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Abstract

Understanding the tradeoffs faced by organisms is a major goal of evolutionary biology. One of the main approaches for
identifying these tradeoffs is Pareto task inference (ParTI). Two recent papers claim that results obtained in ParTI studies
are spurious due to phylogenetic dependence (Mikami T, Iwasaki W. 2021. The flipping t-ratio test: phylogenetically
informed assessment of the Pareto theory for phenotypic evolution. Methods Ecol Evol. 12(4):696–706) or hypothetical
p-hacking and population-structure concerns (Sun M, Zhang J. 2021. Rampant false detection of adaptive phenotypic
optimization by ParTI-based Pareto front inference. Mol Biol Evol. 38(4):1653–1664). Here, we show that these claims are
baseless. We present a new method to control for phylogenetic dependence, called SibSwap, and show that published
ParTI inference is robust to phylogenetic dependence. We show how researchers avoided p-hacking by testing for the
robustness of preprocessing choices. We also provide new methods to control for population structure and detail the
experimental tests of ParTI in systems ranging from ammonites to cancer gene expression. The methods presented here
may help to improve future ParTI studies.
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When organisms perform multiple tasks, they face tradeoffs;
understanding these tradeoffs is important for understanding
evolution. A widely used approach for identifying evolution-
ary tradeoffs is Pareto task inference theory (Shoval et al.
2012). This theory predicts that under certain assumptions,
traits fill a pointed shape in trait space called a polytope
(triangle, tetrahedron, etc.). At the vertices are phenotypes
optimal for a certain task, and the number of vertices equals
the number of tasks. To detect polytopes and find features
that are enriched near the archetypes, our lab developed the
ParTI algorithm (Hart et al. 2015). ParTI has been used in
different contexts including morphology (Tendler et al.
2015), gene expression (Friedman et al. 2020; Hausser and
Alon 2020), and life-history traits (Szekely et al. 2015).

Recent papers (Sun and Zhang 2021; Mikami and Iwasaki
2021) claim that many of the results obtained with ParTI are
spurious. It is of significant interest to understand whether
these claims have merit, because if they do, one may conclude

that the ParTI approach is not useful. Here, we show that
these claims are baseless and present new approaches to
control for caveats in future ParTI studies.

New Sibling Swap (SibSwap) Algorithm to
Test for Phylogenetic Dependence in ParTI
Phylogenetic dependence is widely studied in comparative
biology (Felsenstein 1985; Grafen 1989; Pagel and Harvey
1989; Freckleton et al. 2003). In the context of ParTI, phyloge-
netic inheritance simulations can sometimes generate triangle-
like shapes that do not stem from adaptation, as noted by
Edelaar (2013). The ParTI approach for assessing the signifi-
cance of polytopes is based on swapping traits between spe-
cies as if they were independent, which ignores phylogenetic
correlations and breaks phylogenetically independent con-
trasts (Felsenstein 1985). It can thus lead to inflated P-values.
This caveat has therefore been addressed in the two relevant
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ParTI papers, on ammonite shells (Tendler et al. 2015) and on
mammalian life-history traits (Szekely et al. 2015).

The study on ammonites specifically aimed to address
phylogenetic concerns (Tendler et al. 2015). ParTI showed
that ammonite shell traits fill a triangle with three shell arche-
types. After mass extinctions, in which only a few genera
survive, the ammonites refilled statistically the same triangle
(fig. 1a). This convergent evolution is evidence for the adap-
tive nature of the archetypes.

Sun and Zhang revisit the concern of phylogenetic depen-
dence by using simulations of Brownian motion on a tree,
which can create triangle-like shapes. They do not analyze any
specific ParTI data set and dismiss the controls used in ParTI
studies without offering an alternative phylogenetic test.

To address phylogeny, it would be important to have a
phylogenetic test made specifically for ParTI. Such a test,
called the flipping t-ratio test, was recently proposed by
Mikami and Iwasaki (2021). The authors concluded that
the ammonite and life-history triangles are not significant
when controlled for phylogeny using the flipping t-ratio test.

