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Abstract: High-strength fibers embedded in inorganic matrix i.e., Fiber Reinforced Cementitious
Mortar materials (FRCM) are commonly used as strengthening technique for existing masonry
structures, due to the low sensitivity to debonding phenomena between substrate and matrix.
Nevertheless, the use of lime or cement-based matrix instead of epoxy adhesive implies that attention
has to be paid to the bond behavior between the fibers and the matrix, since sliding phenomena
and cohesive failures in the mortar matrix can occur. The paper aims to investigate the effect of the
mechanical properties of fiber and matrix on the FRCM efficiency, and potential geometrical defects,
typical of real applications. The aim is to analyze the mechanical behavior of the FRCM system by
simulating hypothetical bond tests, as they are usually performed in laboratories. The bond test
has a significant role, as it is used for the qualification of the material, providing sometimes very
scattered results. Hence, it is particularly important and greatly discussed in the scientific community
and among manufactures and practitioners. The purpose is to understand where this variability
could derive from and possibly how to contain it, to improve the characterization of FRCM systems.
A mechanical model has been proposed to simulate the usual bond test to focus and stress the way in
which each fiber slips out of the matrix as the load increases; and this has been recognized as the
main reason for scattered results in bond tests. The model was then applied to the typical cases of
PBO-FRCM and Glass-FRCM, hence considering different ratios for the fiber and matrix properties.
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1. Introduction

In recent years, Civil Engineering experienced a rapid development of new technologies aimed at
consolidating the existing buildings. A strong impulse was determined by the need to repair structures
after recent seismic events and, above all, to guarantee an adequate level of seismic safety with respect to
future events, hence, to strengthen existing structures. Techniques based on the use of fiber-reinforced
composite materials represent an important technological innovation that is increasingly used for
reinforced concrete and masonry structures. The use of Fiber Reinforced Polymer (FRP) composites,
made of fibers immersed in polymeric matrices—usually epoxy resins— has become a common practice
in the last decade; it guarantees a series of advantages, including high strength-to-weight ratios (useful
to reduce the increase of overall structural mass) and high resistance to corrosion. Nevertheless,
problems related to low resistance to fire and high temperatures, the relatively high cost of resins, the
impossibility of applying FRP on wet substrates or at low temperature, the lack of vapor permeability,
and the mechanical incompatibility of epoxy resins with poor materials such as the masonry, pushed
the industry to identify alternative matrices.

To date, Fiber Reinforced Cementitious Matrix/Mortar (FRCM), also known as TRC (Textile
Reinforced Concrete), TRM (Textile Reinforced Mortar), FRM (Fabric Reinforced Mortar) or IMG
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(Inorganic Matrix-Grid) Composites, are added to the classic FRP composites. These composites are
obtained by applying one or more reinforcing grids into an inorganic matrix (or mortar) that can be
cement-based, lime-based or geopolymeric, obtaining a mechanical behavior quite different from the
traditional FRP [1–6]. As far as fibers are concerned, they can be made of glass, carbon, aramid, basalt,
PBO (Poliparafenilenbenzobisoxazolo) or steel.

FRCM are directly made onsite and bonded to the support to be strengthened. The mechanical
behavior of a composite system depends on the characteristics of the individual constituent materials
and, above all, on their interactions, strongly related to the adherence between the materials at
their interface.

The interaction between fiber and matrix is of fundamental importance for the performance of
the entire system since it determines the transfer of the stresses from the fibers to the surrounding
matrix, and consequently to the support. The most critical part of these types of systems is surely
the fiber-matrix interface rather than the matrix-support interface, as it is generally the case for the
FRP reinforcement.

Although these materials are very promising for increasing the mechanical properties of existing
structures, to date, the understanding of the mechanical properties of FRCMs, the experimental
procedures for their mechanical characterization, and the modeling and the formulation of appropriate
design criteria, are problems still discussed in the field. The main difficulty is to manage their
heterogeneous nature, which produces a strongly non-linear mechanical behavior, making the
interaction with the substrate, over which they are applied, even more complex [1,7–15].

