors.” Meanwhile, RUNX1-related somatic mutations
and chromosomal rearrangements are frequently observed
in myeloid and lymphoid leukemia cells.""! Similarly,
aberrant expression of RUNX2 is a key pathological
feature of osteosarcoma.'!!l However, to the best of our
knowledge, pan-cancer research on RUNX2 has not yet
been reported.

In this study, we used data from The Cancer Genome Atlas
(TCGA) to perform a comprehensive pan-cancer analysis
of RUNX genes. Our primary aim was to decipher the
commonalities between the various RUNX genes in cancer,
while deciphering the mechanisms underlying their aberrant
expression. To this end, we analyzed RUNX genes based on
the transcript data, protein expression, genetic alteration,
DNA methylation, clinical prognosis, miRNA networks,
and related functions. We detected that abnormal RUNX
expression in certain cancers impacts disease prognosis.
Moreover, genetic alterations, changes in DNA methylation
levels, and co-expression with RUNX genes may represent
potential pathogenic factors. Construction of a miRNA
network and identification of putative target genes enabled
the generation of a regulatory landscape for the abnormal
expression of RUNX genes.

MATERIALS AND METHODS

mRNA expression analysis

RNAseq-HTSeq-FPKM data from 33 types of cancer were
downloaded from UCSC Xena (xenabrowser.net). We then
compared the expression of RUNX family genes between
tumor and healthy tissues using TCGA data. ggpubr R

package in R 3.6.2 (www.r-project.org) was used to generate
a pan-cancer Box plot for RUNX expression. As certain
tumor samples contain very limited healthy tissues, we
obtained corresponding normal tissues from the genotype-
tissue expression (GTEx) database for expression analysis
on GEPIA2 (http://gepia2.cancet-pku.cn/#Hanalysis),
under the default parameters of P-value <0.01, |log, FC|
>1, and “Match TCGA normal and GTEx data.” Finally,
we set the number of normal tissues to more than five
as a valid comparison. To compare the tissue expression
specificity and gene similarity in the RUNX gene family, we
obtained the gene expression cluster heatmap of various
tissues from GTEx (www.gtexportal.org).

Protein expression analysis

We explored the abundance of RUNX family proteins
through the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) database in the UALCAN portal (ualcan.
path.uab.edu/analysis-prot.html).l" Specifically, we
performed differential analysis between the normal and
tumor tissues for six tumor types: breast cancer, ovarian
cancer, colon cancer, kidney renal clear cell carcinoma
(KIRC), uterine corpus endometrial carcinoma (UCEC),
and lung adenocarcinoma (LUAD). In addition to total
protein content, phosphoproteins at different sites
were also analyzed. The T14, S21, T18, S212, T14S17,
and T14821 residues are phosphorylated in RUNX1
(NP_001001890.1). The S28, S275, and S340 residues are
phosphorylated in RUNX2 (NP_001019801.3). The T28,
5228, and T28S31 residues are phosphorylated in RUNX3
(NP_001026850.1).

Survival prognosis analysis

GEPIA2 was employed to determine overall survival (OS)
and disease-free survival (DFS) using TCGA tumor data.!"’
The median group cutoff was considered the threshold
for grouping high and low expression. Survival plots were
obtained through the “Survival Analysis” module, using
the log-rank test.

Genetic alteration analysis

The mutation type and copy number alteration in all
tumors (TCGA) were summarized using cBioPortal (www.
cbioportal.org)." After selecting TCGA Pan Cancer Atlas
Studies based on the RUNX family, the genetic alteration
characteristics, sorted by alteration frequency, were
displayed in the “Cancer Types Summary” module. We
used the “Mutations” module to depict the mutation sites
in the RUNX family proteins (illustrated as a schematic of
the protein structure). After identifying cases that carried
mutations, the distribution of cases with mutation co-
occurrence was assessed. Tumor mutation burden (TMB)
based on VarScan2 variant data of somatic mutations
from UCSC Xena was calculated as the total mutation
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incidences per million base pairs. After calculating the
correlation between the expression of RUNX genes and
TMB, we used the fmsb R package to construct a radar
chart illustrating the pan-cancer relationships between
RUNX genes and TMB.

Fusion gene analysis

We downloaded the fusion gene data of the RUNX
family from TCGA Fusion Gene Database (http://www.
tumortfusions.org/), including that of the fusion genes
associated with the 33 cancer types (predicted by PRADA).

