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Abstract: To investigate whether high glucose (HG) alters Rab20 expression and compromises gap
junction intercellular communication (GJIC) and cell survival, retinal cells were studied for altered
intracellular trafficking of connexin 43 (Cx43). Retinal endothelial cells (RRECs) and retinal Müller
cells (rMCs) were grown in normal (N; 5 mM glucose) or HG (30 mM glucose) medium for seven
days. In parallel, cells grown in HG medium were transfected with either Rab20 siRNA or scrambled
siRNA as a control. Rab20 and Cx43 expression and their localization and distribution were assessed
using Western Blot and immunostaining, respectively. Changes in GJIC activity were assessed using
scrape load dye transfer, and apoptosis was identified using differential dye staining assay. In RRECs
or rMCs grown in HG medium, Rab20 expression was significantly increased concomitant with
a decreased number of Cx43 plaques. Importantly, a significant increase in the number of Cx43
plaques and GJIC activity was observed in cells transfected with Rab20 siRNA. Additionally, Rab20
downregulation inhibited HG-induced apoptosis in RRECs and rMCs. Results indicate HG-mediated
Rab20 upregulation decreases Cx43 localization at the cell surface, resulting in compromised GJIC
activity. Reducing Rab20 expression could be a useful strategy in preventing HG-induced vascular
and Müller cell death associated with diabetic retinopathy.
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1. Introduction

Diabetic retinopathy is the leading cause of blindness in the working-age population in
Western countries [1]. The early stages of this devastating disease are characterized by high-glucose
(HG)-mediated microvascular changes [2–4] as well as glial changes [5–9] in the retina, leading
to loss of retinal endothelial cells, pericytes, and Müller glial cells. Several studies suggest that
hyperglycemia-induced disruption of gap junction intercellular communication (GJIC) plays a critical
role in the pathogenesis of diabetic retinopathy [10–20]. It is also important to note that HG is known
to compromise other cellular junctions, including tight junctions, in retinal cells [21,22]. With respect to
gap junctions, studies indicate that translocation and modification of connexins are critical in regulating
GJIC activity [23,24], and Rab20, a small GTPase, may impact the intracellular trafficking of connexin
43 (Cx43) [25]. However, it is currently unknown whether intracellular trafficking of Cx43 is altered

J. Clin. Med. 2020, 9, 3710; doi:10.3390/jcm9113710 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
http://dx.doi.org/10.3390/jcm9113710
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/9/11/3710?type=check_update&version=2


J. Clin. Med. 2020, 9, 3710 2 of 11

by HG via regulation of Rab20 and whether such changes influence cell survival in the context of
diabetic retinopathy.

GJIC enables the exchange of small molecules through gap junction channels granting passage of
ions, nutrients, and other signaling molecules (up to 1 kD) between neighboring cells and is essential
for the maintenance of retinal homeostasis [26]. Connexin monomers oligomerized into hexameric
proteins are transported to the plasma membrane, where they function as active gap junction channels.
In particular, connexin 43 (Cx43) gap junction channels are abundantly expressed in the retina [27] and
participate in the regulation of the blood–retinal–barrier as well as maintenance of retinal vascular
and glial homeostasis [16,28]. Retinal vascular cells exchange various ions and small metabolites
including cyclic AMP (cAMP), Ca2+, and other molecules among them essential for cell survival,
growth, proliferation, and homeostasis [29,30]. Importantly, our previous studies have indicated that
HG or diabetes downregulates Cx43 expression in retinal vascular cells, compromising GJIC, thereby
triggering apoptosis [13,14,17,18,31,32]. Interestingly, downregulating Cx43 alone in rats using a siRNA
strategy resulted in accelerated retinal vascular cell death and vascular leakage associated with diabetic
retinopathy [33]. A clinical study showed that retinas of patients with diabetic retinopathy exhibit
significantly reduced Cx43 expression, which was associated with increased retinal vascular cell loss,
highlighting the relevance of Cx43 downregulation in human diabetic retinopathy [20].