First, we analyzed the flipping t-ratio algorithm. It elegantly
preserves the phylogenetically independent contrasts of the
original data set. However, it does not preserve the distribu-
tion of each trait: it generates new trait values that are far
from the range of the original data, sometimes exceeding the
range by a factor of ten or more (fig. 1b and c). The flipping-t
triangle area is on average 13 times larger than the original
triangle area (fig. 1d). Thus, the triangles produced by the
flipping t-ratio algorithm are spurious. Due to the same rea-
son, this algorithm gives false negatives in control data sets
with a star phylogeny (supplementary fig. S1, Supplementary

Material online). The flipping t-ratio method should therefore
not be used in practice unless it is somehow modified to
properly handle outliers.

A more appropriate phylogenetic test would not create
outliers by preserving the marginal distribution of each of the
traits.

Here, we present a new algorithm for testing the phyloge-
netic significance of polytopes, which preserves both the phy-
logenetic constraints and the marginal distribution of all
traits. The algorithm, called Sibling Swap (SibSwap), is simple
(fig. 2a): for each set of terminal nodes with a shared parental
node (sibling tips, supplementary fig. S2, Supplementary
Material online), permute each of the traits independently.
This mixes traits between sibling tips (whether in polytomies
or not), but not between nonsibling tips. Next, compute the
significance of the triangle or polytope using the standard t-
ratio test of ParTI (Hart et al. 2015). The t-ratio is the ratio
between the area of the polytope and the area of the convex
hull of the data. The closer the t-ratio is to 1, the better the
polytope fits the data. Significance is assessed by the proba-
bility that the polytope inferred for SibSwap-shuffled data has
a t-ratio closer to 1 than the real data. A low P-value indicates
that the polytope is not caused by phylogenetic constraints.
Conversely, high P-values indicate that phylogenetic con-
straints cannot be rejected as a cause for the polytope.
SibSwap rejects phylogeny appropriately in control data
sets with a star phylogeny (supplementary fig. S1,
Supplementary Material online) and performs as well as the
flipping t-ratio test on simulated Brownian evolution, figure
2b and supplementary figure S3, Supplementary Material
online.
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FIG. 1. Convergent evolution in ammonites and spurious triangles in the flipping t-ratio test (a) Ammonites refill statistically the same triangle after
mass extinctions. Each point is a genus. W and D are dimensionless shell-shape parameters, the whorl expansion rate and internal/external shell
ratio. (b) The flipping t-ratio test creates outliers in ammonite data. (c) The test does not preserve the marginal trait distributions (original data in
orange, after the flipping t-ratio algorithm in blue), and (d) creates much larger triangles than the original data triangle as shown by the ratio of
their areas (see also (b)). Settings are as described in Mikami and Iwasaki (2021).
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Importantly, SibSwap preserves the phylogenetically inde-
pendent contrasts (PICs), defined in Felsenstein (1985), as
shown in figure 2a, in the standard case where terminal
branch lengths are equal (as in ultrametric trees, see supple-
mentary material, Supplementary Material online). SibSwap
also preserves any other single-trait statistic, such as Pagel’s k,
a common measure for phylogenetic signature (Pagel and
Harvey 1989), figure 2a. The PIC distributions for ammonite
and life-history data sets are indistinguishable in the original
and SibSwapped data sets. SibSwap thus improves on the
original “naive” ParTI algorithm which swaps traits between
any two tips (not only sibling tips) and thus breaks the PIC
distribution. More elaborate versions of SibSwap in which
traits are permuted among species closer than a given phy-
logenetic distance are discussed in the supplementary mate-
rial, Supplementary Material online.

For both ammonite and life-history data sets, the real tri-
angle has a t-ratio significantly closer to 1 than the SibSwap-
shuffled data (P¼ 0.024 life-history, P¼ 0.012 ammonite).
The reason that phylogenetic effects are not of major impor-
tance in these data sets is that ammonite shells and mass-
longevity of mammals can evolve rapidly on the timescale of

speciation (Szekely et al. 2015). We conclude that the ParTI
inference for these data sets is well-controlled for phyloge-
netic inheritance effects.

