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The software DISEMM is designed to analyse diffraction data from in situ

loading experiments on polycrystalline samples for the determination of single-

crystal elastic constants (SECs) and elasto-plastic self-consistent (EPSC)

modelling of lattice strains. The SECs can be obtained from powder-diffraction

elastic constants using a variety of grain-to-grain interaction models, namely

Voigt, Reuss, Hill, Kröner, de Wit and Matthies approaches. The texture of the

polycrystalline sample can be taken into account using the orientation

distribution function of the grains. For the analysis of two-phase materials, an

approach was implemented to calculate the stress transfer between the phases

and its impact on the apparent elastic properties. The calculated SECs can then

be used as input into the EPSC model, which allows the user to predict the

elasto-plastic behaviour for comparison with experimental lattice strain data

and to investigate the activation of individual slip systems. For this purpose,

critical resolved shear stresses and hardening parameters are adapted iteratively.

1. Introduction

Powder-diffraction methods using laboratory X-ray diffrac-

tion, synchrotron facilities or neutron sources offer a variety of

possibilities for the investigation of engineering materials. In

particular, well established methods exist to analyse fractions

of the constituent phases, textures, residual stresses, micro-

strains or particle sizes. It has been demonstrated by Hauk &

Kockelmann (1979) that single-crystalline elastic constants

can also be derived by diffraction studies on polycrystalline

samples under external uniaxial stress using approximations

for the grain-to-grain interactions. Gnäupel-Herold et al.

(1998) took the idea further. They derived the single-crystal

elastic constants of different metals of cubic structure and

proposed the �2 function for the minimization, which is also

used in the program Diffraction assisted mechanical modelling

(DISEMM) described here. The method is a kind of reverse of

classical stress analysis. In particular, it requires the determi-

nation of lattice strains �(hkl) of oriented grains in the elastic

region as a function of the applied stress �L. This technique

offers the possibility to derive single-crystal elastic constants

in technical alloys or multi-phase materials which are not

available as single crystals. Thus, a variety of applications can

be found in the literature. Detailed descriptions of the method

are given elsewhere (Gnäupel-Herold et al., 1998; Howard &

Kisi, 1999; Matthies et al., 2001; Heldmann et al., 2019).

Measuring lattice strains by X-ray or neutron diffraction

under mechanical load above the yield stress allows analysis of

the plastic anisotropy of the material. The interpretation of

the experimental data can be supported by plasticity models
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such as elasto-plastic self-consistent (EPSC) simulations,

based on the framework proposed by Hutchinson (1970). In

contrast to finite-element methods, the EPSC modelling

framework relies on averaging of grain orientations to solve

different equations from Eshelby’s inclusion model analyti-

cally (Eshelby, 1957; Hill, 1965a,b, 1966, 1967). To our best

knowledge, the first applications of the elasto-plastic self-

consistent approach for the analysis of diffraction studies were

carried out by Tomé and co-workers (Lebensohn & Tomé,

1993; Turner & Tomé, 1994; Turner et al., 1995). Since then,

EPSC modelling has been widely applied for the interpreta-

tion of the evolution of lattice strains. Detailed descriptions of

the EPSC approach can be found in the work of Hutchinson

(1970) and in studies where the EPSC formalism is used to

analyse diffraction data (Turner & Tomé, 1994; Lorentzen et

al., 2002; Gloaguen et al., 2008; Saleh et al., 2013).

DISEMM is a software tool to analyse neutron or X-ray

diffraction data on polycrystalline samples collected under

mechanical load, combining the determination of single-

crystal elastic constants and the methods of elasto-plastic self-

consistent modelling in one package. In the following, the

features of DISEMM and examples of its applications are

presented.

2. General functionality

The basic concept of DISEMM is to derive all available elasto-

plastic properties from experimental powder-diffraction data

in as few steps as possible. In particular, diffraction elastic

constants (DECs) and single-crystal elastic constants (SECs)

are obtained. These properties are then used as input para-

meters for the elasto-plastic self-consistent model to predict

the stress–strain behaviour of the investigated material. A

flowchart of the main program architecture, i.e. classes in the

sense of object-oriented programming, is given in Fig. 1.

