Construction of the Pentacyclic Core and Formal Total Synthesis of (rac)-Renieramycin T

Shinya Kimura and Naoki Saito*[a]

Abstract

A formal total synthesis of the antitumor marine natural product (rac)-renieramycin T, which possesses a characteristic ectei-nascidin-type A ring in the renieramycin-saframycin core skeleton, was elaborated. The key steps in the synthesis of (rac)-renieramycin T are a modified Pictet-Spengler cyclization of diaIkylated oxomalonate derivatives and decarboxylation via a

monocarboxylic acid derivative followed by stereocontrolled protonation of the enol intermediate. A key intermediate in our previous synthesis of renieramycin T was used, and the formal synthesis was accomplished in 21 steps from a known piperazine-2,5-dione derivative.

Ecteinascidin 743 (2)

Saframycin A (3)

Figure 1. Structures of 1,2,3,4-tetrahydroisoquinoline natural products.
those in ecteinascidins. As the chemical structure of $1 \mathbf{c}$ is the first example of a hybrid pentacyclic core, we are very interested in the biosynthetic pathway and the biological activity of 1 c and its derivatives. To date, two total syntheses of (-)-1 c by us and Chen's group have been reported. ${ }^{[13]}$ However, we focused on an alternative route for supplying a large amount of 1 c to promote research of structure-activity relationships. Herein, we report a formal total synthesis of $1 \mathbf{c}$, which includes the Pictet-Spengler reaction of a primary amine with an oxomalonic acid ester followed by decarboxylation and stereocontrolled protonation at C1 of the enol intermediate from the less-hindered face. ${ }^{[14]}$

2. Results and Discussion

We embarked on an alternative total synthesis of 1 c on the basis of our previous synthetic studies on saframycin antitumor
antibiotics (Scheme 1). ${ }^{[15]}$ Condensation of highly functionalized benzaldehyde $4^{[16]}$ with known piperazine-2,5-dione derivative $5^{[15 b]}$ afforded Z isomer 6 in 79% yield. Chemoselective reduction of the carbonyl group activated by an isopropyloxycar-

Scheme 1. Preparation of tricyclic lactam 10. Reagents and conditions: a) tBuOK, $t \mathrm{BuOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 79 \%$; b) 1) $\mathrm{Li}(t \mathrm{BuO})_{3} \mathrm{AlH}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; 2) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 78 \%$ (two steps); c) 1) $\mathrm{H}_{2} \mathrm{SO}_{4}$, TFA, anisole, $25^{\circ} \mathrm{C}$, 7.5 h ; 2) $\mathrm{NaBH}_{3} \mathrm{CN}, 37 \%$ aq $\mathrm{HCHO}, \mathrm{MeOH}, \mathrm{AcOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 68 \%$ (two steps); d) $\mathrm{H}_{2}(2.8 \mathrm{MPa}), 20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 27 \mathrm{~h}, 77 \%$; e) 1) allyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux, $5.5 \mathrm{~h} ; 2$) aq $\mathrm{KOH}, \mathrm{EtOH}$, reflux, $3 \mathrm{~h}, 80 \%$ (two steps). Ts = tosyl, Ac = acetyl, MOM = methoxymethyl.
bonyl group in 6, followed by treatment with trifluoroacetic acid (TFA) gave cyclized product 7 (78%, two steps). Removal of the isopropoxycarbonyl group in 7 with TFA and $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave a secondary amine that was treated with a $\mathrm{NaBH}_{3} \mathrm{CN}$ aqueous formaldehyde system to provide tertiary amine 8 in 68% overall yield. Hydrogenation (2.8 MPa) of the exo olefin in 8 on $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ in EtOH at $80^{\circ} \mathrm{C}$ along with hydrogen attack from the less-hindered α face gave 9 as a single isomer in 77% yield. At that point, we thought it would be important to distinguish the two phenolic OH groups in both terminal rings, because regioselective oxidation was required to prepare p-quinone in the Ering phenol at a later stage. Thus, the phenolic OH group of the E ring of 9 was protected with an allyl group, and the tosyl group in the A ring was removed with $\mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}$ to increase its reactivity for the Pictet-Spengler cyclization to give $\mathbf{1 0}$ in $\mathbf{8 0} \%$ over two steps.
With precursor 10 in hand, we focused on the construction of a pentacyclic core by using the Pictet-Spengler cyclization (Scheme 2). Partial reduction of the lactam carbonyl group in

Scheme 2. Cyclization attempt by using the Pictet-Spengler reaction of aminonitrile 11. Reagents and conditions. a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{THF},-20$ to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; aq $\mathrm{KCN}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 96 \% . \mathrm{Cp}=\eta^{5}$-cyclopentadienyl.

10, followed by the introduction of a cyanide group gave aminonitrile 11. We had hoped that the aminonitrile would be more reactive than lactam 10 in the Pictet-Spengler cyclization. However, it was revealed that the Pictet-Spengler cyclization of 11 with even commonly used simple aldehydes, ${ }^{[15 c]}$ for example, the reaction of 11 with benzoyloxyacetaldehyde, did not proceed at all. ${ }^{[17]}$ Furthermore, substrate decomposition was observed if harsher reaction conditions were used. It was clarified that the aminonitrile moiety of 11 was relatively unstable under acidic or high-temperature conditions. Therefore, we abandoned this route at this stage.
This problem was solved by applying our protocol to the total synthesis of saframycin A (3, Scheme 3). ${ }^{[18]}$ Primary amine I did not have a relatively unstable aminonitrile group, and so steric repulsion would be reduced. Thus, it would be easy to construct desired pentacyclic core IV by using a three-step sequence through compound II, which includes the Pictet-Spengler cyclization with oxomalonic acid ester to install a diester unit, decarboxylation, and stereoselective protonation from the convex face of these " V "-shaped bis-1,2,3,4-tetrahydroisoquinoline natural products.

Scheme 3. Recently established strategy for construction of the B ring of bistetrahydroisoquinoline natural products, represented by saframycin A (3).

Activation of the lactam carbonyl group in 10 with di-tertbutyl dicarbonate $\left(\mathrm{Boc}_{2} \mathrm{O}\right)$ gave 13 in 72% yield according to a protocol independently outlined by Fukuyama and Stoltz ${ }^{[19]}$ (Scheme 4). Reductive cleavage of the lactam ring in 13 with NaBH_{4} in EtOH , followed by treatment with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave primary amine 14 (73%, two steps). Pictet-Spengler cyclization of 14 with allyl ethyl oxomalonate hydrate ${ }^{[20]}$ furnished diester 15 as an inseparable diastereomeric mixture (1:1) in 80% yield. Then, the phenolic OH group in 15 was protected by a benzyl (Bn) group (83%), and Swern oxidation of 16 followed by treatment with KCN afforded pentacyclic core 17 (56%, two steps). Removal of the allyl group in 17 with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and dimedone, followed by decarboxylation exclusively gave ester 18 as a single diastereomer in 72% yield. ${ }^{[21,22]}$ The stereochemistry of 18 was determined by nuclear Overhauser enhancement (NOE) experiments, which indicated that 18 had a syn relationship between the C1 and C3 diaxial protons.

diastereomeric mixture

diasterne mixture
diastereomeric mixture

diastereomeric mixture

Scheme 4. Construction of the B ring. Reagents and conditions. a) $\mathrm{Boc}_{2} \mathrm{O}, 4$ (dimethylamino)pyridine (DMAP), MeCN, reflux, $57.5 \mathrm{~h}, 72$ \%; b) 1) NaBH_{4}, $\left.\mathrm{EtOH}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h} ; 2\right) \mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 73 \%$ (two steps); c) 1-allyl 3ethyl 2,2-dihydroxymalonate, TFA, $\mathrm{AcOH}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 80 \%$; d) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 83 \%$; e) 1) Swern oxidation; 2) aq $\mathrm{KCN}, \mathrm{AcOH}, \mathrm{THF}, 25^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 56 \%$ (two steps); f) 1) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, dimedone, THF, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 2) CHCl_{3}, reflux, 2 h, 72 (two steps).

Finally, reduction of ester 18 (71\%), followed by oxidative demethylation of 19 into quinone ring afforded 20 (51%) (Scheme 5). This is the key intermediate in our total synthesis, ${ }^{[13 a]}$ its ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR spectroscopy data; MS data; and TLC behavior were identical to those of an authentic sample upon comparison Thus, we accomplished a formal synthesis of (rac)-renieramycin T (1 c).

Scheme 5. Formal synthesis of (rac)-renieramycin T(1c). Reagents and conditions. a) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 71 \%$; b) aq ceric ammonium nitrate (CAN), THF, $0^{\circ} \mathrm{C}, 20 \mathrm{~min}, 51 \%$.