Numerous theoretical and experimental studies have been conducted to characterize the
mechanical behavior of FRCMs by investigating the local effects of adherence. [16] studied the
performances of two types of FRCM characterized by different fibers made of PBO, [17] showed the
results of tensile tests performed on FRCM with basalt fibers, [18] with glass fibers, [19] with PBO and
aramid fibers, and [20] with steel fibers, all of them in a round robin test. Large variability was found
not only among different laboratories, but in each laboratory, too (e.g., Figure 1 shows a series of bond
test results on PBO-FRCM systems), remarking the need to understand where this variability could
derive from and possibly how to contain it, to improve the characterization of FRCM systems. It could
be ascribed mainly to the FRCM system rather than on setup, as such variability was not found in the
case of FRPs [21,22].
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governed by the mechanical properties of the matrix; 

Figure 1. One of the sets from a laboratory of stress-slip responses of the PBO-FRCM (Fiber Reinforced
Cementitious Mortar) system tested in the round robin test (adapted from [16]).

Based on these results, [23] proposes that the tensile response of FRCMs can be divided into three
phases as illustrated in Figure 2:
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• Phase 1 (uncracked stage): The matrix is not yet cracked and the mechanical tensile behavior is
governed by the mechanical properties of the matrix;

• Phase 2 (crack developing stage): The tensile strength of the matrix is exceeded, hence cracking
begins to take place and the load is gradually transferred to the fibers;

• Phase 3 (crack-stabilized stage): The load is almost completely transferred to the fibers and the
mechanical tensile behavior is governed by the mechanical properties of the fibers (i.e., E3 � Ef).
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Hence, the tensile response is considered to involve three branches with almost constant slopes
(E1, E2 and E3), howsoever the third phase could be missing in some cases, depending on combinations
of fibers and matrix properties.

Nevertheless, this relationship is not sufficient to characterize the mechanical behavior of a FRCM
system [24], since for the strengthening of structural elements multiple failure modes may occur
because of substrate-to-FRCM interaction, as listed below:

A. Debonding with cohesive failure of the support of the reinforcement;
B. Debonding at the matrix interface-support;
C. Debonding at the matrix-fiber interface;
D. Slip of the fiber inside the matrix;
E. Slip of the fiber and cracking of the outer layer of mortar;
F. Tensile failure of the fiber.

For these reasons, in the following, a mechanical model will be proposed to simulate the bond
process during testing to examine the way in which the fiber slips out of the matrix as the load increases.
The model was then applied to the case of PBO-FRCM and Glass-FRCM.

2. Bond Test Simulation

The typical bond test is the “single-lap shear test”, where the FRCM system is applied on one side
of the masonry block. In particular, the paper focuses on the simulation of a bond test performed on a
single bundle of fibers immersed inside a mortar matrix, in adhesion to an infinitely rigid support, as
the substrate can be assumed compared to the FRCM system (as seen with Digital Image Correlation,
DIC, technique also by [25]). In order to carry out the analyses with the numerical algorithm, it is
necessary to define the geometrical and mechanical properties of the fiber and matrix, i.e., the (σ;ε)
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constitutive relationship and the bond properties at the fiber-matrix and matrix-support interface, i.e.,
the (τ;s) relationship. The symbols are listed in Table 1.

Table 1. List of symbols—Geometrical and mechanical properties.

Matrix (M)

Atm Matrix Cross section effective in tension mm2

tm Matrix thickness mm
b Matrix width/distance between bundles mm

Em Matrix Young’s modulus MPa
fc Compressive strength MPa
ft Tensile strength MPa
σm Matrix stress MPa
εm Axial strain in the matrix -

Fiber (F)

Φ Equivalent bundle diameter mm
A f Bundle Cross section mm2

E f Bundle Young’s modulus MPa
σ f Axial fiber stress MPa
ε f Axial fiber strain -
σ f ,de f Fiber defect stress MPa
ε f ,de f Fiber defect strain -

F-M interface

τRIG Rigid shear stress MPa
τMAX Maximum shear stress MPa
τRES Residual shear stress MPa

s1 Slip at τRIG mm
s2 Slip at τMAX mm
s3 Slip at τRES mm

M-support interface τMAX,SUPP Maximum shear stress MPa

2.1. Material Constitutive Laws

The matrix constitutive relationship in tension (σ;ε) is assumed linear elastic up to failure at a
stress level, ft.

σm = Em·εm < ft (1)

The same relationship is assumed for the fiber in tension. To simulate a not homogeneously
stretched bundle, as potentially could occur during the installation, a non-linear constitutive relationship
can be used. The “defect” is simulated, considering that the bundle deforms with a variable stiffness,
lower than Ef, until it is perfectly stretched to be loaded with its proper relationship. This is modeled
by determining a strain or stress at the perfect straightening of the bundle.