DISEMM contains a set of tools for the analysis of anisotropy,

load transfer, texture and activated slip systems along

different crystal orientations. The program is designed to

harmonize strain data obtained by diffraction experiments,

tensile tests and EPSC modelling. This design allows the

comparison of each aspect of EPSC modelling with experi-

mental parameters.

2.1. Data storage and main classes

The core of the program consists of the class Sample Data,

which stores all relevant information of the sample.

Crystallographic data like cell parameters, the composition

of the phase and its symmetry group as well as additional

parameters regarding the phase fraction and microstructure

(grain shape and size) are stored for multiphase analysis in the

class CODData.

To account for macroscopic deformation, multiple tensile

tests may be added for the evaluation and optionally matched

with the diffraction experiment for the comparison to

predicted stress–strain curves.

Texture data may be loaded in the form of an orientation

distribution function into the Sample Data class and used

instead of the isotropic approach when the grains are

randomly oriented.

The parameters of the yield surface are stored in the

resources file in XML format for the implemented crystal

symmetries and may be edited before launch. For each indi-

vidual slip system the yield strength and hardening parameters

can be edited manually. Optionally, a custom set of possible

active slip systems may be used.

2.2. Strain data

The class Strain Data is one of the basic classes needed

to derive the elastic properties of the investigated sample. It

consists of a measured strain �(hkl), which is associated with a

Bragg peak hkl, and its orientation with respect to the

experimental setup. The data can be either added directly via

an ASCII file or retrieved straightforwardly by fitting 1D

diffraction patterns. The peaks are automatically scanned by a

detection routine and fitted while the pattern data are added

to Diffraction Pattern. DISEMM offers the possibility

to improve the automated fits by manually adjusting and

refitting a peak (see Fig. 2).

The Bragg reflections are described by three different peak

functions, Gaussian, Lorentzian and pseudo-Voigt, where the

last is set as standard with 90% Gaussian fraction. The fit of

the pattern data is performed by a Levenberg–Marquard

fitting algorithm (LMA) (Press et al., 2011). Starting values

such as peak position and peak height are estimated from the

pattern and Caglioti peak-width parameters U, V and W from
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Figure 1
Flow chart of the program developed for the strain-data treatment. Black
lines indicate the storage, for example Diffraction Pattern is stored
at Sample Data. Blue lines indicate that the inclusion of these data in
the evaluation is optional. Red lines show the requirements to derive
specific parameters. For example, to derive the single-crystal elastic
constants the Strain Data are required. Green lines indicate an
alternative way for calculation. For example, the single-crystal elastic
constants may be calculated from the strains directly, or alternatively they
can be determined using the polycrystalline DECs.



the corresponding instrument resolution function (Caglioti et

al., 1958). For large data sets, the starting values may be set

from previous fits to accelerate the automated fitting. In the

case of overlap, the peaks are grouped and simultaneously

fitted as a linear combination.

The strain values are calculated relative to the reference

position of the lowest applied stress, i.e. � ¼ ðd� d0Þ=d0. This

way, nonlinearities caused by internal stresses are minimized

since existing phase- and micro-stresses, which do not change

during elastic deformation, are taken into account (Behnken,

2003; Heldmann et al., 2019).

2.3. Single-crystal elastic constants

The window managing the SEC and dedicated elastic

parameters is shown in Fig. 3. As indicated in Fig. 1, DISEMM

allows the use of two different routes to derive the single-

crystal elastic constants from the experimental data. The first

minimizes the differences between the strains directly as

shown in equation (3), upper row, and the other minimizes the

differences between the diffraction elastic constants as in

equation (3), lower rows. DISEMM supports a total of five

different grain-to-grain interaction models, suggested by

Reuss, Hill, Matthies, Kroener and de Wit, for the evaluation

(Voigt, 1928; Reuss, 1929; Hill, 1952; Matthies et al., 2001;

Kroener, 1958; de Wit, 1997).

Basically, as for classical stress analysis, the relation

between the measured strains in a diffraction experiment, the

diffraction elastic constants s1 and 1
2 s2, and the stress tensor

components is given by

�33 ¼ s1ð�11 þ �22 þ �33Þ þ
1
2 s2

�
½cos2ð’Þ �11

þ sin2
ð’Þ �22� sin2

ð Þ þ �33 cos2ð Þ
�
; ð1Þ

where �33 is the strain measured along the scattering vector

during a diffraction experiment and �ii are the stress tensor

components applied to the sample. The orientation para-

meters (’,  ) used in DISEMM follow the definition provided

by Heldmann et al. (2019).