3. Conclusions

We accomplished a formal synthesis of (rac)-renieramycin T (1 c). Whereas the aromatic ring having a 1,3 -dioxole ring suppressed reactivity during the Pictet-Spengler cyclization, reductive cleavage of the lactam ring in 13 afforded primary amine 14 . Then, treatment of 14 with allyl ethyl oxomalonate in the Pictet-Spengler reaction, followed by decarboxylation and stereoselective protonation of the resulting enol inter-
mediate from the less-hindered face produced the desired bis-1,2,3,4-tetrahydroisoquinoline intermediate.
Ways of utilizing this strategy for the synthesis of ecteinascidins along with fennebricin $\mathrm{B}^{[23]}$ are under investigation in our laboratory.

Experimental Section

General Methods

All reactions involving air- and moisture-sensitive reagents were performed in oven-dried glassware and by using standard syringeseptum cap techniques. All reactions were monitored by thin-layer chromatography (silica gel GF_{254}) examined under UV light ($\lambda=$ 254 nm). Flash column chromatography was performed on Merck Silica Gel (230-400 mesh) with the solvent indicated. IR spectra were obtained with a Shimadzu Prestige-21/IR Affinity-1 Fourier Transform Infrared (FTIR) spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data were recorded with a JEOL ECS-400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ and with a JEOL AL-400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$. NMR spectra were measured in CDCl_{3}, and the chemical shifts were recorded in δ_{H} values relative to $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as the internal standard. Low- and highresolution mass (HRMS) mass spectra were recorded with a JMS700 instrument with a direct inlet system operating at 70 eV .

Syntheses

(Z)-Isopropyl 2-[4,5-dimethoxy-2-(methoxymethoxy)-3-methyl-benzyl]-5-\{[7-methyl-6-(tosyloxy)benzo[d][1,3]dioxol-5-yl]-methylene\}-3,6-dioxopiperazine-1-carboxylate (6)

A solution of tBuOK in tBuOH ($1 \mathrm{~m}, 30 \mathrm{~mL}, 30 \mathrm{mmol}$) was added dropwise to a stirred solution of aldehyde $4(8.36 \mathrm{~g}, 25 \mathrm{mmol})$ and acetate $5(11.66 \mathrm{~g}, 25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ over 1 h , and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (200 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 250 \mathrm{~mL})$. The combined extract was washed with brine (200 mL), dried, and concentrated in vacuo to give a residue (18.26 g), which was subjected to flash column chromatography on $\mathrm{SiO}_{2}(500 \mathrm{~g})$ with hexane/EtOAc (3:2) to afford $6(14.62 \mathrm{~g}, 79 \%)$ as a colorless amorphous powder; $R_{\mathrm{f}}=0.35$ (hexane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.62\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 7.24$ (d, J=8.5 Hz, 2H, C $\mathrm{H}_{4} \mathrm{CH}_{3}$), 7.10 (brs, $1 \mathrm{H}, \mathrm{NH}$), $6.41\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right.$), $6.34\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.15(\mathrm{~s}, 1 \mathrm{H}, 5 \mathrm{a}-\mathrm{H}), 6.07\left(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right)$, 6.05 (d, J=1.2 Hz, 1H, 2"-H), 5.17 (sept, $\left.J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 5.03 (t, J=4.9 Hz, $1 \mathrm{H}, 2-\mathrm{H}), 4.88\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.82$ (d, J=5.9 Hz, 1H, OCH ${ }_{2} \mathrm{OCH}_{3}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{OCH}_{3}\right), 3.58(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, 4^{\prime}-\mathrm{OCH}_{3}\right), 3.30\left(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{a}-\mathrm{H}_{2}\right)$, $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime \prime}-\mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.43$ (d, J=5.7 Hz, 3H, CH(CH3 $)_{2}$), $1.41 \mathrm{ppm}\left(\mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.9(\mathrm{C}-3), 157.4(\mathrm{C}-6), 152.2\left(\mathrm{CO}_{2}\right)$, 149.5 (C-2' or 5^{\prime}), 149.3 (C-2' or 5^{\prime}), 148.1 ((C-4' or $7^{\prime \prime}$ a), 148.0 (C-4' or $7^{\prime \prime a}$), $145.6\left(\mathrm{C}-3^{\prime \prime} \mathrm{a}\right), 145.4\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 141.8\left(\mathrm{C}-6^{\prime \prime}\right)$, $132.3\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $130.1\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 128.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 125.9\left(\mathrm{C}-3^{\prime}\right), 124.7(\mathrm{C}-5), 122.3$ (C1^{\prime}), 119.7 (C-5"), 117.1 (C-7"), 113.9 (C-5a), 112.9 (C-6'), 104.6 (C-4"), $102.3\left(\mathrm{C}-2^{\prime \prime}\right), 100.0\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 72.0\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 60.1\left(4^{\prime}-\mathrm{OCH}_{3}\right), 59.9$ $\left.(\mathrm{C}-2), 57.6\left(\mathrm{CH}_{2} \mathrm{OCH}\right)_{3}\right), 55.8\left(5^{\prime}-\mathrm{OCH}_{3}\right), 33.8(\mathrm{C}-2 \mathrm{a}), 21.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.5\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 10.9\left(7^{\prime \prime}-\mathrm{CH}_{3}\right), 10.4 \mathrm{ppm}\left(3^{\prime}-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=1773,1694,1479,1420,1375,1281,1233,1196,1173$, 1103, 1080, 1061, 1022, 972, $806 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 741 (40), 740 (100) $[M]^{+}, 569$ (33), 568 (31), 499 (31), 467 (55), 319 (21), 287 (59), 230 (27), 225 (43), 220 (23), 219 (46), 191 (23), 190 (22), 181
(73); HRMS (EI): m/z: calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{13} \mathrm{~N}_{2} \mathrm{~S}: 740.2251$ [M$]^{+}$; found: 740.2250.

(Z)-Isopropyl (1R*,5S*)-7-hydroxy-9,10-dimethoxy-8-methyl-2-\{[7-methyl-6-(tosyloxy)-benzo[d][1,3]dioxol-5-yl]methylene\}-4-oxo-1,2,3,4,5,6-hexahydro-1,5-iminobenzo[d]azocine-11carboxylate (7)

$\mathrm{Li}(t \mathrm{BuO}){ }_{3} \mathrm{AlH}(6.36 \mathrm{~g}, 25 \mathrm{mmol})$ was added to a stirred solution of 6 $(3.70 \mathrm{~g}, 5 \mathrm{mmol})$ in THF $(170 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ over 40 min , and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 6 h . The mixture was diluted by adding a saturated aqueous Rochelle salt solution (100 mL) and was then extracted with $\mathrm{CHCl}_{3}(3 \times 300 \mathrm{~mL})$. The combined extract was washed with brine (300 mL), dried, and concentrated in vacuo to give a residue, which was used in the next step without further purification. TFA (22.5 mL) was added to a stirred solution of the above product (3.71 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The mixture was concentrated in vacuo, and the residue was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. Then, the mixture was brought to pH 9 with concd. $\mathrm{NH}_{4} \mathrm{OH}(25 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$. The combined extract was washed with brine (300 mL), dried, and concentrated in vacuo to give a residue (3.75 g), which was subjected to column chromatography on $\mathrm{SiO}_{2}(100 \mathrm{~g})$ with $\mathrm{CHCl}_{3} / E t \mathrm{OAc}(4: 1)$ to afford tricyclic lactam 7 ($2.64 \mathrm{~g}, 78 \%$, two steps) as a pale-yellow amorphous powder. As it was a mixture of rotational isomers, the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra are both extremely complex at $25^{\circ} \mathrm{C}$ in $\mathrm{CDCl}_{3} ; R_{\mathrm{f}}=0.23\left(\mathrm{CHCl}_{3} /\right.$ EtOAc 4:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}, 100^{\circ} \mathrm{C}$): $\delta=8.67(\mathrm{~s}, 1 \mathrm{H}$, OH or NH$), 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}$ or NH$), 7.74\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $7.44\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 6.57\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.02\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}-\right.$ $\left.\mathrm{H}_{2}\right), 5.72(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H}), 4.89$ (sept, J $=5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.81(\mathrm{dd}, J=5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{OCH}_{3}\right)$, $3.72\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 2.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \alpha), 2.91(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 1.99(\mathrm{~s}$, $\left.3 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24 \mathrm{ppm}(\mathrm{d}, J=$ $\left.5.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}, 100^{\circ} \mathrm{C}\right): \delta=$ 167.6 (C-1), $152.5\left(\mathrm{CO}_{2}\right), 149.1$ (C-7 or 9), 148.3 (C-7 or 9), 145.4 (C$\left.7^{\prime} \mathrm{a}\right), 145.1\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 144.6\left(\mathrm{C}-3^{\prime} \mathrm{a}\right), 142.5$ (C-10a), 139.6 (C-6'), 133.9 (C-2 or 5^{\prime} or 7^{\prime}), $132.4\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 129.4\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 127.5\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, 124.0 (C-8 or 6 a or 10 a), 121.7 (C-2 or 5^{\prime} or 7^{\prime}), 118.5 (C-8 or 6 a or $10 \mathrm{a}), 114.8$ ($\mathrm{C}-8$ or 6 a or 10 a), 114.0 ($\mathrm{C}-2$ or 5^{\prime} or 7^{\prime}), 106.0 ($\left.\mathrm{C}-4^{\prime}\right)$, $101.3\left(\mathrm{C}-2^{\prime}\right), 101.2(\mathrm{C}-2 \mathrm{a}), 68.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 59.5\left(10-\mathrm{OCH}_{3}\right), 59.2$ (9$\left.\mathrm{OCH}_{3}\right), 51.6(\mathrm{C}-5), 48.8(\mathrm{C}-1), 26.0(\mathrm{C}-6), 21.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.2$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.6\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 9.8\left(7^{\prime}-\mathrm{CH}_{3}\right), 8.7 \mathrm{ppm}\left(8-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=3379,1684,1476,1458,1420,1373,1352,1298,1275,1248$, 1217, 1192, 1180, 1167, 1109, 1078, 1024, 1001, $816,808 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 680 (13) $[M]^{+}, 526$ (41), 525 (100), 440 (23), 439 (92), 221 (13), 220 (54), 205 (11); HRMS (EI): m/z: calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{11} \mathrm{~N}_{2} \mathrm{~S}$: $680.2040\left[\mathrm{M}^{+}\right.$; found: 680.2039.