Cancer Archetypes Are Not Due to Genomic
Population Structure
Sun and Zhang raised the possibility, noted previously
(Edelaar 2013; Hart et al. 2015), that population structures
such as different ethnic groups can produce polytopes. To do
so, they simulated mutations on a chromosome and assumed
that simulated traits are binary combinations of mutations.
Data fall in three well-separated clusters due to the three
simulated “ethnic groups” (fig. 3a), which can cause false
positives in ParTI. This simulation is of doubtful relevance
to data used by ParTI papers.

The ParTI papers dealing with human populations ana-
lyzed cancer gene-expression data sets (Hausser et al. 2019;
Hausser and Alon 2020). Here, we tested the association be-
tween ancestry and the cancer tasks detected by ParTI, using
a recent approach that allows ancestry to be inferred directly
from the sequences in the gene-expression data set (Carrot-
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FIG. 2. The SibSwap algorithm preserves trait distributions as well as phylogenetically independent contrasts. (a) SibSwap-shuffled result (right) of
original data (left) preserves the trait distributions. Here, each terminal node has two traits represented by numbers in curly brackets. Branch
lengths are in gray. SibSwap also preserves absolute phylogenetically independent contrasts (PICs) and Pagel’s k, both calculated using the
Mathematica package “Phylogenetics for Mathematica (Ver. 2.1)” (Polly, 2012). (b) Simulations of Brownian diffusion on a phylogenetic tree can
create false-positive triangles in the original naive ParTI shuffling. These triangles are rejected by SibSwap, which makes only slight changes to the
triangle.
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Zhang et al. 2020). We find no significant association between
ancestry and the ParTI cancer tasks. An example showing
ancestry on the inferred triangle for low-grade glioma is
shown in figure 3b. These observations challenge the

hypothesis that population structure is a major factor for
ParTI in these cancer data sets.

More generally, the SibSwap approach can be adapted to
help reject polytopes arising exclusively from ancestry groups

FIG. 3. Controls for ancestry (a) Sun and Zhang “ethnic group” simulation from their fig. 3c. (b) Low-grade glioma triangle (Hausser et al. 2019) with
ancestry indicated. (c) Permuting traits within the three “ethnic group” clusters results in a nearly identical triangle. (d) Low-grade glioma triangle is
disrupted upon trait permutation within ancestry groups. (e) Full deletion strain data set of Kemmeren et al. (2014) analyzed by Sun and Zhang is
indistinguishable from the wild-type biological repeats grown with each strain. (f) The responsive mutant data set of Kemmeren et al. (2014) differs
from their wild-type repeats and shows no significant ParTI polytope.
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or other data identifiers. One permutes traits within each
ancestry group. The “ethnic group” simulation of Sun and
Zhang yields a poor P-value (P¼ 0.09), because shuffling
within the clusters leaves the data set essentially the same
(fig. 3a and c), whereas the same analysis for the cancer data
yields P< 0.001, because shuffling within ancestry groups
ruins the triangle (fig. 3b and d). Similar results are obtained
in cancer data that is down-sampled so that each ancestry
group has the same number of datapoints (10 data points per
group, P¼ 0.006).

A similar test can reject cases where the polytope is due to
a few discrete data clusters, even if ancestry is unknown. One
classifies the data points into n clusters, where n is the num-
ber of ParTI archetypes, by using a standard algorithm such as
k-means, and then shuffles traits within each cluster. The
“ethnic group” simulation fails this test, whereas the cancer,
ammonite, and life-history data sets pass it because their
polytopes are continuously filled and are not due to discrete
clusters.

We note, however, that there may be other types of data
structures that do not yield clusters, but still produce poly-
topes, emphasizing the need to test for data structure as
extensively as possible when using ParTI.