In the following we consider a diffraction experiment under

uniaxial load with �33 6¼ 0 and �11 = �22 = 0. To derive the

diffraction elastic constants, DISEMM sorts the experimental

data to match equation (2) derived from (1):

�33=�33 ¼ s1 þ
1
2 s2 cos2ð Þ: ð2Þ

The y values of the data points are given by the measured

strain divided by the applied stress, and the x values are

calculated from the orientation  (Heldmann et al., 2019). An

example of the data and the fit are given in Fig. 4. The �2

functions used during the LMA routine to fit the single-crystal

elastic constants aijkl are given in equation (3):
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Figure 3
Screenshot of the evaluation of the single-crystal elastic constants. At the
top left in the dark-red box the derived elastic constants are listed. Below
in the blue box the settings for the analysis, such as the displayed phase,
the grain-to-grain interaction model, and whether stiffnesses or
compliances should be displayed, are selected. Below in the purple box
the DECs predicted by the selected model are shown. On the right,
average values of the Young, shear and bulk moduli are given according
to the used grain-to-grain interaction model; the grey text colour
indicates the values obtained by the measurement. In the green box each
experimentally obtained DEC is listed. In the grey box the analysis of the
anisotropy is performed. The plot settings for parameters such as Young’s
modulus and the shear modulus along different crystal directions are
found here, too. In the right corner inside the orange box the transition
factors for the phases are displayed if a load transfer analysis is applied.

Figure 4
Example fit of the DEC of the 200 Bragg reflection of the � phase in the
dual-phase alloy Ti–6Al–2Sn–4Zr–6Mo.

Figure 2
Screenshot of the peak-fitting window of DISEMM during the evaluation.
On the left in the red box there is a list of peaks contained in regions. The
selected region is shown in the plot, where the blue line indicates the
fitted curve. In addition, the height and width of each peak can be
adjusted manually in the green box. Each fit is performed in its own
thread. Therefore, a large number of regions can be fitted simultaneously.
When a diffraction pattern is added to the Sample Data, each pattern is
searched for peaks. These are combined into regions and automatically
fitted. Starting values are improved each time a peak is fitted.



�2ðaijklÞ ¼
Xk

i

�33ðhklÞmeas � �33ðhkl; aijklÞcalc

�½�33ðhklÞmeas�

� �2

¼
Xn

i

s1ðhklÞmeas � s1ðhkl; aijklÞcalc

�½s1ðhklÞmeas�

� �2

þ

1
2 s2ðhklÞmeas �

1
2 s2ðhkl; aijklÞcalc

�½12 s2ðhklÞmeas�

� �2

: ð3Þ

To account for texture, additional weightings are introduced

during the �2 minimization routine.

The software allows the user to fix the anisotropy during the

fit of the SEC and to plot parameters such as Young’s or shear

modulus along different crystallographic directions after-

wards. It also implements different measures for the aniso-

tropy besides the Zener anisotropy factor (Zener, 1936; Chung

& Buessem, 1967; Ranganathan & Ostoja-Starzewski, 2008).

2.4. Dual-phase approach

In materials containing more than one phase, the grain-to-

grain interaction models discussed earlier do not cover the

interactions between the different phases. If the phases have

significantly different rigidity, the stress appearing in the

sample distributes differently among those phases. As a result,

only the effective stiffness of the corresponding phase is

observed during diffraction experiments. DISEMM imple-

ments a self-consistent scheme to calculate the stress distri-

bution between two or more phases. First, the effective elastic

constants of all constituent phases are derived directly from

the measured lattice strains. With these constants, the overall

average phase stress �� of phase � is calculated from the

applied stress �L in equation (4):

�� ¼ f��L: ð4Þ

The transition factors f are derived from the Eshelby inclusion

model according to equation (5), and therefore one phase has

to be declared by the user as the inclusion I and one as the

matrix M (Eshelby, 1957; Behnken, 2003).