(Z)-\{(1R*,5S*)-1,2,3,4,5,6-Hexahydro-2-[7-hydroxy-9,10-di-methoxy-8,11-dimethyl-4-oxo-3,4,5,6-tetrahydro-1,5-imino-benzo-[d]azocin-2(1H)-ylidene]methyl\}-4-methylbenzo-[d][1,3]-dioxol-5-yl 4-methylbenzenesulfonate (8)

Anisole ($1.1 \mathrm{~mL}, 10 \mathrm{mmol}$) and concd. $\mathrm{H}_{2} \mathrm{SO}_{4}(2.4 \mathrm{~mL})$ were successively added to a stirred solution of $7(1.36 \mathrm{~g}, 2 \mathrm{mmol})$ in TFA $(47.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 7.5 h . After the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, it was made alkaline with concd. $\mathrm{NH}_{4} \mathrm{OH}(75 \mathrm{~mL})$ and was then extracted with $\mathrm{CHCl}_{3}(2 \times 700 \mathrm{~mL})$ and, finally, $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1,2 \times 700 \mathrm{~mL})$. The combined extract was dried and concentrated in vacuo to give
a residue, which was used in the next step without further purification. An analytical sample of the secondary amine was obtained as a yellow amorphous powder by column chromatography with EtOAc/MeOH (19:1); $R_{\mathrm{f}}=0.39 \quad(\mathrm{EtOAc} / \mathrm{MeOH} \quad 19: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), $7.33(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 7.22 (brs, $\left.1 \mathrm{H}, \mathrm{NH}\right), 6.42\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 5.97$ (d, $\left.J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.96\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.71(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H})$, $4.77(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 3.98(\mathrm{brs}, 1 \mathrm{H}, 5-\mathrm{H}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}$, $3 \mathrm{H}, 9-\mathrm{OCH}_{3}$), 3.01-2.92 (overlapped, $2 \mathrm{H}, 6-\mathrm{H}_{2}$), $2.46(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 1.94 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{7}^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.4$ (C-4), 149.7 (C-9), 148.0 (C-7), $146.4(\mathrm{C}-$ $\left.7^{\prime} \mathrm{a}\right), 145.6$ (C-5'), 145.4 ($\left.\mathrm{C}-3^{\prime}\right), 143.8$ (C-10), 140.8 (C-6'), 136.9 (C-2), $134.1\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 129.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 128.2\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 125.6$ (C-6a or 10a), $121.9\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 117.7$ (C-8), 115.5 (C-7'), 114.6 (C-6a or 10a), $106.1\left(\mathrm{C}-4^{\prime}\right), 101.9\left(\mathrm{C}-2^{\prime}\right), 101.3(\mathrm{C}-2 \mathrm{a}), 60.2\left(10-\mathrm{CH}_{3}\right), 60.1\left(9-\mathrm{OCH}_{3}\right)$, $52.4(\mathrm{C}-5), 48.8(\mathrm{C}-1), 27.0(\mathrm{C}-6), 21.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 10.5\left(7^{\prime}-\mathrm{CH}_{3}\right)$, $8.8 \mathrm{ppm}\left(8-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=3305,1670,1476,1460,1418,1350$, 1219, 1192, 1179, $1076 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 594 (8) [M] ${ }^{+}, 440$ (31), 439 (100), 221 (13), 220 (50); HRMS (EI): m/z: calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{~N}_{2} \mathrm{~S}: 594.1672[M]^{+}$; found: 594.1669.

A 37% aqueous solution of formaldehyde (8 mL), $\mathrm{NaBH}_{3} \mathrm{CN}(1.51 \mathrm{~g}$, $24 \mathrm{mmol})$, and $\mathrm{AcOH}(26.3 \mathrm{~mL})$ were successively added to a stirred solution of the above product $(1.00 \mathrm{~g})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was then stirred at $25^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, it was made alkaline with concentrated $\mathrm{NH}_{4} \mathrm{OH}(40 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 300 \mathrm{~mL})$. The combined extract was washed with brine (200 mL), dried, and concentrated in vacuo to give a residue (2.92 g), which was subjected to column chromatography on $\mathrm{SiO}_{2}(60 \mathrm{~g})$ with hexane/EtOAc (13:7) to afford 8 ($833.8 \mathrm{mg}, 68 \%$, two steps) as a colorless amorphous powder; $R_{\mathrm{f}}=0.23$ (hexane/EtOAc 9:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73\left(\mathrm{~d}, \quad J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{C}_{6} H_{4} \mathrm{CH}_{3}\right), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 6.44\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 5.96\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{2}\right), 5.78(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H})$, 4.83 (brs, $1 \mathrm{H}, N \mathrm{~N}), 4.53(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}$, $\left.3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.07(\mathrm{dd}, J=17.0,7.2 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H} \alpha), 2.93(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta), 2.56\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NH}_{3}\right), 2.46(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 1.92 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9$ (C-4), 149.8 (C-9), 147.7 (C-7), 146.4 (C7'a), $145.6\left(\mathrm{C}-3^{\prime} \mathrm{a}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, 145.4 ($\mathrm{C}-3^{\prime}$ a or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 143.9 (C-10), 140.6 (C-6'), 134.6 (C-2 or 6a), $133.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 129.8\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $128.3\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 126.0(\mathrm{C}-10 \mathrm{a}), 122.3\left(\mathrm{C}-5^{\prime}\right), 117.1(\mathrm{C}-8), 115.8\left(\mathrm{C}-7^{\prime}\right)$, 113.9 (C-2 or 6a), 106.2 (C-4'), 103.9 (C-2a), 101.9 (C-2'), 60.3 (10$\left.\mathrm{OCH}_{3}\right), 60.2\left(9-\mathrm{OCH}_{3}\right), 59.1(\mathrm{C}-5), 55.5(\mathrm{C}-1), 41.5\left(\mathrm{NCH}_{3}\right), 26.7(\mathrm{C}-6)$, $21.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 10.4\left(7^{\prime}-\mathrm{CH}_{3}\right), 8.7 \mathrm{ppm}\left(8-\mathrm{CH}_{3}\right) ;$ FTIR $(\mathrm{KBr}): \tilde{v}=1476$, 1460, 1418, 1371, 1352, 1215, 1192, 1179, 1165, 1115, 1078, $1063 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 608 (7) [M] ${ }^{+}, 454$ (28), 453 (100), 235 (14), 234 (47); HRMS (EI): m/z: calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{~N}_{2} \mathrm{~S}: 608.1829$ $\left[^{2}\right]^{+}$; found: 608.1829.
\{(1R*,2S*,5S*)-[7-Hydroxy-9,10-dimethoxy-8,11-dimethyl-4-oxo-1,2,3,4,5,6-hexahydro-1,5-iminobenzo[d]azocin-2-yl]-methyl\}-4-methylbenzo[d][1,3]dioxol-5-yl 4-methylbenzenesulfonate (9)