Studies indicate that Müller glial cells are in close apposition with each other, making frequent
contact with the capillaries in the retina [34]. Cx43 are abundantly present in the apical processes of
Müller cells located at the outer limiting membrane [35]. Of note, Cx43 has been established as the
major gap junction protein between Müller cells in lower vertebrates [36]. Cx43 immunoreactivity was
detected in Müller cells in human retinas [37]. Taken together, these studies indicate that Cx43 plays a
central role in intercellular communication and helps regulate cell survival in retinal Müller cells [38].
Conversely, findings from one of our recent studies indicate that HG plays a deleterious role in retinal
Müller cells by downregulating Cx43 expression, compromising GJIC, and promoting apoptosis [16].
The literature supports the implication that maintenance of cell–cell communication is essential for
retinal endothelial cell and Müller cell survival.

Migration of Cx43 gap junction proteins to the cell surface is essential for GJIC activity. GTPases
play an important role in regulating intracellular trafficking and facilitating membrane fusion and
transport of proteins to the cell surface. Intracellular trafficking pathways comprise overlapping relays
of GTPases acting sequentially, coordinating transport and membrane fusion by cycling between
the membrane-bound, active GTP, and inactive, cytosolic GDP-states. One GTPase, Rab20, has been
identified as a potential regulator of Cx43 trafficking [25]. Although the exact function of Rab20 is
not fully understood, early data suggests it may hinder trafficking of Cx43 from the endoplasmic
reticulum to the Golgi apparatus [25]. Rab20 assumes a perinuclear localization, presumably at the
Golgi, and has been shown to reduce Cx43 localization at the cell surface [25].

Although much has been elucidated in the deleterious effects of HG on GJIC activity and retinal
cell apoptosis, the exact mechanism by which intracellular transport of Cx43 is reduced remains
unclear. GTPases likely play a critical part in this pathway and warrant further exploration. Therefore,
the current study was undertaken to investigate whether HG alters Rab20 expression and subsequently
affects Cx43 localization, GJIC activity, and cell survival in RRECs and rMC-1.

2. Materials and Methods

2.1. Cell Culture

Endothelial cells exhibiting von Willebrand factor (vWF) were isolated from rat retinal capillaries
(RRECs) as previously described [39] and used in the present study. Rat retinal Müller cells (rMC-1)
were previously characterized as Müller cells based on long and slender shape morphology and
expression of cellular retinaldehyde-binding (CRALBP) protein [40]. To determine the downstream
effects of HG on Rab20 expression, cultures of RRECs or rMC-1 were grown for 7 days in 35 mm Petri
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dishes at 37 ◦C in normal (N; 5 mM D-glucose) or high-glucose (HG; 30 mM D-glucose) Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (Sigma, St. Louis, MO, USA),
antimycotics, and antibiotics. RRECs were plated at a density of 10,000 cells for normal glucose and at
12,000 cells for HG conditions to reach confluence after 7 days. In parallel, rMC-1 were plated at a
density of 7500 cells for normal glucose and at 9000 cells for HG conditions to reach confluence after
7 days.

2.2. Transfection with Rab20 siRNA

To assess whether reducing Rab20 overexpression influences Cx43 localization, GJIC activity,
and cell viability, RREC or rMC-1 grown under HG condition were subjected to transfection with
40 nM Rab20 siRNA (Qiagen, Germantown, MD, USA) or scrambled siRNA (scram; Ambion, Austin,
TX, USA) as a negative control using 8 µM Lipofectin (Invitrogen, Grand Island, NY, USA) diluted
with Opti-MEM reduced serum medium (Invitrogen). Transfected cells were harvested and subjected
to scrape load dye transfer (SLDT) analysis, immunostaining, immunoprecipitation, Western blot (WB)
analysis, or differential dye staining after 7 days of HG exposure.

2.3. Immunostaining

To determine whether changes in Rab20 levels alter Cx43 distribution and localization,
coimmunostaining was performed. Briefly, RRECs or rMC-1 were plated on glass coverslips
and subjected to 4% paraformaldehyde fixation for 15 min at room temperature, then exposed
to ice-cold methanol and incubated with 2% bovine serum albumin (BSA) for 60 min to block
nonspecific antibody binding. Incubation with rabbit-Cx43 antibody solution (1:100; Cell Signaling,
Danvers, MA) and mouse-Rab20 antibody solution (1:100; Abcam, Cambridge, MA, USA) occurred
overnight in a moisture chamber at 4 ◦C. The next day, the coverslips were incubated with
antirabbit secondary antibody conjugated with FITC (1:200; Jackson ImmunoResearch Laboratories,
West Grove, PA, USA) and antimouse secondary antibody conjugated with Rhodamine Red (Jackson
ImmunoResearch Laboratories) for 1 h at room temperature in the dark. Cells were photographed under
a confocal microscope (LSM710; Zeiss, Göttingen, Germany), and Cx43/Rab20 immunofluorescence
staining data were obtained by counting Cx43 plaques on adjacent cell bodies and analyzing Rab20
immunofluorescence values normalized by the total number of cells per field using NIH ImageJ
software, respectively. Specifically, Cx43 punctate “dots” in adjacent cells were counted in at least ten
random fields from each experimental group, which were then normalized by the total number of cells
per field to quantify Cx43 immunostaining [18].