f� ¼ �CSðw
�1
� IÞ½ðC� � CSÞw

�1
þ CS�

�1
ðC� � CSÞSS þ I;

ð5Þ

where CS, C� and SS are the sample and phase averages of the

elastic stiffnesses and compliances. w is the Eshelby tensor

defined in equation (6) for a sphere in a homogeneous matrix

(Eshelby, 1957):

w�1
1111 ¼

7� 5�

15ð1� �Þ
; w�1

1122 ¼
�1þ 5�

15ð1� �Þ
; w�1

1212 ¼
4� 5�

15ð1� �Þ
:

ð6Þ

Equation (5) shows that the stress distribution in the elastic

region depends on the mean single-crystal elastic constants of

both phases, CS, and the mean value of phase �, C�. The

transition factors of the phases weighted by their phase frac-

tion p� must add up to unity, i.e. they follow

Pn
�¼1

p�f� ¼ I: ð7Þ

The stress–strain data are adjusted according to the transition

factors. After each loop the difference between the overall

average phase stresses in successive loops decreases, and the

calculation loop is stopped after the changes are smaller than a

certain value and convergence is reached (Heldmann et al.,

2019).

2.5. Elasto-plastic modelling

The elasto-plastic self-consistent modelling scheme imple-

mented in DISEMM and shown in Fig. 5 is based on Hill’s

work solving Eshelby’s inclusion problem (Eshelby, 1957; Hill,

1965a,b, 1966, 1967; Hutchinson, 1970). In its basic formalism,

it requires only a few material-specific input parameters

beyond those required to derive the single-crystal elastic

constants. The critical resolved shear stress �i
c and hardening

for each slip family is needed to calculate the activated slip

systems of the differently oriented single crystals in the

polycrystalline sample. Each increment of the stress–strain

curve is then calculated by averaging over all available

orientations. The stress–strain state of each orientation is

computer programs
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Figure 5
The EPSC modelling scheme requires a list of second-order stress or
strain tensors as input parameters. They represent corresponding stress or
strain states of the sample. The scheme consists of two loops. The first
iterates until L converges self-consistently and does not change from
iteration to iteration. The inner, second loop ensures that only the correct
combination of slip systems is active.



saved individually, allowing the input and analysis of any given

texture and its changes during plastic deformation.

The flowchart shown in Fig. 5 depicts the scheme imple-

mented in DISEMM to calculate the stress–strain behaviour.

The simulation input is split into individual calculation steps,

and for each stress or strain state an individual loop is started.

On the basis of the previous deformation history, a new set of

potentially active slip systems is created for each predefined

input state. The list of potential slip systems is chosen from all

available slip systems of the given crystal symmetry according

to which slip system satisfies

�i
c ¼ ��

i: ð8Þ

From this set the active systems meeting requirement (9) is

determined:

_���i ¼ _��i
c; _		 � 0 loads;

_���i < _��i
c; _		 ¼ 0 unloads:

ð9Þ

If the resolved stress rate _���i on the ith slip system equals the

yield and the change in the shear rate is positive, the slip

system loads, i.e. activates; otherwise it unloads. The set of

active slip systems is used to calculate new iterations of the

instantaneous stiffness coefficients until the difference

between the iterations is smaller than a user-given value. This

large calculation loop is depicted in Fig. 5. The stress–strain

data of the simulation are finally stored to the Elasto-

Plastic Experiment class, and a new loop for the next

input step is initiated, as indicated by the blue line. A detailed

introduction to the EPSC model implemented in DISEMM is

given by various authors (Hutchinson, 1970; Turner & Tomé,

1994).

2.6. Data display and export

DISEMM supports a variety of display and export func-

tions. Either file outputs are given in the .xlsx formatting of

Microsoft Excel or the data may be exported in a .txt file in

ASCI-II encoding. The plotting areas support direct export to

the picture formats .jpeg and .png.

3. Results

The dual-phase approach to derive single-crystal elastic

constants is shown by the example of Ti–6Al–2Sn–4Zr–6Mo,

which consists of a hexagonal close-packed (h.c.p.) � phase

and a body-centred cubic (b.c.c.) � phase (Heldmann et al.,

2019). An example of elasto-plastic self-consistent modelling

is given for ferritic steel S235JR in this work.