A suspension of 8 ($608.7 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{EtOH}(25 \mathrm{~mL})$ was hydrogenated over $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on carbon $(280.9 \mathrm{mg})$ at $80^{\circ} \mathrm{C}$ for 27 h under a hydrogen atmosphere (2.8 MPa). The catalyst was removed by filtration, and the residue trapped by the filter paper was washed with CHCl_{3} and MeOH . The combined filtrate was concentrated in vacuo to give a residue, which was subjected to column chromatography on $\mathrm{SiO}_{2}(15 \mathrm{~g})$ with $\mathrm{EtOAc} / \mathrm{MeOH}(9: 1)$ to afford 9 ($472.3 \mathrm{mg}, 77 \%$) as a colorless amorphous powder; $R_{\mathrm{f}}=0.23$
(EtOAc/MeOH 19:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.66$ (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), $7.33\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 6.49(\mathrm{~s}, 1 \mathrm{H}$, $\left.4^{\prime}-\mathrm{H}\right), 5.97$ (d, $\left.J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.96\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, 4.21-4.14 (overlapped, $2 \mathrm{H}, 1-\mathrm{H} \& 2-\mathrm{H}$), 3.83 (s, $\left.3 \mathrm{H}, 10-\mathrm{OCH}_{3}\right), 3.82$ (s, $\left.3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.48$ (dd, $J=14.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \alpha$), 2.96 (dd, J=17.2, $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \alpha$), 2.78 (d, $J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.24-$ 2.15 (overlapped, $1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \beta$), $2.19\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 1.95 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}$, $\left.7^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2(\mathrm{C}-4), 149.8(\mathrm{C}-9)$, 147.9 (C-7), 146.1 (C-7'a), 145.7 (C-3'a), $145.3\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 144.8$ (C10), $141.2\left(\mathrm{C}-6^{\prime}\right), 133.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 129.9\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 127.9\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, 124.6 (C-5'), 121.8 (C-6a or 10a), 117.5 (C-8), 115.4 (C-7'), 114.6 (C-6a or 10a), $107.5\left(\mathrm{C}-4^{\prime}\right), 101.8\left(\mathrm{C}-2^{\prime}\right), 60.5\left(9-\mathrm{OCH}_{3}\right), 60.2\left(10-\mathrm{OCH}_{3}\right), 58.1$ (C-5), 55.9 (C-2), $54.4(\mathrm{C}-1), 40.1\left(\mathrm{NCH}_{3}\right), 33.3(\mathrm{C}-2 \mathrm{a}), 23.1(\mathrm{C}-6), 21.8$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 10.6\left(7^{\prime}-\mathrm{CH}_{3}\right), 8.9 \mathrm{ppm}\left(8-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=3364,2936$, 1736, 1661, 1476, 1456, 1418, 1344, 1194, 1180, 1076, $1055 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 610 (9) [M] ${ }^{+}, 456$ (10), 455 (19), 235 (28), 234 (100); HRMS (EI): m/z: calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{9} \mathrm{~N}_{2} \mathrm{~S}: 610.1985[M]^{+}$; found: 610.1987.

(1R*,2S*,5S*)-7-(Allyloxy)-2-[(6-hydroxy-7-methylbenzo[d]-[1,3]dioxol-5-yl)methyl]-9,10-dimethoxy-8,11-dimethyl-2,3,5,6-tetrahydro-1,5-iminobenzo[d]azocin-4(1H)-one (10)

A solution of $9(1.36 \mathrm{~g}, 2.23 \mathrm{mmol})$ in acetone $(110 \mathrm{~mL})$ was stirred in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.55 \mathrm{~g}, 11.14 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, allyl bromide ($385 \mu \mathrm{~L}, 4.45 \mathrm{mmol}$) was added over 10 min , and the mixture was heated at reflux for 5.5 h . The mixture was filtered, and the combined filtrate was concentrated in vacuo to give a residue, which was used in the next step without further purification. An analytical sample was obtained as a colorless amorphous powder by column chromatography with EtOAc to $\mathrm{EtOAc} / \mathrm{MeOH}(19: 1) ; R_{\mathrm{f}}=$ $0.21\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 97: 3\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, \mathrm{~J}=$ $\left.8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 7.34\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 6.50(\mathrm{~s}, 1 \mathrm{H}$, $\left.4^{\prime}-\mathrm{H}\right), 6.09$ (ddt, $J=17.2,10.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.96 (d, $\left.J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.95\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.45(\mathrm{dq}, J=17.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.27 (dq, $J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=$ CH_{2}) , $5.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.33$ (ddt, $J=12.7,5.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=$ CH_{2}), 4.28 (ddt, $\left.J=12.7,5.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{OH}_{2}=\mathrm{CH}_{2}\right), 4.20-4.15$ (overlapped, $2 \mathrm{H}, 1-\mathrm{H}$ and $2-\mathrm{H}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{OCH}_{3}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}, 9-$ OCH_{3}), $3.54(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.45(\mathrm{dd}, J=14.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, 2a-H α), 3.07 (dd, $J=18.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \alpha), 2.95(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H} \beta), 2.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3} \& \mathrm{NCH}_{3}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 2.25-2.18$ (overlapped, $1 \mathrm{H}, \quad 2 \mathrm{a}-\mathrm{H} \beta$), $1.94 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, \quad 7^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.1$ (C-4), $151.2(\mathrm{C}-7), 149.8(\mathrm{C}-9), 147.4(\mathrm{C}-$ 10), 146.1 ($\mathrm{C}-3^{\prime} \mathrm{a}$ or 7'a), 145.6 (C-3'a or 7'a), $145.4\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 141.1$ $\left(\mathrm{C}-6^{\prime}\right), 133.8\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 133.6\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 129.9\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 127.8$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 125.0(\mathrm{C}-8), 124.6\left(\mathrm{C}-5^{\prime}\right), 122.4$ (C-6a or 10 a$), 122.3$ (C-6a or 10a), $117.1\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 115.3\left(\mathrm{C}-7^{\prime}\right), 107.5\left(\mathrm{C}-4^{\prime}\right), 101.8\left(\mathrm{C}-2^{\prime}\right)$, $72.9\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 60.2\left(9-\mathrm{OCH}_{3}\right), 60.1\left(10-\mathrm{OCH}_{3}\right), 58.2(\mathrm{C}-5), 55.5$ $(\mathrm{C}-2), 54.4(\mathrm{C}-1), 40.3\left(\mathrm{NCH}_{3}\right), 33.3(\mathrm{C}-2 \mathrm{a}), 24.2(\mathrm{C}-6), 21.7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $10.6\left(7^{\prime}-\mathrm{CH}_{3}\right), 9.7 \mathrm{ppm}\left(8-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=1674,1476,1450$, 1414, 1358, 1339, 1192, 1180, 1113, $1076 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 650 (18) $[M]^{+}, 610$ (14), 609 (38), 496 (22), 495 (38), 275 (29), 274 (100), 235 (12), 234 (39), 233 (17), 219 (11), 218 (36); HRMS (EI): m/z: calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{9} \mathrm{~N}_{2} \mathrm{~S}: 650.2298[\mathrm{M}]^{+}$; found: 650.2294.

A solution of $\mathrm{KOH}(7.35 \mathrm{~g}, 0.111 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(33 \mathrm{~mL})$ was added dropwise to a stirred solution of the above product (1.54 g) in $\mathrm{EtOH}(33 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, and the mixture was heated at reflux for 3 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(130 \mathrm{~mL})$, neutralized with 6 M aq HCl solution, and extracted with $\mathrm{CHCl}_{3}(3 \times 200 \mathrm{~mL})$. The combined extract was washed with brine (200 mL), dried, and con-
centrated in vacuo to give a residue (1.10 g), which was subjected to column chromatography on $\mathrm{SiO}_{2}(30 \mathrm{~g})$ with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(97: 3)$ to afford 10 ($889.1 \mathrm{mg}, 80 \%$, two steps) as a brown amorphous powder; $R_{\mathrm{f}}=0.24\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 97: 3\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.39\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.06$ (ddt, $J=17.6,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=$ CH_{2}), 5.91 (brs, $1 \mathrm{H}, \mathrm{NH}$), 5.87 (d, J=1.4 Hz, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.85(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$), 5.41 (brdd, $J=17.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.24 (brdd, $J=10.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.30 (ddt, $J=12.5$, $5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.27 (ddt, $J=12.5,5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.21-4.18 (overlapped, $2 \mathrm{H}, 1-\mathrm{H} \& 2-\mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}$, $\left.10-\mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.20(\mathrm{~d}$, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \alpha$), 3.06 (dd, $J=17.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \alpha$), 2.95 (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 2.10$ (s, 3H, 7'-CH3), $2.02 \mathrm{ppm}\left(\mathrm{dd}, J=14.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \beta\right.$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3$ (C-4), 151.3 (C-7), 149.8 (C-9), 147.3 (C10 or 6^{\prime}), 147.1 (C-10 or 6^{\prime}), 145.5 (C-7'a), 140.8 (C-3'a), 133.7 $\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 125.0$ (C-8), 122.5 (C-6a or 10a), 122.4 (C-6a or 10a), $117.3\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 115.6\left(\mathrm{C}-5^{\prime}\right), 107.8\left(\mathrm{C}-7^{\prime}\right), 107.5\left(\mathrm{C}-4^{\prime}\right), 100.8(\mathrm{C}-$ $\left.2^{\prime}\right), 73.0\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 60.2\left(10-\mathrm{OCH}_{3}\right), 60.1\left(9-\mathrm{OCH}_{3}\right), 58.0(\mathrm{C}-5)$, $56.0(\mathrm{C}-2), 54.4(\mathrm{C}-1), 40.3\left(\mathrm{NCH}_{3}\right), 32.4(\mathrm{C}-2 \mathrm{a}), 24.2(\mathrm{C}-6), 9.7\left(8-\mathrm{CH}_{3}\right)$, $9.0 \mathrm{ppm}\left(7^{\prime}-\mathrm{CH}_{3}\right) ;$ FTIR (KBr): $\tilde{v}=3370,2936,1655,1476,1456,1412$, 1339, 1252, 1238, 1184, 1111, 1092, 1076, $1057 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 497 (29), 496 (100) $[M]^{+}, 456$ (18), 455 (48), 275 (28), 274 (89), 260 (14), 234 (39), 233 (24), 219 (13), 218 (47); HRMS (EI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}: 496.2210[\mathrm{M}]^{+}$; found: 496.2211.
(1R*,2S*,4R*,5S*)-7-(Allyloxy)-2-[(6-hydroxy-7-methylbenzo[d]-[1,3]dioxol-5-yl)methyl]-9,10-dimethoxy-8,11-dimethyl-1,2,3,-4,5,6-hexahydro-1,5-iminobenzo[d]azocine-4-carbo-nitrile (11)