Methylation analysis

Data related to differential methylation, methylation
survival, and methylation to the expression of RUNX
family genes were obtained from GSCALite (bioinfo.life.
hust.edu.cn/web/GSCALite/).[" Differential methylation
analysis was based on 14 cancer types and included paired
tumor versus normal data. To identify the genes that
were significantly influenced by genome methylation, we
analyzed the association between paired mRNA expression
and methylation based on Pearson’s product-moment
correlation coefficients. Methylation and clinical OS data
were combined, and median methylation level was used to
divide gene methylation into two groups. Cox regression
was then performed to estimate the hazards (risk of
death). The high-methylation group exhibited a worse
survival when the Cox coefficient was > 0. Thus, hyper-
worse survival was defined as “High,” and otherwise it was
defined as “Low.”

To accurately explore the effect of methylation sites,
particularly those upstream of the transcription start
site (TSS), on RUNX?Z2 expression and its relationship
with survival prognosis, we used MEXPRESS and
MethSurv online analysis tools. MEXPRESS (mexpress.
be) is an online tool that integrates gene expression, DNA
methylation, and clinical data in TCGA.I'! It allows us to
visualize the relationship between specific methylation sites
and gene expression levels. Meanwhile, MethSurv (biit.cs.ut.
ee/methsurv/) is an online tool for performing survival
analysis based on specific methylation sites by employing
methylome data from TCGA.!""

Epigenetic regulators

To explore the relationship between RUNX and
epigenetics in various cancers, we collected genes related
to epigenetic processes, such as chromatin remodeling,
DNA methylation, histone acetylation, histone methylation,
readers, and epigenetic mediators."**" Using the reshape2
and RColorBrewer R packages, we calculated the co-
expression of the RUNX genes and epigenetic regulators
based on TCGA pan-cancer RNAseq-HTSeq-FPKM data
and visualized the results on a heatmap.

Pathway analysis

The “Pathway Activity” module of GSCALite was used to
investigate the correlation between RUNX family members
and 10 well-known cancer-related pathways, namely, TSC /
mTOR, RTK, RAS/MAPK, PI3K/AKT, hormone ER,
hormone AR, epithelial-mesenchymal transition (EMT),
DNA damage response, cell cycle, and apoptosis pathways. ")
Pathway scores were calculated based on TCGA pan-cancer
data.”"! Global percentage presents the percentage of 32
cancer types in which a gene affects the cancer pathway.
Alternatively, heatmaps show proteins that are inhibited or
activated in at least five cancer types.

Stromal and immune infiltration analysis

Stromal and immune fractions were evaluated using the
Estimation of STromal and Immune cells in MAlignant Tumor
tissues using expression data (ESTIMATE) program.” Using
the estimate.R package in R 3.6.2, tumor stromal and immune
infiltration of TCGA pan-cancer samples was calculated using
the profiles of two gene sets that included 141 genes.

miRNA network

The miRNA regulation analysis was conducted using
GSCALite, which is based on verified experimental
(TarBase, miRTarBase, and mir2disease) and predicted
databases (targetscan and miRanda).l”! A correlation
analysis of RUNX gene expression between paired mRNA
and miRNA was performed to explore the miRNA—gene
regulatory network in all the 33 cancer types. A Pearson
correlation with an /DR <0.05 and an R <0 was considered
a significant negative correlation.

Transcriptional regulation of target genes

We used Harmonizome (amp.pharm.mssm.edu/
Harmonizome/) to explore the pan-cancer targets of the
RUNX genes. Harmonizome is a collection of processed
datasets containing gene and protein interaction data.”’
After entering RUNX genes, we selected the following four
seed databases: CHEA, JASPAR, TRANSFAC Curated,
and TRANSFAC, and subsequently predicted potential
RUNX target genes. Using the reshape2 and RColorBrewer
R packages, we identified pan-cancer correlations between
RUNX genes and potential target genes, which was based
on TCGA pan-cancer RNAseq-HTSeq-FPKM data. The
results were visualized on a heatmap.