3.1. Single-crystal elastic constants

Results obtained with DISEMM for the ferrous metals

showed good agreement with existing literature data for the

grain-to-grain interaction models used for the evaluation

(Heldmann et al., 2019). During the same analysis, it has been

found that the texture in those samples does not influence the

single-crystal elastic constants above the uncertainties, and

therefore the isotropic approach is adequate for most cases

(Heldmann et al., 2019).

In the same work, the dual-phase approach was extended to

more complex alloy systems like Ti–6Al–2Sn–4Zr–6Mo with

great success. Here, it was possible to determine for the first

time all eight single-crystal elastic constants of the � and �
phases of a dual-phase titanium alloy in a single experiment. A

significant load transfer from the � phase to the stiffer � phase

was observed. Applying the load-transfer correction, the

elastic constants of the � phase were significantly shifted to

lower values and showed an excellent agreement with corre-

sponding data obtained on the pure � alloy Ti–3Al–8V–6Cr–

4Zr–4Mo. In addition, the load-transfer-corrected elastic

constants of the � phase in Ti–6Al–2Sn–4Zr–6Mo matched

well with the results determined for the � phase in Ti–6Al–4V

(Heldmann et al., 2019).

3.2. Elasto-plastic self-consistent modelling

The EPSC prediction of the stress–strain behaviour of the

ferritic steel S235JR using DISEMM was compared with

experimental data. The materials-science diffractometer

STRESS-SPEC (Brokmeier et al., 2011) was used for these

diffraction studies. Fig. 6 shows the macroscopic stress–strain

relation calculated by the EPSC model compared with

experimental data obtained during the diffraction experiment.

The single-crystal elastic constants c11 = 240 (6) GPa, c12 =

218 (6) GPa and c44 = 106 (3) GPa were derived with

DISEMM and used as input for the modelling, resulting in a

slight mismatch in Young’s modulus of about 7%. The main

discrepancies are found at the onset of the plastic regime

between 400 and 550 MPa. Here the simulated values show

higher strain values than those from the diffraction data. In

later stages of deformation, the largest mismatch of the strain

rate is found at around 1% strain, but it rapidly adjusts to the

correct strain rate, resulting in a slightly higher yield strength

of approximately 20 MPa in this case.

The steel S235JR exhibits a b.c.c. crystal structure and

therefore the plastic strains are introduced by the activitation

of the three slip families listed in Table 1. The critical resolved
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Figure 6
Comparison between measured macroscopic stress–strain values (green
dots) and the EPSC simulation (blue line) for the steel S235JR. As
expected, the yield stress increases faster for the measurement than the
prediction.



shear stresses of the slip families optimized during our

modelling process to achieve the observed yield strength are

also listed in Table 1. The higher yield stress of the (321) slip

plane is due its smaller Schmid factor. The slip activity of each

family is shown in Fig. 7 and is defined in this context as the

ratio of active slip systems compared with all possible active

systems. The (321) slip plane triggers the plastic deformation,

causing only small changes in the plastic strain rate, followed

by the (110) slip plane approximately 50 MPa later. The last

slip family activated is (211), which starts to take over (321)

which decreases its activity after reaching 500 MPa. This

triggers the late deformation stage with a high increase of the

plastic strain rate.

The lattice strains of the (110), (200) and (211) planes are

shown in Fig. 8, where they are compared with values obtained

from EPSC modelling. The experimental data show the

highest lattice strains along (200). The EPSC model predicts

the lattice strains of (200) within the uncertainties, showing

some deviations when entering the plastic area. The experi-

mental data indicate a rather gradual transition into the plastic

regime, while the model predicts a more defined entry. This

discrepancy from experimental data is partly caused by the

cyclic loading during the experiment.

Plastic deformation occurs when the applied stress

surpasses a critical amount. If the acting stress remains

constant during this period of time, the deformation is driven

by small changes in the stress states of the grains interacting

with each other. This means that during non-continuous

loading experiments additional strains will be introduced into

the sample. For the current example, about 5 min times for the

recording of diffraction patterns at each loading step have to

be considered. In consequence, during each loading step,

additional macroscopic plastic strains are introduced into the

sample after reaching the plastic region during the experi-

ment. Therefore, the measured macroscopic strains will

appear larger for each loading step during the experiment. A

future option will address this issue by taking into account the

stress pile-up on grain boundaries for cyclic loading as

suggested by Lorentzen et al. (2002).