A suspension of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ ($31.9 \mathrm{mg}, 0.12 \mathrm{mmol}$) in THF (0.5 mL) was added to a stirred solution of $10(19.9 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$, and the mixture was warmed to $0^{\circ} \mathrm{C}$ over 1 h . A solution of $\mathrm{KCN}(20.8 \mathrm{mg}, 0.32 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(640 \mu \mathrm{~L})$ was added to the above solution, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h . The mixture was diluted with saturated aqueous NaHCO_{3} solution $(10 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The combined extract was washed with brine (10 mL), dried, and concentrated in vacuo to give a residue (21.5 mg), which was subjected to column chromatography on $\mathrm{SiO}_{2}(6 \mathrm{~g})$ with CHCl_{3} to give 11 ($19.4 \mathrm{mg}, 96 \%$) as a brown amorphous powder; $R_{\mathrm{f}}=0.40$ (hexane/ $\mathrm{CHCl}_{3} 1: 4$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.43$ (s, $1 \mathrm{H}, 4^{\prime}-\mathrm{H}$), 6.09 (ddt, $J=17.3,10.6$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.86\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.85(\mathrm{~d}, \mathrm{~J}=$ $\left.1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.44\left(\mathrm{dq}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 5.28 (dq, $J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.34 (ddt, $J=12.7,5.4$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.29 (ddt, $J=12.7,5.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.08(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.64(\mathrm{dt}, \mathrm{J}=10.2$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.28$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.03$ (dd, $J=$ $18.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \alpha$), 2.91 (dd, $J=14.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \alpha$), 2.45 (d, $J=18.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right)$, 2.08 ($\mathrm{s}, 3 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{3}$), $2.02 \mathrm{ppm}(\mathrm{dd}, J=14.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \beta$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.6(\mathrm{C}-7), 150.0(\mathrm{C}-9), 148.2(\mathrm{C}-6$ '), 147.6 (C-10), 145.4 (C-7'a), 140.2 (C-3'a), $133.7\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 124.5$ (C-8), 123.0 (C-6a), 122.0 (C-10a), $119.0(\mathrm{CN}), 117.3\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 115.8 (C-5'), $108.8\left(\mathrm{C}-7^{\prime}\right), 107.2\left(\mathrm{C}-4^{\prime}\right), 100.7\left(\mathrm{C}-2^{\prime}\right), 72.9\left(\mathrm{OCH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CH}_{2}\right), 60.4\left(10-\mathrm{OCH}_{3}\right), 60.2\left(9-\mathrm{OCH}_{3}\right), 57.7(\mathrm{C}-2), 56.6(\mathrm{C}-1), 53.9(\mathrm{C}-5)$, $53.5(\mathrm{C}-4), 42.0\left(\mathrm{NCH}_{3}\right), 34.2(\mathrm{C}-2 \mathrm{a}), 21.3(\mathrm{C}-6), 9.7\left(8-\mathrm{CH}_{3}\right), 9.1 \mathrm{ppm}$ ($7^{\prime}-\mathrm{CH}_{3}$); FTIR (KBr): $\tilde{v}=3447,2936,2361,1458,1412,1250,1111$, 1092, 1074, 1055, 1042, $1020 \mathrm{~cm}^{-1}$; MS (FAB): m/z (\%): $508[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (FAB): m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}: 508.2448[\mathrm{M}]^{+}$; found: 508.2452.

(1R*,2S*,5S*)-tert-Butyl 7-(allyloxy)-2-\{(6'-[(tert-butoxy-carbonyl)oxy-7'-methylbenzo-[d][1,3]dioxol-5-yl]methyl\}-9,10-dimethoxy-8,11-dimethyl-4-oxo-1,2,5,6-tetrahydro-1,5-iminobenzo[d]azocine-3(4H)-carboxylate (13)

A mixture of 10 ($568.5 \mathrm{mg}, 1.14 \mathrm{mmol}$) and DMAP (279.4 mg , $2.29 \mathrm{mmol}, 2$ equiv) in $\mathrm{MeCN}(11.5 \mathrm{~mL})$ was cooled at $0^{\circ} \mathrm{C}$; then, $\mathrm{Boc}_{2} \mathrm{O}$ ($5.3 \mathrm{~mL}, 22.90 \mathrm{mmol}, 20$ equiv.) was added to the mixture, which was heated at reflux for 17.5 h . As the starting material still remained, as indicated by TLC monitoring, DMAP (279.4 mg , $2.29 \mathrm{mmol}, 2$ equiv.) was added to the mixture at $25^{\circ} \mathrm{C}$, and the reaction mixture was heated under reflux for an additional 40 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with CHCl_{3} $(3 \times 50 \mathrm{~mL})$. The combined extract was washed with brine $(50 \mathrm{~mL})$, dried, and concentrated in vacuo to give a residue, which was subjected to column chromatography on $\mathrm{SiO}_{2}(15 \mathrm{~g})$ with hexane/ EtOAc (11:9) to afford 13 ($570.9 \mathrm{mg}, 72 \%$) as a brown amorphous powder; $R_{\mathrm{f}}=0.30$ (hexane/EtOAc 11:9); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=6.55\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 6.07$ (ddt, $J=17.3,10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$ $\left(\mathrm{H}_{2}\right), 5.90\left(\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{2}\right), 5.42\left(\mathrm{dq}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.26 (dq, $\left.J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.99(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{H}$), 4.39 (dd, $J=6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 4.32 (ddt, $J=12.4,5.4$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.26 (ddt, $J=12.4,5.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$ CH_{2}), 3.77 (dd, J=7.7, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.61(\mathrm{~s}$, $3 \mathrm{H}, 10-\mathrm{OCH}_{3}$), 3.07 (dd, $J=18.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{H}-\alpha$), 2.96 (dd, $J=$ $18.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta$), 2.91 (dd, $J=15.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \alpha$), 2.46 (s, 3H, NCH $)_{3}$, $2.18\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime}-\mathrm{CH}_{3}\right), 1.99$ (dd, $J=$ $15.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{a}-\mathrm{H} \beta), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.2(\mathrm{C}-4), 151.6\left(\mathrm{CO}_{2}\right)$, $151.5\left(\mathrm{CO}_{2}\right), 151.1(\mathrm{C}-7), 149.8(\mathrm{C}-9), 147.6(\mathrm{C}-10), 144.7\left(\mathrm{C}-\mathrm{7}^{\prime} \mathrm{a}\right)$, 144.3 (C-3'a), $142.6\left(\mathrm{C}-6^{\prime}\right), 133.7\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 125.1(\mathrm{C}-8), 124.0(\mathrm{C}-$ $\left.5^{\prime}\right), 122.9(\mathrm{C}-10 \mathrm{a}), 121.8(\mathrm{C}-6 \mathrm{a}), 117.3\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 112.9\left(\mathrm{C}-7^{\prime}\right)$, $105.7\left(\mathrm{C}-4{ }^{\prime}\right), 101.2\left(\mathrm{C}-2^{\prime}\right), 83.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 82.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 73.1\left(\mathrm{CH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CH}_{2}\right), 60.1\left(10-\mathrm{OCH}_{3}\right), 59.8\left(9-\mathrm{OCH}_{3}\right), 59.8(\mathrm{C}-5), 57.8(\mathrm{C}-2), 54.0(\mathrm{C}-1)$, $40.0\left(\mathrm{NCH}_{3}\right), 32.3(\mathrm{C}-2 \mathrm{a}), 27.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 22.7(\mathrm{C}-6), 9.6$ $\left(8-\mathrm{CH}_{3}\right), 9.4 \mathrm{ppm}\left(7^{\prime}-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=1757,1732,1697,1477$, $1456,1412,1395,1369,1341,1275,1256,1152,1099,1063 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 696 (4) $[M]^{+}, 596$ (13), 555 (13), 497 (14), 496 (47), 455 (24), 275 (31), 274 (100), 271 (14), 260 (11), 234 (32), 233 (22), 232 (12), 219 (11), 218 (38), 57 (14); HRMS (EI): m/z: calcd $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{11}: 696.3258[M]^{+}$; found: 696.3256.