RESULTS

Expression of RUNX genes in various tumors

The family of RUNX genes is abnormally expressed in
most cancers. In particular, RUNXT exhibited significant
differential overexpression in all assessed cancers (except in
prostate adenocarcinoma [PRAD]). RUNXZ and RUNXT7
have similar cancer expression characteristics (Figure 1A, B);
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Figure 1: Pan-cancer expression of RUNX genes. (A) Comparison of RUNX mRNA expression in cancer and adjacent normal tissues. (B) Comparison of RUNX
expression data from TCGA and GTEx databases in cancers that lacked or had fewer normal tissues. (C) Total RUNX protein expression in certain cancers. (D)
The pan-cancer landscape of RUNX expression at mRNA and protein levels. (E) Heatmap of RUNX gene expression in various tissues. *P < 0.05, **P < 0.01,
and ***P < 0.001. TCGA: The Cancer Genome Atlas; GTEx: genotype-tissue expression; BLCA: bladder urothelial carcinoma; BRCA: breast carcinoma; CESC:
cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma;
ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney
renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LANIL: acute myeloid leukemia; LGG: lower-grade glioma; LIHC: liver hepatocellular
carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; PAAD: pancreatic adenocarcinoma; PRAD: prostate adenocarcinoma; SKCM:
skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine
corpus endometrial carcinoma; UVM: uveal melanoma.
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however, the former exhibited low expression in
testicular germ cell tumors (TGCT). Meanwhile, the
pan-cancer expression trend of RUNX3 differed from
those of RUNXT7 and RUNX2, with RUNX3 found
downregulated in invasive breast carcinoma (BRCA), colon
adenocarcinoma (COAD), liver hepatocellular carcinoma
(LIHC), LUAD, and thymoma (THYM; Figure 1A, B).

Collectively, RUNX genes were overexpressed in
eight cancers, namely, esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), KIRC, kidney renal papillary
cell carcinoma (KIRP), acute myeloid leukemia (LAML),
pancreatic adenocarcinoma (PAAD), and stomach
adenocarcinoma (STAD). Among the six adult tumors
in the CPTAC database, RUNX7, RUNXZ2, and RUNX3
independently influenced three tumor types via significant
protein expression (Figure 1C). These TCGA pan-cancer
analysis results were summarized using Prism 8 version
8.4.0. The corresponding mRNA and protein expression
levels are depicted in heatmaps (Figure 1D).

RUNX gene expression in different tissues

The expression level of RUNX family genes varied between
tissues. Based on cluster analysis, the expression of RUNXT
and RUNX?Z2 was most similar. Moreover, RUNX family
genes exhibited relatively low expression in the brain,
esophagus, liver, kidney, pancreas, and adrenal gland and
relatively high expression in the fibroblasts, lungs, and
blood (Figure 1E).

RUNX protein phosphorylation

In the CPTAC database, the phosphorylation levels at
different RUNX residues showed consistent trends for all
phosphorylation sites (Figure 2A). All phosphorylation
sites are located outside the Runt and RunxI domains
(Figure 2B). To analyze CPTAC-identified phosphorylation
of RUNX family proteins, the PhosphoNET database
(www.phosphonet.ca) was used to analyze the evolutionary
conservation of these phosphorylation sites. The most
functionally important phosphosites are expected to be
highly conserved. Importantly, with the exception of the
T28 residue of RUNX3, all other phosphorylated residues
have been identified in mammals. However, the highly
conserved T14 and T18 residues of RUNX1 might have
an important role in various cancers. Meanwhile, upon
considering the influence of the neighboring phosphosites,
the Kinase Predictor module identified extracellular
regulated protein kinases 1 (ERK1) and ERK2 as the
proteins that are most likely to phosphorylate all of the
residues described above.

Survival analysis
In GEPIA2, we analyzed the effect of RUNX family

members on the OS and DES of 33 cancers. With the
exception of BRCA, upregulation of RUNXT was
associated with a poor prognosis and was significantly
associated with poor OS and DFS (Figure 3A). Similatly,
RUNX2 exhibited consistently high pan-cancer expression
and was associated with poor prognosis (Figure 3B).
Meanwhile, RUNX3 expression was noticeably different
from that of RUNX7 and RUNXZ in that it was associated
with significant survival outcomes only in individual cancers
(Figure 3C). The pan-cancer survival heatmap revealed that
brain lower-grade glioma (LGG) exhibited significant, and
consistent, survival outcomes in RUNX family analysis
(Figure 3D). High RUNXT and RUNXZ was associated
with poor uveal melanoma (UVM) prognosis. Moreover,
pan-renal cancer analysis suggested that high RUNXT7 and
RUNX?2 expression was associated with poor prognosis
(Figure 3D).

Genetic alteration summary analysis

RUNXT had the highest alteration frequency in LAML,
with an approximate 10% mutation frequency and 4%
gene fusion. Further, RUNXT had the second highest
alteration frequency in ESCA, with >6% deep deletion
(Figure 4A). Meanwhile, RUNXZ2 had the highest alteration
frequency in ESCA, with up to 6% amplification. Indeed,
among the 33 cancer types, genetic alterations in RUNX2
were primarily associated with amplification (Figure 4B).
However, although the overall genetic alteration frequency
of RUNX3 was lower than those of RUNXT7 and RUNX2,
it had the highest alteration frequency (<4%) in skin
cutaneous melanoma (SKCM; Figure 4C).