In the constitutive relationship, the defect is expressed through the strain εdef, which corresponds
to the transition stress σdef from the non-linear behavior, in the straightening phase, to the linear
behavior. In particular, the first branch of the σ-ε relationship with defect is assumed parabolic

σ f = a·ε f
2 (2)

with a horizontal tangent at the beginning, namely at point (ε = 0 and σ = 0) and the slope Ef at the
end, namely at point (εdef, σdef).

Being useful to express the strain as a function of the stress, in strain compatibility problems, the
function can be manipulated as:

ε f =

√
σ f

a
(3)

and
dσ f

dε f
= 2a·ε f (4)
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Assumed that, at point (εdef, σdef), the slope of the relationship is Ef, it is:

dσ f

dε f
= 2a·ε f ,de f = E f (5)

and thus derive:

a =
E f

2·ε f ,de f
(6)

By substituting the Equation (6) into Equation (3):

ε f =

√
σ f ·2·ε f ,de f

E f
(7)

Hence it is clear that:

ε f ,de f =
2·σ f ,de f

E f
(8)

Therefore, for each Ef, the magnitude of the defect is completely defined by one of the two: εf,def
or σf,def .

Finally, the elastic branch for εf > εf,def up to failure is defined through the following relationship:

ε f = ε f ,de f +
σ f − σ f ,de f

E f
=
σ f ,de f + σ f

E f
(9)

Obviously, this relationship ε f = f
(
σ f

)
is completely linear elastic if εf,def = 0 or equivalently if

σf,def = 0.
Note that the constitutive relationship is defined also at negative stress and strain (see Figure 3) to

prevent that the numerical algorithm fails for oscillations at low stresses close to zero, howsoever it is
not admitted that the fibers are in compression.
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Therefore, the constitutive relationship in Figure 3 is analytically expressed by Equation (10):

ε f =



σ f
E f

i f ε f ,de f = σ f ,de f = 0
σ f
E f

i f σ f ≤ 0√
σ f ·2·ε f ,de f

E f
i f 0 ≤ σ f ≤ σ f ,de f

ε f ,de f +
σ f−σ f ,de f

E f
i f σ f > σ f ,de f


(10)

2.2. Interface Bond Relationships

Figure 4a shows the bond behavior by means of the relationship between the tangential stress
τ, which arises at the fiber-matrix interface, and the slip s, defined as the difference between the
displacement of the fiber and that of the matrix. Based on several experimental studies, this shape
can be considered suitable for different types of fiber and matrix, if the values τRIG, τMAX, τRES and
the corresponding slips are properly assumed for different fibers (e.g., PBO, steel, glass, etc.), despite
the differences in chemical-physical properties at the interfaces. Therefore, the bond relationship is
expressed as:

τ(s) =



0 i f s < 0
τRIG

s1
·s i f s < s1

τRIG +
τMAX−τRIG

s2 − s1
·(s− s1) i f s < s2

τMAX −
τMAX−τRES

s3 − s2
i f s < s3

τRES i f s > s3

(11)
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The bond relationship between the FRCM matrix and its substrate correlates the tangential
stresses—which arise at the interface—to the slips between matrix and substrate. In the simplified
assumptions of infinitely rigid support that has no displacement, when the FRCM system is in tension,
the slip coincides exactly with the displacement of the FRCM only. Since the analytical model is limited
to considering the slip between fiber and matrix, i.e., the difference of their displacements, the value of
each of them can be calculated without this absolute displacement. For simplicity, we assume that there
is a perfectly plastic behavior between the matrix and the support, due to a cohesive bond mechanism
with maximum tangential stress, τMAX,SUPP, constant for any slip value (see Figure 4b). Generally,
in practical applications the shear bond demand to the support is lower than available shear bond
capacity; conversely, the shear bond capacity of fibers to matrix is usually lower in the case of FRCM
compared to the case of FRP.
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3. Single Bundle Algorithm

Figure 5 shows the geometry of the system, to set the algorithm. Subscripts i and j refer to two
sections located at a distance ∆x. The values at the loaded end section by the force N are marked with
the subscript 0, while those at the final section are marked with the subscript n. The symbols are listed
in Table 2.
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Table 2. List of symbols—Parameter of the bond model.