2.4. Immunoprecipitation (IP) and WB Analysis

Total protein was isolated from RRECs or rMC-1, and IP for Rab20 was performed with the use of
agarose beads as previously described [19]. A total of 250 µg of total protein from the experimental
groups, as determined by the bicinchoninic acid protein assay, was immunoprecipitated for Rab20
and were loaded into each lane on a 10% SDS-polyacrylamide gel. WB procedure was performed as
described previously [19]. Following semidry transfer, PVDF membranes were blocked for 1 h with 5%
nonfat dry milk dissolved in TTBS. After blocking, the membranes underwent several washes with
TTBS and were exposed to an antigoat Rab20 antibody (1:500; Santa Cruz Biotechnology, Santa Cruz, CA,
USA) and incubated overnight at 4 ◦C. The following day, membranes were subjected to washes with
TTBS and exposed to alkaline-phosphatase conjugated antigoat IgG (1:5000; Santa Cruz Biotechnology)
as secondary antibody. Membranes were then subjected to a chemiluminescent substrate (Immun-Star;
Bio-Rad, Hercules, CA, USA) and developed using a digital imager (Fujifilm LAS-4000). Densitometric
analysis of the signals was performed using the NIH ImageJ software.
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2.5. Differential Dye Staining

To investigate the effects of altered Rab20 expression on cell viability, differential dye staining
assay was performed to identify apoptotic cells [41]. The principle of the differential dye stain assay
takes advantage of the gradual loss of cell membrane properties during apoptosis. When cells undergo
apoptosis, they are characterized by loss of cell membrane integrity, which allows entry of ethidium
bromide and acridine orange into the cells. Acridine orange can enter both viable and apoptotic cells
and intercalate with the DNA, resulting in green fluorescence, whereas ethidium bromide can enter
only the apoptotic cells due to their compromised membrane integrity, allowing mixing of the two
fluorescent dyes [41]. This mixing produces a variety of colors ranging from yellow/light orange
fluorescence, signifying early-stage apoptosis, and dark orange/red fluorescence, signifying late-stage
apoptosis. At the time of harvest, RRECs or rMC-1 cultured on coverslips were washed with PBS
several times and exposed to a mixture of ethidium bromide (25 µg/mL) and acridine orange (25 µg/mL)
for 10 min at room temperature. The cells were then subjected to PBS washes and mounted onto a
glass slide using a SlowFade Diamond Antifade mountant. Apoptotic cells were identified using a
DAPI filter in at least ten random fields and imaged through a digital camera using a fluorescence
microscope (Nikon TE2000-S). The total number of cells in each field was identified using the NIH
ImageJ software. This was performed by subtracting background fluorescence, adjusting threshold
values, and analyzing particles. Subsequently, analysis of apoptotic cells was performed by assessing
the apoptotic index, which is the number of cells undergoing apoptosis divided by the total number of
cells per field expressed as a percentage.

2.6. Scrape Load Dye Transfer (SLDT)

SLDT assay is a technique to assess cell–cell coupling. Cells grown to confluent monolayer are
subjected to random cuts allowing small molecules <1 kD in size to transverse between cells through
gap junctions [42,43]. In particular, a tracer dye, Lucifer Yellow (MW 457), can pass between contiguous
cells from the point of “cut” through gap junctions. The number of cells that the Lucifer Yellow dye
traverses perpendicular to the “cut” represents the number of dye-coupled cell layers. Therefore,
cells exhibiting a greater extent of dye coupling represent increased Cx43-mediated GJIC. Briefly,
RRECs or rMC-1 grown on coverslips were washed with PBS containing 0.01% Ca2+ and Mg2+ several
times. Random cuts were then made in the monolayer using a razor blade. A solution containing
PBS with 0.05% Lucifer Yellow (LY; Molecular Probes) was applied to the cells and incubated at room
temperature for 5 min. Following incubation, cells were rinsed with PBS containing 0.01% Ca2+ and
Mg2+ three times. Cells were then fixed with 4% paraformaldehyde, visualized using a FITC filter,
and photographed using a fluorescence microscope (Nikon). To evaluate GJIC activity, dye-coupled
cell layers were counted and analyzed in at least ten random fields.