Using the data in cBioPortal, we further analyzed cancers
with a relatively high frequency of single-type genetic
alteration. We found that missense mutations caused
an increase in RUNXT expression in LAML samples
(Figure 4D). Although deep deletion in ESCA caused a
decrease in RUNXZ expression (Figure 4D), there was
no significant change in RUNXT7 expression (Figure 1D).
Meanwhile, in UCEC, genetic alterations in the RUNX
family ranked among the top five, of which RUNX7 and
RUNX?Z accounted for approximately 5%; however, this
did not affect the RUNX family gene expression (Figure
4D, E). ESCA and STAD, which are similar in terms of
anatomical structure, also exhibited RUNXZ amplification;
however, this did not contribute to an increase in RUNX?2
expression (Figure 4E).

Mutation analysis

Using the “Mutations” module in the cBioPortal, we
depicted all mutation sites in the RUNX family and
annotated the hotspots. More truncating mutations were
identified in RUNXT than in RUNXZ2 and RUNX3, while
the D96 site marked by the hotspot in the Runt domain
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Figure 2: Phosphorylation analysis of RUNX proteins in different tumors. (A) Box plots show the phosphorylation sites in RUNX proteins that are positively
associated with different cancers. (B) The RUNX protein schematic shows phosphoprotein sites with positive results. *P < 0.05, **P < 0.01, and ***P <
0.001. KIRC: kidney renal clear cell carcinoma; LUAD: lung adenocarcinoma; UCEC: uterine corpus endometrial carcinoma.
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Figure 3: RUNX-associated survival analyses. Positive association of (A) RUNX1, (B) RUNX2, and (C) RUNX3 with 0S and DFS. (D) The pan-cancer survival
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Figure 4: Pan-cancer genetic alterations in RUNX genes. Bar graphs showing the frequencies of genetic alteration in (A) RUNX1, (B) RUNX2, and (C) RUNX3
genes. Relationship between the genetic alteration and expression of (D) RUNX1 in LANL, ESCA, and UCEC and (E) RUNX2 in ESCA, STAD, and UCEC. *P <
0.05, **P < 0.01, ***P < 0.001. LANIL: acute myeloid leukemia; ESCA: esophageal carcinoma; UCEC: uterine corpus endometrial carcinoma; STAD: stomach
adenocarcinoma; ns: not significant (P > 0.05); BRCA: breast carcinoma; BLCA: bladder urothelial carcinoma; COAD: colon adenocarcinoma; UVM: uveal
melanoma; LUSC: lung squamous cell carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; LUAD: lung adenocarcinoma;
HNSC: head and neck squamous cell carcinoma; SKCM: skin cutaneous melanoma; THYM: thymoma; TGCT: testicular germ cell tumors; PRAD: prostate
adenocarcinoma; PAAD: pancreatic adenocarcinoma; GBM: glioblastoma multiforme; KIRC: kidney renal clear cell carcinoma; LGG: lower-grade glioma;
KIRP: kidney renal papillary cell carcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; KICH: kidney chromophobe; LIHC: liver hepatocellular
carcinoma; THCA: thyroid carcinoma; READ: rectum adenocarcinoma; UCS: uterine carcinosarcoma; OV: ovarian serous cystadenocarcinoma; SARC: sarcoma;
ACC: adrenocortical carcinoma; PCPG: pheochromocytoma and paraganglioma; CHOL: cholangiocarcinoma; MESO: mesothelioma.

had nine frameshift mutations, including eight insertions
and one deletion among eight BRCA cases and one LAML
case (Figure 5A). The hotspot in RUNXZ was S31Pfs*9
comprising five frameshift deletion samples, including
four COAD patients and one STAD patient (Figure 5B).
In RUNX3, which had the lowest mutation frequency, a
missense mutation of the hotspot R205C was found in
two COAD patients and one GBM patient (Figure 5A).
The co-occurrence of mutations was primarily observed in
patients with RUNXZ mutations. Only one COAD patient
exhibited mutations in RUNX7, RUNX2, and RUNX3.
Meanwhile, 12 patients with UCEC exhibited RUNX
family co-mutations, which was the most frequent among
all cancers (Figure 5B).