N Tensile force along the FRCM N
N0 Tensile force in the FRCM at x0 N
∆x FRCM step discretization, hence distance between 2 control sections mm
sn,TARGET Slip target at the end of the FRCM, at xn mm
xi Current control section -
xj xi + ∆x -
uf Fiber axial displacement mm
um Matrix axial displacement mm
s Slip between fiber and matrix mm
x Reference axis -
sm,i−j Average slip between fiber and matrix at xi and at xj mm
τ(sm,i−j) Average shear stress between fiber and matrix at xi and at xj N/mm2

The anchorage length, L, is the length required to allow the transfer of the force N acting in the
bundle to the surrounding matrix, by means of bond stresses. The first purpose of the algorithm is to
identify the section xn (see Figure 5) where the anchoring of the bundle is finally guaranteed.

3.1. General Problem

For each section x, axial strain in the fiber and in the matrix and slip can be defined as:

s = u f − um (12)

ε f =
du f

dx
(13)

εm =
dum

dx
(14)

The derivative of Equation (12) with respect to x, by considering the Equations (13) and (14)
provides:

.
s =

ds
dx

=
du f

dx
−

dum

dx
= ε f − εm (15)

The perfect anchorage of the bundle in the matrix is finally guaranteed when the slip and its
derivative are zero:

s = 0 (16)
.
s = 0 (17)

that means that the displacement of the fiber and the matrix and the strain are equal to each other.
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Without any bond to the support, (i.e., in the case of tensile test), the longitudinal equilibrium at
the lateral boundary of an elementary section of bundles of length ∆x, provides the following equation:

π·Φ·τ(sm)·∆x = π·
Φ2

4
·dσ f (18)

Hence:

τ(sm) =
Φ
4
·
dσ f

∆x
(19)

Equation (19) indicates that, due to the tangential bond stresses, the tension in the bundle is
not constant. Obviously, the stress reduces by moving away from the loaded end section, or from a
potentially cracked section, where traction is applied to the bundle only. Moreover, for longitudinal
equilibrium of the entire section, assuming the conservation of plain sections, the following equation
can be written:

A f ·σ f +

∫
Atm

σm·dA = N (20)

Despite the reduction of normal stress that occurs locally in the bundle, this corresponds to an
increase of normal stress in the matrix. In the case of bond tests, the contextual transfer between fiber
and matrix and between matrix and substrate should be taken into account. Therefore, as already
mentioned in the previous section, the bond between the matrix and the support shall be considered
because the matrix is not loaded at the same level as the bundle is unloaded.

3.2. Numerical Procedure

The problem stated by Equations (19) and (20) can be solved through discretization by means
of finite differences by arbitrarily assigning a trial value of the slip si = s0 at the end section, that is
preferably the origin of the reference x-axis. The procedure is iterated with a “trial and error” method,
until the boundary condition in the other section is satisfied.

In particular, the following relationship can be written at the loaded end section (i.e., where the
tensile force is applied only to the bundle):

σ fi = σ f0 =
N
A f

(21)

σmi = σm0 = 0 (22)

ε fi = ε f0 =
σ f0

E f
(23)

εmi = εm0 = 0 (24)

Assuming a distance, ∆x, between sections xi and xj, first trial slip si = s0 and ∆s = 0.01·s0 are
assumed to estimate: ( ∆s

∆x

)
TRIAL−i, j

=
si − s j

∆x
(25)

The limit for that ratio as ∆x approaches zero is the first derivative of the slip,
.
s. The average slip

can be calculated by means of the following relationship:

sm−i, j =
si + s j

2
(26)

The bond relationship in Equation (11) provides the corresponding average shear stress, τ
(
sm−i, j

)
.

Since the matrix is loaded by the fiber and, at the same time, it is loading the substrate (as far as is
possible depending on the value of maximum tangential stress τMAX,SUPP), the stress in the matrix and
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the shear stress at the matrix-support interface at xj are obtained through translation equilibrium (see
Figure 6):

σm j = MAX
(
σmi + τ

(
sm−i, j

)
·∆x·

π·Φ
Atm
− τMAX,SUPP·

∆x·b
Atm

; 0
)

(27)

τ j = MIN

σmi· Atm

∆x·b
+
τ
(
sm−i, j

)
·π·Φ

b
; τMAX,SUPP

 (28)

If the value of τMAX,SUPP at the matrix-support interface is higher than the shear capacity required
to transfer the stresses to the substrate, the tension of the matrix is transferred entirely to the support.
Otherwise, the first terms of (27) and (28) provide the tensile stress in the matrix and shear stress
at the matrix-support, respectively, by taking into account the simultaneous presence of the two
bond transfers.Materials 2020, 13, x FOR PEER REVIEW 9 of 13 
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Therefore the load in the FRCM at xj is:

Noj = Noi − τ j·b·∆x (29)

Note that at the loaded end section Noi = N.
Finally, the axial stress in the fiber at xj is:

σ f j =
Noj − σm j ·Atm

A f
(30)

and the matrix strain and fiber stain can be obtained by means of Equations (1) and (10).
With the average strain, through the Equation (15), the first derivative of the slip can be calculated:

.
si, j =

(
ds
dx

)
i, j
=
ε f i + ε f j

2
−
εmi + εm j

2
(31)

The procedure, iterative by varying s0, ends when the condition (32) is satisfied:(
ds
dx

)
i, j
−

( ∆s
∆x

)
TRIAL−i, j

= 0 (32)
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The values σm j , σ f j,εm j , ε f j calculated at xj are used to start the iteration between the section xi+1

and xj+1 and so on. The algorithm is iterated up to the section at xn where condition (16) and (17) are
satisfied. In the programming instructions, the following condition has been used:

s j > 0 ∧
.

s j > 0 (33)

This position is necessary because if the slip becomes negative, the matrix has greater displacement
than the bundle, and if the derivative of the slip becomes negative, the matrix has strain greater than
that of the bundle; both situations have no physical sense.

Obviously, for numerical reasons, the condition sn = 0 is implemented numerically by means of a
threshold value (i.e., sn,TARGET = 1

100 ·s2 where s2 is the maximum slip value in the bond relationship).
If the iteration led to sn < 0, the value of s0 was too low. If sn > sn,TARGET, the value of s0 was

too high.
The distance between x0 and xn is the length necessary to guarantee the perfect bond between the

bundle and the matrix (otherwise other failure modes are attained). Hence, a residual axial stress in
the bundle can be transferred to the matrix through a constant stress distribution at the interface (e.g.,
Brice model, [26]) requiring a length Lb =

Φ
4 ·
σn
τb

where τb = τRIG. Finally, the total anchoring length is
L = L’ + Lb.

3.3. Example of Some Numerical Results

Using the proposed algorithm, it is possible to obtain average slip, sm(x), average shear stress,
τ(x), average stress in the fiber, σ f (x), and average stress in the matrix, σm(x), versus the abscissa x,
for different defect levels. Figure 7 shows that slip increases with the defects, and the shear stress
profiles are translated along the FRCM because at higher value of slip, the shear stress is attained on
the softening branch or on the residual stress branch. For all the analyzed cases, the stresses in the fiber
are transferred to the matrix and entirely to the support.
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Figure 7. Results of numerical simulations: (a) Average slip, sm(x), (b) average shear stress, τ(x), (c)
average stress in the fiber, σ f (x), along the G-FRCM.

The results of numerical simulation in Figure 8 allow to understand the typical variability of
the experimental tests. The input properties are the same of the test setup of bond tests depicted
in Figure 1 [16] (shear bond behavior of fibers into matrix can be further calibrated, but at date it is
according to [27]) and the results show that bundles with defects reach the peak stress at different
slip levels. When more bundles are stretched together, at each slip value, the average of the stress
levels of bundles with different defects can be considered (i.e., parallel system). Obviously, if all the
bundles have the same defects, the average curve corresponds to one of the curves in Figure 8, but if
the realistic case of random defects is considered, the average curve is in between the curves and the
peak can be attained at slip levels varying from about 0.4 to 0.8 mm).
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4. Conclusions

The proposed approach is able to reproduce the variability typically found in the experimental
bond tests. There is a bundle effect that justifies the scatter of the experimental data. The scatter found
during experimental bond tests can be strictly related to the behavior of a single bundle immersed in a
mortar prism analyzed in this work. Usually, groups of bundles are tested with a free portion pulled
from outside the mortar matrix, being simultaneously pulled.

First of all, there are potential stretching defects even in the free portion, hence the bundles are not
stressed at the same level, even if they are pulled together maintaining this initial stress offset, hence
they could reach failure in a sequential order and not simultaneously.

Furthermore, stretching defect could also occur in the fibers embedded in the matrix and each
bundle is characterized in a random way by its own application defect. As simulated in this work, by
the proposed algorithm, the value of the slip where the fibers are embedded in the matrix is derived
through the analysis of internal slips in the mortar. Therefore, the stress in each bundle during the
bond test suffers at both stress scatters (in the embedded portion and in the free portion).
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