6-(2'S*)-(1"R,3"S)-[(5"-Allyloxy-3"-hydroxymethyl-7", 8"-di-methoxy-2",6"-dimethyl-1",2",3",4"-tetrahydroisoquinolin-1"-yl)-2'-aminoethyl]-4-methylbenzo[d][1,3]dioxol-5-ol (14)
$\mathrm{NaBH}_{4}(892.4 \mathrm{~g}, 23.59 \mathrm{mmol})$ was added to a stirred solution of 13 $(821.8 \mathrm{mg}, 1.179 \mathrm{mmol})$ in $\mathrm{EtOH}(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined extract was washed with brine (30 mL), dried, and concentrated in vacuo to give a residue, which was used in the next step without further purification. An analytical sample of the protected compound (857.3 mg) was obtained as a colorless amorphous powder by column chromatography with hexane/EtOAc (13:7); $\quad R_{f}=0.21 \quad$ (hexane/EtOAc 7:3); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.60\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 6.05(\mathrm{ddt}, \mathrm{J}=17.1,10.8$, $\left.5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.90\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 5.88$ (d, $J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}$), 5.38 (dd, $J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.22 (dd, $J=10.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.49 (brd, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-$ H), 4.27 (dd, $J=12.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.12 (dd, $J=12.5$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.88-3.76 (overlapped, $1 \mathrm{H}, 2-\mathrm{H}$), 3.86 (s, $\left.3 \mathrm{H}, 8^{\prime}-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, 7^{\prime}-\mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right)$,
3.48 (dd, J=11.3, 3.3 Hz, 1H, 2-H), 3.13 (brd, J=13.1 Hz, $1 \mathrm{H}, 3^{\prime} \mathrm{a}-\mathrm{H}$), 2.88 (dd, $\left.J=15.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 2.75$ (dd, $J=15.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.4^{\prime}-\mathrm{H}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NCH}_{3}\right), 2.38\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\right.$ and $\left.3^{\prime} \mathrm{a}-\mathrm{H}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H} ; 6^{\prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime \prime}-\mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.14 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.0$ (CO), 151.9 (CO), 150.0 (C-5'), 149.0 (C-7'), 146.5 (C-8'), 145.0 (C-7"a), 144.6 (C-3"a), $142.4\left(\mathrm{C}-6^{\prime \prime}\right), 133.9\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 126.7\left(\mathrm{C}-4^{\prime} \mathrm{a}\right.$ or $\left.8^{\prime} \mathrm{a}\right), 125.9\left(\mathrm{C}-4^{\prime} \mathrm{a}\right.$ or $\left.8^{\prime} \mathrm{a}\right), 124.0\left(\mathrm{C}-6^{\prime}\right.$ or $\left.5^{\prime \prime}\right), 123.8\left(\mathrm{C}-6^{\prime}\right.$ or $\left.5^{\prime \prime}\right), 117.4\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 112.9$ $\left(\mathrm{C}-7^{\prime \prime}\right), 106.8\left(\mathrm{C}-4^{\prime \prime}\right), 101.2\left(\mathrm{C}-2^{\prime \prime}\right), 83.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 78.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 74.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 64.4(\mathrm{C}-2), 63.7\left(\mathrm{C}-1^{\prime}\right), 63.1\left(\mathrm{C}-3^{\prime}\right), 60.5\left(8^{\prime}-\mathrm{OCH}_{3}\right), 60.1$ $\left(7^{\prime}-\mathrm{OCH}_{3}\right), 55.6(\mathrm{C}-1), 46.6\left(\mathrm{NCH}_{3}\right), 32.6\left(\mathrm{C}-3^{\prime} \mathrm{a}\right), 28.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.6$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.4\left(\mathrm{C}-4^{\prime}\right), 9.50\left(6^{\prime}-\mathrm{CH}_{3}\right), 9.45 \mathrm{ppm}\left(7^{\prime \prime}-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=$ 3422, 2978, 2930, 1751, 1715, 1516, 1477, 1458, 1369, 1281, 1258, 1153, 1101, $1063 \mathrm{~cm}^{-1}$; MS (FAB): m/z (\%): $701[M+H]^{+}$; HRMS (FAB): m/z: calcd for $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{11}$: 701.3649 [M] ${ }^{+}$; found: 701.3646.

TFA (18 mL) was added to a stirred solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1.5 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, made alkaline with concentrated $\mathrm{NH}_{4} \mathrm{OH}(30 \mathrm{~mL})$, and extracted with CHCl_{3} $(3 \times 80 \mathrm{~mL})$. The combined extract was washed with brine $(60 \mathrm{~mL})$, dried, and concentrated in vacuo to give a residue (568.6 mg), which was subjected to column chromatography on $\mathrm{SiO}_{2}(15 \mathrm{~g})$ with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (97:3) to afford 14 ($433.2 \mathrm{mg}, 73 \%$, two steps) as a brown amorphous powder; $R_{\mathrm{f}}=0.19\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 97: 3\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.44$ (s, $\left.1 \mathrm{H}, 7-\mathrm{H}\right), 6.05$ (ddt, $J=17.0,10.4$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.87(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.82(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.37$ (dq, $J=17.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 5.25 (dq, $J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.25 (ddt, $J=11.1,5.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.19 (ddt, $J=11.1,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, 8^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, 7{ }^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.79(\mathrm{dd}, \mathrm{J}=10.5$,
 $\left.2.6 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime} \mathrm{a}-\mathrm{H}\right), 3.14\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.95(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 2.75$ (dd, $\left.J=13.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}\right), 2.69(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.42-2.32$ (overlapped, $2 \mathrm{H}, 3^{\prime \prime}-\& 4^{\prime \prime}-\mathrm{H}$), $2.21\left(\mathrm{~s}, 3 \mathrm{H}, 6 "-\mathrm{CH}_{3}\right), 2.11 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=150.6$ (C-5 or $\left.5^{\prime \prime}\right)$, 150.4 (C-5 or $\left.5^{\prime \prime}\right), 149.7$ (C-7"), 146.9 (C$\left.8^{\prime \prime}\right), 145.4$ (C-3a), 139.3 (C-7a), $133.5\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 126.7$ (C-8"a), 124.8 (C-4"a or $6^{\prime \prime}$), $124.6\left(\mathrm{C}-4\right.$ "a or $\left.6^{\prime \prime}\right), 117.7\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 117.6$ (C-6), $109.3(\mathrm{C}-4), 107.0(\mathrm{C}-7), 100.5(\mathrm{C}-2), 74.5\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 65.0$ (C-1"), 63.9 (C-3"a), $63.0\left(\mathrm{C}-3^{\prime \prime}\right), 60.7\left(8^{\prime \prime}-\mathrm{OCH}_{3}\right), 60.1\left(7^{\prime \prime}-\mathrm{OCH}_{3}\right), 59.1$ $\left(\mathrm{C}-2^{\prime}\right), 46.6\left(\mathrm{NCH}_{3}\right), 38.2\left(\mathrm{C}-1^{\prime}\right), 24.3\left(\mathrm{C}-4^{\prime \prime}\right), 9.7\left(6^{\prime \prime}-\mathrm{CH}_{3}\right), 9.3 \mathrm{ppm}(4-$ CH_{3}); FTIR (KBr): $\tilde{v}=3441,3370,2938,2866,1470,1414,1248,1115$, 1094, 1057, $934 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 500 (1) [M] ${ }^{+}, 307$ (18), 306 (100), 234 (15), 218 (10); HRMS (EI): m/z: calcd $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7}: 500.2523$ $[M]^{+}$; found: 500.2520.
(6aS*, $7 \mathrm{R}^{*}, 13 \mathrm{~S}^{*}, 14 \mathrm{R}^{*}, 16 \mathrm{R}^{*}$)-Ethyl 5-(benzyloxy)-14-cyano-11-hydroxy-8,9-dimethoxy-4,10,17-trimethyl-6a,7,12,13,14,16-hexahydro-6H-7,13-iminobenzo[4,5]azocino-[1,2-b]-[1,3]-dioxolo[4,5-h]isoquinoline-16-carboxylate (18)
$14 \rightarrow 15$: A solution of 1-allyl 3-ethyl 2,2-dihydroxymalonate ${ }^{[20]}$ ($238.2 \mathrm{mg}, 1.167 \mathrm{mmol}$) in TFA (6 mL) was added to a stirred solution of 14 ($116.8 \mathrm{mg}, 0.233 \mathrm{mmol}$) in $\mathrm{AcOH}(1.5 \mathrm{~mL})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 6 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, made alkaline with concentrated $\mathrm{NH}_{4} \mathrm{OH}(11 \mathrm{~mL})$, and extracted with $\mathrm{CHCl}_{3}(3 \times 80 \mathrm{~mL})$. The combined extract was washed with brine (40 mL), dried, and concentrated in vacuo to give a residue (358.9 mg), which was subjected to column chromatography on $\mathrm{SiO}_{2}(10 \mathrm{~g})$ with hexane/EtOAc $(2: 3)$ to afford an inseparable 1:1 diastereomer mixture of 15 ($124.9 \mathrm{mg}, 80 \%$) as a yellow amorphous powder.
$15 \rightarrow$ 16: $\mathrm{BnBr}(533 \mu \mathrm{~L}, 4.40 \mathrm{mmol})$ was added to a stirred solution of 15 ($147.1 \mathrm{mg}, 0.22 \mathrm{mmol}$) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(763.9 \mathrm{mg}$, 5.50 mmol) in acetone (55 mL), and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 8 h . The mixture was filtered, and the filtrate was concentrated in vacuo to give a residue, which was subjected to column chromatography on $\mathrm{SiO}_{2}(6 \mathrm{~g})$ with hexane/EtOAc (1:1) to afford an inseparable 1:1 diastereomer mixture of 16 ($137.2 \mathrm{mg}, 83 \%$) as a yellow amorphous powder.