The distribution of mutation sites in the protein domain
revealed significantly more mutations in the Runt domain
than in the RunxI domain in the RUNX family proteins.
Specifically, the mutation rate in the Runxl domain
exceeded 55%, while that in the Runxl domain was <5%
(Figure 5C). Although a higher correlation was observed
in individual cancers, the expression of RUNX family
genes was consistently negatively correlated only with
TMB in ESCA, KIRP, LIHC, PRAD, and UCEC. The
correlation between BRCA and LAML with RUNX1
was approximately —0.4 and 0.4, respectively. Meanwhile,
the TMB of kidney chromophobe (KICH) was only
significantly correlated (0.4) with RUNXZ, whereas
RUNX3 was associated with the least tumors significantly
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Figure 6: Pan-cancer fusion gene and methylation analysis of RUNX. (A) Fusion gene analysis of RUNX in cancer. (B) Differential methylation bubble plot
showing changes in RUNX methylation between tumor and normal samples for each cancer type. Blue points represent reduced methylation in tumors; red
points represent increased methylation in tumors; the deeper the color, the higher the difference; point size represents significance; bigger the point, higher
the significance. (C) Pearson correlation between methylation and RUNX mRNA expression. Blue points represent negative correlations; red points represent
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Figure 7: Analysis of the methylation probes, cg17064250 and cg09541256, upstream of the RUNX2 TSS in KIRC. Survival analysis and distribution of the
methylation level of the RUNX2 probes, (A) cg17064250 and (B) cg09541256, in KIRC. (C) A schematic representing the relationship between the methylation
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Figure 8: Co-expression of RUNX genes and epigenetic regulators. *P < 0.05, **P < 0.01, and ***P < 0.001. BLCA: bladder urothelial carcinoma; BRCA:
breast carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm
diffuse large B-cell lymphoma; ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney
chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LANIL: acute myeloid leukemia; LGG: lower-grade glioma;
LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; PAAD: pancreatic adenocarcinoma; PRAD: prostate
adenocarcinoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM:
thymoma; UCEC: uterine corpus endometrial carcinoma; UVM: uveal melanoma; CHOL: cholangiocarcinoma; MESO: mesothelioma; OV: ovarian serous
cystadenocarcinoma; PCPG: pheochromocytoma and paraganglioma; READ: rectum adenocarcinoma; SARC: sarcoma; UCS: uterine carcinosarcoma.

correlated with TMB (Figure 5D).

Fusion gene

Gene fusion is closely associated with the occurrence and
development of vatious diseases, especially cancer, and
is even the direct cause of certain cancers.” Hence, we
used the Sankey diagram to identify all fusion genes of the
RUNX family in TCGA. A total of 17 cases of RUNX7
fusion genes, including eight LAML cases, of which seven

comprised the RUNX1-RUNXI1T1 fusion, which is a
high-frequency chromosomal alteration in LAML (Figure
6A) and plays an important role in LAML development.*!

DNA methylation analysis

We used the online tool GSCALite to conduct a rough
methylation analysis. The methylation level of RUNX
family genes significantly differed between the tumor and
normal samples. In particular, the methylation level of
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carcinoma; UVM: uveal melanoma.

RUNXT increased significantly in LUAD, lung squamous
cell carcinoma (LUSC), and UCEC. Indeed, lung cancer
epigenetic changes are important factors in its occurrence
and development.’**l Meanwhile, RUNX2 methylation
was significantly reduced in KIRC and BRCA (Figure 6B).
Moreover, a significant and negative correlation was
detected between methylation and RUNXZ2 and RUNX3
expression (Figure 6C). Additionally, survival risk analysis
revealed a consistent trend of high methylation and low-
risk RUNX family genes in KIRP and UVM (Figure 6D).

Our results, combined with those of previous tran-
scriptome analyses, revealed that RUNXZ2 was overex-
pressed in KIRC (Figure 1D), possibly due to decreased
methylation, which may lead to tumorigenesis and poor
prognosis (Figure 6B, D). Moreover, according to the
“All cancers” module in MethSurv, which provides the
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results of Cox proportional-hazards analysis, among
the methylation probes near the TSS of RUNXZ2 in
KIRC, cg09541256 and cg17064250 — grouped accord-
ing to the best split — showed a poor prognosis in the
hypomethylation groups (Figure 7A, B). Meanwhile,
MEXPRESS further revealed that of the 480 KIRC
samples, some transcripts with high RUNXZ2 expression
had lower methylation upstream of TSS (Figure 7C).
Moreover, a significant negative correlation between
cg09541256 and cgl17064250 methylation and RUNXZ2
mRNA expression was observed (Figure 7D).