2.7. Statistical Analysis

Data are expressed as means ± SD. One-way ANOVA followed by Bonferroni post-hoc test
was performed to assess differences between multiple groups. Six replicates were performed for
each experiment, and the data were analyzed for statistical significance. p < 0.05 represented
statistical significance.

3. Results

3.1. High Glucose Upregulates Rab20 Protein Expression in RRECs and rMC-1

Following immunoprecipitation for Rab20, the expression level for Rab20 was significantly
elevated in RRECs or rMC-1 grown under HG condition compared to those grown in normal glucose
(NG) condition (RRECs: 130 ± 3% of NG vs. 100 ± 1% of NG; p < 0.05; n = 6; Figure 1; rMC-1: 177 ± 17%
of NG vs. 100 ± 15% of NG; p < 0.05; n = 6; Figure 1). As expected, Rab20 levels were downregulated
in cells grown under HG condition and transfected with Rab20 siRNA compared to those grown in
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HG alone (RRECs: 87 ± 2% of NG vs. 130 ± 3% of NG; p < 0.05; n = 6; Figure 1; rMC-1: 136 ± 14%
of NG vs. 177 ± 17% of NG; p < 0.05; n = 6; Figure 1). There was no significant difference in Rab20
expression between cells grown in HG medium and transfected with scram siRNA and cells grown in
HG medium alone.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 5 of 11 

 

 
Figure 1. Effects of high glucose (HG) and Rab20 siRNA on Rab20 expression in retinal endothelial 
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transfected with Rab20 siRNA exhibit significantly reduced Rab20 expression compared to that of 
cells grown in HG alone in both (C) RRECs and (D) rMC-1. Data are expressed as mean ± SD. * p < 
0.05, n = 6; # p < 0.05, n = 6; Δ p < 0.05, n = 6. 
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Figure 1. Effects of high glucose (HG) and Rab20 siRNA on Rab20 expression in retinal endothelial cells
(RRECs) and rMC-1. Representative images of WB using immunoprecipitated Rab20 protein shows
HG significantly upregulates Rab20 expression in (A) RRECs and (B) rat retinal Müller cells (rMC-1).
Graphical illustration of cumulative WB data indicates that cells grown in HG and transfected with
Rab20 siRNA exhibit significantly reduced Rab20 expression compared to that of cells grown in HG
alone in both (C) RRECs and (D) rMC-1. Data are expressed as mean ± SD. * p < 0.05, n = 6; # p < 0.05,
n = 6; ∆ p < 0.05, n = 6.