16 \rightarrow 17: $(\mathrm{COCl})_{2}(25 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ was added to a stirred solution of DMSO ($43 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . A solution of $16(45.5 \mathrm{mg}$, $60 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to the above solution at $-78^{\circ} \mathrm{C}$ over 10 min , and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h . $\mathrm{Et}_{3} \mathrm{~N}(167 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ was then added to the mixture at $-78^{\circ} \mathrm{C}$ over 5 min , and stirring was continued at $-78^{\circ} \mathrm{C}$ for 30 min . After the mixture was warmed to $25^{\circ} \mathrm{C}$ over a period of 3 h and stirred for 2 h , it was diluted with saturated aqueous NaHCO_{3} solution $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined extract was washed with brine (10 mL), dried, and concentrated in vacuo to give a residue that was used in the next step without purification. A solution of $\mathrm{KCN}(31.9 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(960 \mu \mathrm{~L})$ was added to a stirred solution of the crude product (63.4 mg) in THF (1 mL) in the presence of $\mathrm{AcOH}(381 \mu \mathrm{~L}, 6.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined extract was washed with brine $(10 \mathrm{~mL})$, dried, and concentrated in vacuo to give a residue $(41.5 \mathrm{mg})$, which was subjected to column chromatography on $\mathrm{SiO}_{2}(6 \mathrm{~g})$ with hexane/EtOAc (3:1) to afford an inseparable 1:1 diastereomer mixture of 17 ($25.8 \mathrm{mg}, 56 \%$, two steps) as a colorless amorphous powder.
$17 \rightarrow$ 18: A solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16.4 \mathrm{mg}, 13.8 \mu \mathrm{~mol})$ in THF $(1.0 \mathrm{~mL})$ was added to a stirred solution of $17(35.2 \mathrm{mg}, 46 \mu \mathrm{~mol})$ and dimedone ($32.6 \mathrm{mg}, 0.23 \mathrm{mmol}$) in THF (2.0 mL) under an argon atmosphere, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . After the mixture was concentrated in vacuo, the resulting residue was dissolved in $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$ and heated at reflux for 2 h . The mixture was concentrated in vacuo to give a residue, which was subjected to column chromatography on $\mathrm{SiO}_{2}(6 \mathrm{~g})$ with $\mathrm{CHCl}_{3} /$ EtOAc (4:1) to afford 18 ($21.2 \mathrm{mg}, 72 \%$, two steps) as a pale-yellow amorphous powder; $R_{\mathrm{f}}=0.20\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc} 4: 1\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.40(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.94(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.70$ (d, $\left.J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.58\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.47(\mathrm{~s}$, $1 \mathrm{H}, 16-\mathrm{H}), 4.39$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 4.27 (d, J=2.5 Hz, $1 \mathrm{H}, 14-\mathrm{H}), 4.07$ (dq, $J=10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.04 (brd, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 3.95 (dq, J=10.9, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{OCH}_{3}\right), 3.72(\mathrm{~s}$, $3 \mathrm{H}, 9-\mathrm{OCH}_{3}$), 3.43 (brd, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}$), 3.30 (dd, $J=15.4$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{H}-\alpha$), 3.20 (dt, $J=11.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}$), 2.91 (dd, $J=$ $17.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H} \alpha), 2.33$ (d, J=17.6 Hz, $1 \mathrm{H}, 12-\mathrm{H} \beta), 2.32(\mathrm{~s}$, $\left.3 \mathrm{H}, N \mathrm{NH}_{3}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 2.02(\mathrm{dd}, \mathrm{J}=$ $15.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta), 1.04 \mathrm{ppm}\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5$ (CO), 149.0 (C-9), $148.2(\mathrm{C}-5)$, 146.5 (C-11), 144.9 (C-8), 144.4 (C-3a), $140.0(\mathrm{C}-16 \mathrm{~b}), 137.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 123.0(\mathrm{C}-7 \mathrm{a}), 121.1(\mathrm{C}-5 \mathrm{a}$ or 16a), 117.6 (CN), 116.1 (C-11a), 115.6 (C-10), 113.1 (C-4), 109.9 (C-5a or 16 a$), 101.4(\mathrm{C}-2), 75.3\left(\mathrm{PhCH}_{2}\right), 61.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.1(\mathrm{C}-14), 60.3$ $\left(\mathrm{C}-16,8 \& 9-\mathrm{OCH}_{3}\right), 56.8(\mathrm{C}-6 \mathrm{a} \& 7), 54.9(\mathrm{C}-13), 41.8\left(\mathrm{NCH}_{3}\right), 26.3$ (C6), $21.0(\mathrm{C}-12), 13.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 9.4\left(4-\mathrm{CH}_{3}\right), 8.6 \mathrm{ppm}\left(10-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=3437,2934,2228,1728,1456,1431,1416,1344,1254$, 1109, 1092, 1074, $1028 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 641 (7) [M] ${ }^{+}, 543$ (14), 541 (17), 523 (19), 451 (23), 450 (18), 274 (40), 235 (33), 234
(100); HRMS (EI): m/z: calcd for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{8}$: 641.2737 [M$]^{+}$; found: 641.2735.

(6aS*,7R*,13S*,14R*,16R*)-5-(Benzyloxy)-11-hydroxy-16-(hydroxymethyl)-8,9-dimethoxy-4,10,17-trimethyl-6a,7,12,-13,14,16-hexahydro-6H-7,13-iminobenzo[4,5]azocino-[1,2-b]-[1,3]-dioxolo[4,5-h]isoquinoline-14-carbonitrile (19)