The lateral contractions for the same (110), (200) and (211)

planes are shown in Fig. 9. The anisotropy differs to some

computer programs
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Figure 8
Comparison of lattice strains measured in S235JR along the longitudinal
expansion (strains along load direction), marked by dots, with predictions
by the EPSC model (lines). Red: (110) planes; green: (211) planes;
orange: (200) planes. The lattice strain uncertainties purely derived from
peak fitting are smaller than the dot size.

Figure 9
Comparison of lattice strains measured in S235JR along the lateral
contraction (direction perpendicular to the load axis), marked by dots,
with predictions by the EPSC model (lines). Same colour coding as in
Fig. 8, but different scale for the lattice strains. The model predicts the
trends well: for example, the reduction of stress on the (200) plane after
entering the plastic regime.

Table 1
Input parameters for the different slip families of the EPSC simulation.

Slip family Yield strength (MPa) Hardening (MPa)

(110) ½111� 225 100
(211) ½111� 235 75
(321) ½111� 410 500

Figure 7
Plot of slip system activity versus macroscopic stress for the steel S235JR.
The (321) slip family (red line) is activated first, followed by the (110) slip
family (black line), before finally family (211) (blue line) is activated. The
macroscopic strains are mainly caused by the slips on (110) and (211).



extent from the experimental data along the lateral direction

because the strains for the (200) plane are predicted to be

higher while the strains of (110) and (211) planes are in good

agreement with the experimental data. However, the trend of

the (200) plane is predicted correctly until entering the plastic

regime, and only in later stages of deformation are the lattice

strains measured during the experiment underestimated by

about one-third.

Nevertheless, the plastic regimes show essentially the same

behaviour as a similar ferritic steel reported by Daymond &

Priesmeyer (2002), i.e. after reaching the critical yield stress

the strains evolve faster than observed during the experiment.

At higher strain values, the simulation catches up with the

experimental values again (Daymond & Priesmeyer, 2002).

The same applies to measured lattice strains during diffraction

experiments where the (200) plane shows the lowest value of

Young’s modulus and highest yield during tensile testing. Even

the lateral contraction shows a similar decrease of the

measured strains of (200), although the decrease in the �-iron

phase is more distinct (Daymond & Priesmeyer, 2002).

4. Conclusion

DISEMM implements a wide range of tools to evaluate

diffraction data from in situ loading experiments. It imple-

ments routines to fit single-crystal elastic constants from

single- and multi-phase alloys considering texture and the

stress distribution among different phases from diffraction

data recorded in situ during a tensile test. It provides packages

to visualize the anisotropy together with measures for quan-

tifying the degree of anisotropy, such as for example the Zener

anisotropy and the universal anisotropy index. The program

also contains a package implementing a routine for elasto-

plastic self-consistent modelling using the elastic evaluation

results as input values. DISEMM is designed to harmonize

experimental and simulation data and enable comparison

between the two, from the macroscopic stress–strain curves to

lattice strain data. Thus it offers a unique analysis tool for the

investigation of polycrystalline deformation behaviour.

DISEMM was validated successfully on ferrous metals and

applied to dual-phase titanium alloys with great success to

determine all eight single-crystal elastic constants of the h.c.p.

and b.c.c. phases by taking into account the stress distribution

(load transfer) among the phases. An example of the EPSC

model implemented is shown as a case study on the experi-

mental data of S235JR. In summary, the EPSC framework

predicts the observed deformation quite accurately and

reproduces the observed stress states. In accordance with

available literature, the calculated macroscopic strain shows

minor discrepancies compared with the experiment at the

onset of the plastic regime. However, the lattice strains of the

model and experiment are in good agreement in the early

plastic regime but show a more isotropic straining in the late

plastic regime along the (200) direction than experimentally

observed.

5. Availability

The software is published on the web site of the Heinz Maier-

Leibnitz Zentrum (MLZ) (https://mlz-garching.de/spodi/de)

and the source code is available on GitHub (https://

github.com/Gipfelgrab/DISEMM/releases/). The software is

also available on request from the author.
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