3.2. Effect of HG and Rab20 Downregulation on Cx43 Distribution and Localization in RRECs and rMC-1

To investigate whether Rab20 upregulation influences Cx43 distribution and localization in RRECs
or rMC-1, Cx43 immunostaining was performed. As expected, RRECs or rMC-1 grown in HG medium
exhibited reduced Cx43 immunostaining (RRECs: 62 ± 3% of NG vs. 100 ± 5% of NG; p < 0.05; n = 6;
Figure 2; rMC-1: 77 ± 6% of NG vs. 100 ± 8% of NG; p < 0.05; n = 6; Figure 2) compared to cells grown
in NG condition. Importantly, when HG-induced Rab20 overexpression was reduced using Rab20
siRNA, a significant increase in Cx43 immunostaining was observed at the cell surface (RRECs: 77 ± 4%
of NG vs. 62 ± 3% of NG; p < 0.05; n = 6; Figure 2; rMC-1: 92 ± 6% of NG vs. 77 ± 6% of NG; p < 0.05;
n = 6; Figure 2). No significant difference in Cx43 immunostaining was observed between cells grown
in HG and cells grown in HG transfected with scrambled siRNA. In contrast, Rab20 immunostaining
in RRECs and rMC-1 was significantly increased in cells grown in HG medium (RRECs: 178 ± 7% of
NG vs. 100 ± 4% of NG; p < 0.05; n = 6; Figure 2; rMC-1: 214 ± 9% of NG vs. 100 ± 2% of NG; p < 0.05;
n = 6; Figure 2); however, in the presence of Rab20 siRNA, Rab20 immunostaining was significantly
decreased (RRECs: 132 ± 5% of NG vs. 178 ± 7% of NG; p < 0.05; n = 6; Figure 2; rMC-1: 137 ± 7% of
NG vs. 214 ± 9% of NG; p < 0.05; n = 6; Figure 2) whereas scrambled siRNA showed no effects.
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immunoreactivity (red) in (A) RRECs and (B) rMC-1. Scale bar = 25 μm. Cells transfected with Rab20 
siRNA restores Cx43 level. Graphical illustration of cumulative immunofluorescence data shows HG 
increases Rab20 immunostaining in (C) RRECs and (D) rMC-1, and that Rab20 siRNA prevents HG-
induced decrease in Cx43 plaques in (E) RRECs and (F) rMC-1. Data are expressed as mean ± SD. * p 
< 0.05, n = 6; # p < 0.05, n = 6; Δ p < 0.05, n = 6. 
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Figure 2. Rab20 siRNA attenuates HG-induced downregulation of connexin 43 (Cx43) expression.
Representative images show decreased Cx43 immunoreactivity (green) and increased Rab20
immunoreactivity (red) in (A) RRECs and (B) rMC-1. Scale bar = 25 µm. Cells transfected with
Rab20 siRNA restores Cx43 level. Graphical illustration of cumulative immunofluorescence data shows
HG increases Rab20 immunostaining in (C) RRECs and (D) rMC-1, and that Rab20 siRNA prevents
HG-induced decrease in Cx43 plaques in (E) RRECs and (F) rMC-1. Data are expressed as mean ± SD.
* p < 0.05, n = 6; # p < 0.05, n = 6; ∆ p < 0.05, n = 6.

3.3. Rab20 Downregulation Restores GJIC Activity in RRECs and rMC-1

To better understand the association between increased Rab20 expression and GJIC activity,
gap-junction-mediated dye coupling between cells was evaluated through the SLDT assay in the
context of Rab20 levels. The number of cells that the Lucifer Yellow dye has traversed from the point
of “cut” represents the number of dye-coupled cell layers. In RRECs and rMC-1 grown under HG
condition, the number of dye-coupled cell layers was significantly reduced compared to those grown in
NG condition (RRECs: 59 ± 1% of NG vs. 100 ± 3% of NG; p < 0.05; n = 6; Figure 3; rMC-1: 56 ± 22% of
NG vs. 100 ± 31% of NG; p < 0.05; n = 6; Figure 3). Importantly, when HG-induced Rab20 upregulation
was reduced using Rab20 siRNA, a significant increase in the number of dye-coupled cell layers was
observed (RRECs: 81 ± 16% of NG vs. 59 ± 1% of NG; p < 0.05; n = 6; Figure 3; rMC-1: 79 ± 20% of NG
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vs. 56 ± 29% of NG; p < 0.05; n = 6; Figure 3). In parallel, there was no significant difference in the
number of dye-coupled cell layers between cells grown in HG and cells grown in HG transfected with
scrambled siRNA.
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Figure 3. Rab20 downregulation lessens HG-induced decrease in gap junction intercellular
communication (GJIC) in RRECs and rMC-1. Representative scrape load dye transfer (SLDT) images
show (A) RRECs or (B) rMC-1 grown in HG exhibit a decrease in the number of dye-coupled cell layers.
Scale bar = 100 µm. Graphical illustration of cumulative SLDT data shows siRNA-mediated Rab20
downregulation improves GJIC activity in (C) RRECs (* p < 0.01, n = 6; # p < 0.05, n = 6; ∆ p < 0.05,
n = 6) and (D) rMC-1 (* p < 0.05, n = 6; # p < 0.05, n = 6; ∆ p < 0.05, n = 6) grown in HG condition.
Data are expressed as mean ± SD.