RUNX and its epigenetic regulators

RUNX genes exhibited significant positive correlations with
many epigenetic regulators, suggesting that RUNX genes
and epigenetic regulators interact with each other or have a
regulatory relationship. Among the RUNX genes, RUNXT7
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had the highest correlation with epigenetic modifiers. In
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),
RUNX genes and epigenetic modifiers were more highly
correlated than in other malignant tumors. Moreover,
most of these epigenetic modifiers were found related to
transcription activation (Figure 8). The co-expression of
RUNX genes and epigenetic regulation provide a basis for
further research on specific tumors.

RUNX gene-related cancer pathways
Following the pan-cancer pathway analysis of RUNX
family genes, the global percentage data revealed that the
EMT pathway was activated, not inhibited (Figure 9A).
Moreover, the heatmap revealed that 50% of the cancers
have EMT related to RUNXZ (Figure 9B).

ESTIMATE scored the pan-cancer stroma and immune
invasion levels based on TCGA transcript data, while
Pearson correlation analysis was performed using the
obtained score and the expression level of the RUNX
family genes. The heatmap showed a significant (P <
0.05) correlation between the RUNX family genes and
pan-cancer stroma and immune scores (Figure 9C). That
is, the immune and stromal scores in most cancers were
positively correlated with RUNX gene expression, possibly
indicating that RUNX correlates with tumor purity. A major
component of the stroma is cancer-associated fibroblasts
(CAFs) that mediate EMT.*

miRNA network in RUNX

Using GSCALite, we predicted totally 51 miRNAs
potentially targeting the 3'-untranslated region (3-UTR)
of RUNX transcripts. Pan-cancer analysis revealed
that miRNAs potentially inhibit RUNX7 and RUNX?2
expression more than RUNXJ expression. Specifically,
RUNXT and RUNXZ2 were both inhibited by six miRNAs,
namely, hsa-miR-30a-5p, hsa-miR-30b-5p, hsa-miR-30c-
5p, hsa-miR-30d-5p, hsa-miR-30e-5p, and hsa-miR-338-
5p (Figure 9D). In osteogenic differentiation, DGCR5
upregulated RUNX2 through miR-30d-5p.”" Meanwhile,
in giant cell bone tumor, miR-30a inhibited osteolysis by
targeting RUNX2.

Targeted RUNX genes

In Harmonizome, the four target gene sets selected
included putative target genes that had been verified,
manually collected, predicted by the TF motif, and enriched
based on high-throughput data, such as ChIP-seq. We
selected genes contained in three or four gene sets as
candidate target genes of the RUNX protein (Figure 10A).
Among the RUNX proteins, RUNX3 was excluded from
subsequent analysis due to the lack of relevant data. The
correlation analysis suggested that 74 RUNXT target genes

and 27 RUNX?Z target genes were potentially involved in
regulatory mechanisms in various cancers (Figure 10B, C).
In particular, the correlation between MMP14 and RUNX1
in PAAD reached 0.84 (Figure 10B), suggesting a possible
direct regulatory relationship. Moreover, in GBM, a strong
correlation was observed between RAB27A and RUNX2,
reaching nearly 0.78 (Figure 10C).

DISCUSSION

RUNX proteins are highly conserved TFs that play a
role in blood and blood-related cell lineages during both
the developmental and adult life stages.”"! Abnormally
expressed RUNX genes have been observed in vatious
cancers and have been shown to play a key role in
carcinogenesis in some, while eliciting a tumor-suppressor
effect in other cancer types.’! Our research focused
on the pan-cancer abnormal changes in RUNX genes,
revealing that abnormal RUNX expression is associated
with the prognosis of a variety of cancers. In particular,
RUNXT was overexpressed in cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC),
COAD, GBM, KIRC, and KIRP, with high expression
found to be associated with a worse prognosis. In contrast,
RUNX?2 overexpression is only associated with a poor
prognosis in bladder urothelial carcinoma (BLCA) and
KIRC. Meanwhile, RUNX3 exhibited a paradoxical
association with prognosis, that is, its downregulation
was associated with poor prognosis in BRCA and LIHC,
while its upregulation was associated with poor prognosis
in LAML and SKCM. Moreover, results from the total
protein analysis in the six cancers were inconsistent with
the transcriptome data, with RUNX3 exhibiting an opposite
trend in LUAD. Additionally, comprehensive analysis
of protein phosphorylation, genetic alteration, DNA
methylation, co-expression with epigenetic regulators,
and miRNA networks revealed the potential carcinogenic
mechanism of RUNX genes.