Best Practices to Avoid p-Hacking
We next address the claim by Sun and Zhang that the need to
preprocess data for ParTI promotes p-hacking. They do not
provide evidence from any particular publication. Instead, the
proposed evidence is a simulation of random data in which
one tries many processing choices (thresholds) and picks the
ones that give a good P-value.

Preprocessing is a standard and necessary step in the anal-
ysis of biological data. Therefore, such a simulation would
“prove” p-hacking in any algorithm (clustering, etc.).

The simulation of Sun and Zhang does not resemble what
researchers in ParTI papers actually did. Instead, ParTI
researchers used standard processing methods (e.g., taking
the log of gene expression). When there were several possible
choices (e.g., thresholds), they tested whether the results were
robust to processing choices. Results were only published if
they were robust. Supplementary table S1, Supplementary
Material online lists processing choices in papers published
by our group using ParTI. We advocate the following best
practices for ParTI analyses: 1) use biologically reasonable
preprocessing steps and 2) be transparent and include all
steps in the paper or supplementary information.

Alternative Explanation for Yeast Deletion
Triangle
Sun and Zhang analyze what they state is a negative control: a
biological data set that did not undergo evolutionary optimi-
zation. Their proposed negative control is a gene-expression
database of 1484 yeast deletion strains (Kemmeren et al.
2014). The argument is that deletion strains did not have
time to evolve after the deletion and thus cannot be optimal.
They find that ParTI detects a triangle with enriched gene
functions and concludes that this is a false-positive result.

As Sun and Zhang note, the deletion data set they used is
nearly identical to the control wild-type data set. Since the
inferred triangle is essentially that of biological repeats of the
wild-type strain (fig. 3e), one should ask whether biological
repeats are truly a negative control for adaptive responses.
Biological repeats are grown and handled in slightly different
conditions. These conditions can trigger adaptive gene-
expression changes, which evolved to handle natural environ-
mental changes. The archetypes shown in tables 1 and 2 in
Sun and Zhang are related to mitochondrial function, carbo-
hydrate metabolism, and protein synthesis. These processes
are consistent with the possibility that the biological repeats
largely reflect batch-to-batch variation in growth conditions.

Before publishing such conclusions, however, we would
recommend doing additional experimental tests with inde-
pendent data, as detailed in the ParTI manual.

We note that when applied to the 703 deletion strains that
significantly differed from their wild-type controls, namely the
“responsive mutant” data set of Kemmeren et al. (2014), ParTI
detects no significant triangle (P¼ 0.64), figure 3f.

ParTI Studies Perform Experimental and
Theoretical Tests of the Archetypes
Sun and Zhang give an incomplete account of ParTI studies
by failing to mention experimental tests. ParTI papers con-
sidered the inferred archetypes to be hypotheses and tested
these hypotheses using calculations, independent experimen-
tal data, and/or new, specially conducted experiments. For
example, in Friedman et al. (2020), a fibroblast archetype
showed an unexpected antigen-presenting function. To test
this, the authors conducted new experiments showing that
these fibroblasts indeed express the antigen-presentation
complex MHC-class-II in vivo and in vitro. Supplementary
table S1, Supplementary Material online provides examples
of experimental tests in ParTI studies.

In sum, we presented the SibSwap method to control for
phylogeny and population-structure caveats and find that
published ParTI archetypes are not due to such caveats.
Well-conducted ParTI studies avoid p-hacking by using trans-
parent and reasonable preprocessing methods and treat
archetypes as hypotheses which they test with independent
experiments.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Data Availability
Ammonite data (fig. 1) is as reported in Tendler et al. (2015).
Life-history data are as reported in Szekely et al. (2015).
“Ethnic group” simulation data (fig. 3a) is as reported in
Sun and Zhang (2020). Low-grade glioma data (fig. 3b) is as
reported in Hausser et al. (2019). Yeast deletion data (fig. 3e
and f) are as reported in Kemmeren et al. (2014). All algo-
rithms used will be posted in a public repository, GitHub:
https://github.com/orgs/AlonLabWIS/repositories.
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