3.4. Effect of Rab20 Downregulation on RREC and rMC-1 Cell Survival

Differential dye staining assay was performed to investigate whether changes in Rab20 expression
impact cell survival. As expected, a significant increase in the number of apoptotic cells was observed
in RRECs and rMC-1 grown under HG condition compared to cells grown in NG condition (RRECs:
483 ± 18% of NG vs. 100 ± 32% of NG; p < 0.01, n = 6; Figure 4; rMC-1: 265 ± 3% of NG vs. 100 ± 22%
of NG, p < 0.05; n = 6; Figure 4). Of note, RRECs or rMC-1 grown under HG condition and transfected
with Rab20 siRNA showed a significant reduction in the number of apoptotic cells (RRECs: 140 ± 39%
of NG vs. 483 ± 18% of NG, p < 0.01; n = 6; Figure 4; rMC-1: 153 ± 5% of NG vs. 265 ± 3% of
NG, p < 0.05; n = 6; Figure 4). Cells grown in HG medium and transfected with scrambled siRNA
showed no significant difference in the number of apoptotic cells compared to those grown in HG
medium alone.
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Figure 4. Inhibition of HG-induced Rab20 overexpression protects RRECs and rMC-1 from HG-induced
apoptosis. Differential staining assay shows an increased number of apoptotic cells under HG condition,
which was abrogated by Rab20 downregulation in (A) RRECs and (B) rMC-1. Representative images of
cells undergoing apoptosis (white arrows). Scale bar = 50 µm. Graphical illustrations of cumulative
data indicate that downregulation of Rab20 expression rescues (C) RRECs (* p < 0.01, n = 6; # p < 0.05,
n = 6; ∆ p < 0.05, n = 6) and (D) rMC-1 (* p < 0.05, n = 6; # p < 0.05, n = 6; ∆ p < 0.05, n = 6) from
HG-induced apoptosis. Data are expressed as mean ± SD.

4. Discussion

To the best of our knowledge, this is the first study demonstrating that HG upregulates Rab20
expression in retinal endothelial cells and Müller cells. Moreover, this aberrant Rab20 upregulation
effectively inhibits Cx43 intracellular trafficking to the cell surface, thereby compromising GJIC
activity and promoting loss of retinal endothelial cells and retinal Müller cells associated with diabetic
retinopathy. Interestingly, when HG-mediated Rab20 upregulation was reduced using Rab20 siRNA,
it facilitated Cx43 localization at the cell surface, which is indicative of improved Cx43 intracellular
trafficking. The increase in Cx43 localization at the cell surface was concomitant with effective GJIC
activity and cell survival. Overall, these results indicate that a HG-induced increase in Rab20 levels
may interfere with Cx43 intracellular trafficking and compromise cell–cell communication in retinal
endothelial cells and Müller cells.

Although the role of Rab20 in mediating Cx43 intracellular trafficking was examined in the
current study, the exact functions of Rab20 are not well understood. Rab20 has been found to regulate
phagosome maturation and contribute to the macropinocytic pathway [44,45]. Providing further
insight, another study showed that Rab20 expression is upregulated by hypoxia-inducible factor
(HIF-1), suggesting that Rab20 may participate in hypoxia-induced apoptosis [46]. Rab20 has also been
found to colocalize with the mitochondria in primary tubular cells and other human cell lines [46].
Another recent study revealed that overexpression of Rab20 hindered neurite outgrowth through
a hitherto unknown mechanism [47], suggesting that excess Rab20 levels can promote cell death.
An additional study reported that Rab20 regulates insulin-stimulated glucose uptake in human and
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mouse skeletal muscle by facilitating GLUT-4 translocation to the cell membrane [48]. Although these
studies highlight the multifaceted functions of Rab20, further studies are needed to better understand
how Rab20 influences Cx43 intracellular trafficking.

Findings from this study indicate that HG-mediated Rab20 upregulation in retinal endothelial cells
and Müller cells impedes Cx43 localization to the cell surface, and that inhibiting Rab20 overexpression
using a siRNA strategy could confer protection to these cells by improving GJIC and ultimately rescuing
retinal vascular and glial cells from HG-induced apoptosis. Therefore, targeting Rab20 overexpression
could be useful in improving cell–cell communication in retinal endothelial cells and Müller cells,
and preventing neurovascular disruption associated with diabetic retinopathy.
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