High-throughput data obtained from pan-cancer gene
analysis has revealed that TFs with powerful biological
functions were hot genes. For instance, MYC is a unique
oncogene in human cancers and its alterations are mutually
exclusive to PIK3CA, PTEN, APC, or BRAEPY Moreover,
NFE2L2 has been identified as a potential pan-cancer
prognostic biomarker that is associated with immune
infiltration.” Similarly, TFAP4 is abnormally expressed in
most malignancies and is closely associated with OS as well
as the degree of tumor infiltration.’ While these studies
were all performed with a single TF target, the current
study assessed three TFs of the RUNX family. Moreover,
we have carried out in-depth analysis of proteins, DNA
methylation, and so on. Finally, we verified that RUNX2
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is significantly overexpressed and associated with poor
prognosis in KIRC and BLCA. These findings agree with
those of previous studies that reported RUNX2 as being
associated with cancer progtression.?>

TCGA contains data for 33 types of cancer, which can
be further divided based on the source of the organ
system or histopathologic classification.”” Pan-squamous
cell carcinoma (PSCC) arises from the epithelia of the
acrodigestive and genitourinary tracts and includes LUSC,
HNSC, ESCA, CESC, and BLCA.P¥ RUNX mRNAs
were independently overexpressed in four of the five
PSCCs, while ESCA and HNSC were overexpressed in
all. Moreover, RUNX3 was downregulated in five cancers,
including BRCA, COAD, LIHC, LUAD, and thyroid
carcinoma (THCA), which are all adenocarcinomas or
found in organs with secretory functions. Meanwhile, in
PRAD, both RUNXT and RUNX2 were downregulated.
Therefore, identifying these similarities and differences
in RUNX gene expression within different cancers —
originating from different tissues and with different
pathological characteristics — may pave the way for future
studies on RUNX genes.

Phosphorylation is a ubiquitous posttranslational
modification that, in cancer, can regulate cell proliferation,
differentiation, apoptosis, and other functions. In fact,
specific phosphorylation sites are recognized as potential
therapeutic targets.”~*!l Most phosphorylation sites
reported in RUNXT, including the S21 residue, are
modified to activate transcriptional activity.* Additionally,
we found increased phosphorylation levels of RUNXI1
(T'14,T18, and S212) in a variety of cancers. For instance,
RUNX2 S319 phosphorylation — a potential diagnostic
and therapeutic target — was closely associated with the
occurrence and progression of PRAD.* Moreover, S28
and S340 residues in RUNX2 are potential therapeutic
targets as they have previously been shown to regulate the
transcriptional activity of RUNX2.* Phosphorylation can
regulate the ubiquitination and degradation of proteins;!*>*!
hence, the preservation and activation of RUNX protein
functions may also be related to this mechanism.

Point mutations in RUNX7 and RUNX1-RUNXI1T1
fusions are common and critical pathogenic mechanisms
in LAML and are related to patient prognosis.l’l Our
analysis of genetic alterations also revealed that RUNXT
mutation could result in increased RUNXT7 expression.
Moreover, RUNXT expression was most related to
the TMB of LAML pan-cancer, revealing a potential
mechanism underlying RUNX1-mediated induction of
LAML. In fact, all RUNX genes were overexpressed in
LAML; however, survival analysis showed that only the
high RUNX3 expression group had a worse prognosis

in LAML. Interestingly, in LGG, RUNX genes showed a
consistent trend in survival analysis (OS and DFS), that
is, overexpression was associated with poor prognosis.
However, RUNX mRNA was not overexpressed in
LGG compared with that in healthy tissues. Therefore,
the prognostic value of RUNX genes in LGG requires
further exploration. RUNXT genetic alteration in BRCA
was the third most common among the 33 cancers,
and it primarily comprised mutations. Eight of the
nine truncating mutations at the D96 hotspot could be
tagged to BRCA. Moreover, 12 cases of co-occurrence
mutations were detected in RUNX genes in UCEC, the
most frequent among all cancers. Moreover, in UCEC, the
expression of all RUNX genes negatively correlated with
TMB. There are a few studies on RUNX genes in UCEC,
and these results may aid future research and treatment.

As dominant oncogenes or tumor suppressors, RUNX
genes playing dual roles in cancer have garnered considerable
research attention.™ RUNXT has been shown to inhibit
cancer stem cell and tumor growth in BRCA, while also
acting as a suppressor of EMT in normal and eatly-stage
breast cancer cells. Meanwhile, RUNXZ has the opposite
effect and is involved in a regulatory network that controls
EMT."¥* This is consistent with the poor prognosis of
the RUNXT low-expression group, as well as the observed
upregulation of RUNXZ2 mRNA and protein expression
in BRCA. Approximately 1 million new cases of gastric
cancer ate reported wotldwide each year.P'! RUNX?Z has
been reported as overexpressed in gastric cancer tissues
and promotes metastasis by upregulating CXCR4.5? In
contrast, RUNX3J acts as a tumor suppressor in gastric
cancer to inhibit tumor proliferation and metastasis.’>*l

Most cancer-related reports on DNA methylation of RUNX
genes are based on RUNX3 studies. DNA hypermethylation
— responsible for a decrease in RUNX3 expression — is
associated with lung cancer.’ Hypermethylation in the
promoter region may be an important cause of RUNX3
downregulation in ESCA.PY Moreover, in breast cancet,
hypermethylation of the RUNX3 promoter is considered a
valuable marker.”” Besides, DNA methylation of RUNX3
has also been reported in gastric cancer,” colorectal
cancer,” and laryngeal squamous cell carcinoma.””! This
finding is also consistent with the results of our study
in that the mRNA expression of RUNXJ negatively
correlated with the DNA methylation level in most
cancers. TFs themselves can be modified by methylation,
a phenomenon that in turn regulates the expression
of other genes. Meanwhile, TFs can bind to the distal
enhancer, thereby enabling their demethylation. RUNX1
may function as a scaffold that binds to the enhancer
elements in KIRC and GBM to regulate the expression
of multiple genes.'!! However, in this study, our DNA
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methylation analysis — using GSCALite — did not
involve the analysis of specific position probes within
the gene; therefore, the results can only be presented
based on the overall methylation level. Nevertheless, the
methylation levels upstream of the RUNXZ2 promoter
(cg09541256 and cg17064250) identified in our study are
not only related to KIRC prognosis, but also to RUNXZ2
expression. Therefore, the activities of RUNX genes
and DNA methylation constitute a potential pan-cancer
carcinogenic mechanism.

Our results also suggested that RUNX is involved in co-
expression relationships with many epigenetic regulators.
Numerous modifiers are significantly related to RUNX
genes in a variety of malignant tumors. Previous research
has supported the interaction of RUNX proteins with
epigenetic modifiers, such as histone deacetylases
(HDAC:),1*%l the H3K4 methyltransferase in mixed-
lineage leukemia (MLL; also known as KMT2A), and
acetyltransferase E1A binding protein P300 (EP300).1+I
RUNX proteins, as TFs, can recruit epigenetic modifiers to
activate or repress transctiption, and the co-expression
relationships with numerous epigenetic regulators revealed
the potential coactivators or corepressors of RUNX
proteins in terms of epigenetics.

RUNX proteins can mediate EMT through various
signaling pathways, and their activity has been confirmed
in various cancers.>® Moreover, in our functional
analysis, we observed that pan-cancer, RUNX proteins
functioned by activating EMT. In our previous study, we
also reported that RUNX2 promotes cancer progression
by inducing EMT in renal cell carcinoma.’ In TME,
RUNX expression is related to the degree of immune
and stromal infiltration in most cancers. This finding also
revealed that RUNX proteins have potentially important
roles in TME. Moreover, RUNX proteins contribute to
the development of cytotoxic T cells and functioning
of dendritic cells and macrophages.! CAFs, which
account for the largest proportion of cells in the
matrix, play a role in EMT.”* In BLCA, we verified
that RUNX?2 is a CAF infiltration-related gene and
significantly promotes cancer progression.’® Moreover,
the observed correlation between RUNX genes and
the stromal score revealed that RUNX genes play a
pivotal in CAFs.

We also conducted a comprehensive, multi-dimensional
analysis of RUNX genes based on biological information.
The robust role of RUNX genes in cancer is a cause for
concern; however, the detailed mechanisms underlying the
pan-cancer role of RUNX genes and their carcinogenic
mechanism warrant further experimental exploration.

CONCLUSION

In summary, this pan-cancer analysis provides a relatively
comprehensive understanding of the association of RUNX
genes with cancers. The abnormal expression of RUNX
genes causes a disturbance in many cancers and interferes
with patient prognosis. Our results indicate that genetic
alterations in RUNX genes and their co-expression with
epigenetic regulators may be the underlying cause of
certain cancers. Meanwhile, DNA methylation, miRNA
network, and potential target gene analyses revealed the
potential mechanisms underlying the abnormal expression
and downstream regulation of RUNX genes. Hence, the
role of RUNX genes in cancer warrants further in-depth
exploration.
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