$\mathrm{LiBH}_{4}(6.4 \mathrm{mg}, 0.281 \mathrm{mmol})$ was added to a stirred solution of 18 $(18.0 \mathrm{mg}, 28.1 \mu \mathrm{~mol})$ in THF (1 mL) and $\mathrm{MeOH}(11 \mu \mathrm{~L}, 0.281 \mathrm{mmol})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . After the mixture was diluted with brine (5 mL) slowly at $0^{\circ} \mathrm{C}$, it was extracted with CHCl_{3} $(2 \times 10 \mathrm{~mL})$ and then $\mathrm{CHCl}_{3} / \mathrm{MeOH}(19: 1,2 \times 10 \mathrm{~mL})$. The combined extract was dried and concentrated in vacuo to give a residue (19.6 mg), which was subjected to column chromatography on $\mathrm{SiO}_{2}(6 \mathrm{~g})$ with $\mathrm{CHCl}_{3} / E t \mathrm{OAc}(3: 2)$ to afford 19 ($11.9 \mathrm{mg}, 71 \%$) as a colorless amorphous powder; $R_{f}=0.24$ (hexane/EtOAc 2:3); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.40$ (m, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.95(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ $\mathrm{H}), 4.67\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.58$ (brs, $\left.1 \mathrm{H}, \mathrm{OH}\right), 4.55(\mathrm{~d}, J=$ $\left.10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 4.07(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.01(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{OCH}_{3}\right)$, $3.70\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.68$ (brd, J=11.3 Hz, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 3.50 (dd, $\left.J=11.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.47$ (brd, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}\right), 3.31$ (dt, $J=12.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}$), 3.31 (dd, $J=16.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{H}-\alpha$), 2.99 (dd, $J=18.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H} \alpha), 2.40(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}, 12-$ $\mathrm{H} \beta), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NCH}_{3}\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right)$, $1.93 \mathrm{ppm}(\mathrm{dd}, J=16.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H} \beta) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=149.3(\mathrm{C}-9), 148.2(\mathrm{C}-5), 146.7(\mathrm{C}-11), 145.0(\mathrm{C}-8), 144.5$ (C-3a), 139.1 (C-16b), $137.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.3$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 123.2$ (C-7a), 121.1 (C-5a), 117.7 (CN), 116.0 (C-10), 115.6 (C11a), 113.4 (C-16a), 112.5 (C-4), 101.2 (C-2), $75.1\left(\mathrm{PhCH}_{2}\right), 63.4$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 60.3\left(8 \& 9-\mathrm{OCH}_{3}\right), 60.0(\mathrm{C}-14), 58.1(\mathrm{C}-16), 56.9(\mathrm{C}-7), 56.5$ (C-6a), $54.9(\mathrm{C}-13), 41.8\left(\mathrm{NCH}_{3}\right), 26.3(\mathrm{C}-6), 21.3(\mathrm{C}-12), 9.3\left(4-\mathrm{CH}_{3}\right)$, $8.7 \mathrm{ppm}\left(10-\mathrm{CH}_{3}\right) ;$ FTIR (KBr): $\tilde{v}=3447,2934,2228,1456,1431$, 1418, 1344, 1109, 1092, $1074 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 599 (1) $[\mathrm{M}]^{+}$, 572 (17), 544 (17), 543 (47), 338 (41), 264 (18), 248 (10), 236 (18), 235 (28), 234 (100), 218 (10), 91 (10); HRMS (EI): m/z: calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{7}: 599.2632[\mathrm{M}]^{+}$; found: 599.2629.
(6aS*, 7R*, 13S*, 14R*, 16R*)-5-(Benzyloxy)-16-(hydroxymethyl)-9-methoxy-4,10,17-trimethyl-8,11-dioxo-6a,7,8,11,12,13,14,16-octahydro-6H-7,13-iminobenzo[4,5]azocino[1,2-b][1,3]-dioxolo[4,5-h]isoquinoline-14-carbonitrile (20)

A solution of CAN $(21.6 \mathrm{mg}, 37.5 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(700 \mu \mathrm{~L})$ was added to a stirred solution of $19(9.00 \mathrm{mg}, 15 \mu \mathrm{~mol})$ in THF $(2.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and then extracted with EtOAc $(3 \times$ $10 \mathrm{~mL})$. The combined extract was washed with brine (5 mL), dried, and concentrated in vacuo to give a residue (9.8 mg), which was subjected to column chromatography on $\mathrm{SiO}_{2}(6 \mathrm{~g})$ with hexane/ EtOAc (1:1) to afford 20 ($4.43 \mathrm{mg}, 51 \%$) as a yellow gummy solid. Compound 20 was identical with an authentic sample ${ }^{[133]}$ on direct comparison of the characterization data (${ }^{1} \mathrm{H} N M R,{ }^{13} \mathrm{C}$ NMR, IR, MS) and TLC behavior; $R_{\mathrm{f}}=0.20$ (hexane/EtOAc 3:2); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.50-7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.98(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H})$, $5.90(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.66\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.60(\mathrm{~d}$, $\left.J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 4.04(\mathrm{t}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 4.01$ (brd, J=2.7 Hz, 1H, 7-H), 3.94 (s, $3 \mathrm{H}, 9-$ OCH_{3}), 3.71 (brd, $\left.J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.39$ (brd, J=7.6 Hz, 1H, 13-H), 3.18 (dt, J=12.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}$), 3.04
(dd, J=15.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{H}-\alpha$), 2.82 (dd, $J=20.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 12-$ $\mathrm{H} \alpha$), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, N \mathrm{NH}_{3}\right), 2.29(\mathrm{~d}, J=20.8 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H} \beta), 2.16(\mathrm{~s}, 3 \mathrm{H}$, $\left.4-\mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 1.66 \mathrm{ppm}(\mathrm{dd}, J=15.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-$ $\mathrm{H} \beta$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.5$ (C-11), 182.5 (C-8), 155.3 (C-9), 148.2 (C-5), 144.9 (C-3a), 141.3 (C-11a), 139.2 (C-16b), 136.7 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 136.2(\mathrm{C}-7 \mathrm{a}), 128.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.6(\mathrm{C}-10), 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.3$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 120.6(\mathrm{C}-5 \mathrm{a}), 117.4(\mathrm{CN}), 112.6$ (C-4 \& 16a), 101.3 (C-2), 75.5 $\left(\mathrm{PhCH}_{2}\right), 65.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 60.9\left(9-\mathrm{OCH}_{3}\right), 59.8(\mathrm{C}-14), 58.5(\mathrm{C}-16), 56.0$ (C-6a), 54.8 (C-7 or 13), 54.7 (C-7 or 13), $41.5\left(\mathrm{NCH}_{3}\right), 27.7(\mathrm{C}-6), 21.5$ (C-12), $9.4\left(4-\mathrm{CH}_{3}\right), 8.7 \mathrm{ppm}\left(10-\mathrm{CH}_{3}\right)$; FTIR (KBr): $\tilde{v}=2936,1653$, 1614, 1456, 1429, 1306, 1105, $1092 \mathrm{~cm}^{-1}$; MS (FAB): m/z (\%): 583 $[M+H]^{+}$; HRMS (FAB): m/z: calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7}: 583.2319[\mathrm{M}]^{+}$; found: 584.2391.

Acknowledgements

This work was partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan through Grants-in-Aid (Nos. 15 K 07873 and 18K06561) for Scientific Research.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: cyclization • decarboxylation • fused-ring systems natural products • total synthesis
[1] I. P. Singh, P. Shah, Expert Opin. Ther. Pat. 2017, 27, 17-36.
[2] V. H. Le, M. Inai, R. M. Williams, T. Kan, Nat. Prod. Rep. 2015, 32, 328 347.
[3] European Medicines Agency, Assessment Report for Yondelis, London, UK, 2009.
[4] U. S. Food and Drug Administration, FDA Approves New Therapy for Certain Types of Advanced Soft Tissue Sarcoma, Silver Spring, MD, 2015.
[5] J. D. Scott, R. M. Williams, Chem. Rev. 2002, 102, 1669-1730.
[6] a) J. M. Frincke, D. J. Faulkner, J. Am. Chem. Soc. 1982, 104, 265-269; b) H. Y. He, D. J. Faulkner, J. Org. Chem. 1989, 54, 5822-5824.
[7] B. S. Davidson, Tetrahedron Lett. 1992, 33, 3721-3724.
[8] P. S. Parameswaran, C. G. Naik, S. Y. Kamat, B. N. Pramanik, Indian J. Chem. 1998, 37B, 1258-1263.
[9] G. R. Pettit, J. C. Knight, J. C. Collins, D. L. Herald, R. K. Pettit, M. R. Boyd, V. G. Young, J. Nat. Prod. 2000, 63, 793-798.
[10] N. Oku, S. Matsunaga, R. W. M. van Soest, N. Fusetani, J. Nat. Prod. 2003, 66, 1136-1139.
[11] a) N. Saito, A. Hiramatsu, H. Hirade, M. Kubota, R. Toyoshima, A. Fujino, N. Sirimangkalakitti, K. Suwanborirux, G. P. Concepcion, Heterocycles

2017, 95, 748-752; b) M. Tatsukawa, L. L. C. Punzalan, H. D. S. Magpantay, I. M. Villaseñor, G. P. Concepcion, K. Suwanborirux, M. Yokoya, N. Saito, Tetrahedron 2012, 68, 7422-7428; c) N. Daikuhara, Y. Tada, S. Yamaki, K. Charupant, S. Amnuoypol, K. Suwanborirux, N. Saito, Tetrahedron Lett. 2009, 50, 4276-4278; d) S. Amnuoypol, K. Suwanborirux, S. Pummangura, A. Kubo, C. Tanaka, N. Saito, J. Nat. Prod. 2004, 67, 1023 1028.
[12] K. Suwanborirux, S. Amnuoypol, A. Plubrukarn, S. Pummangura, A. Kubo, C. Tanaka, N. Saito, J. Nat. Prod. 2003, 66, 1441-1446.
[13] a) M. Yokoya, R. Toyoshima, T. Suzuki, V. H. Le, R. M. Williams, N. Saito, J. Org. Chem. 2016, 81, 4039-4047; b) J. Jia, R. Chen, H. Liu, X. Li, Y. Jia, X. Chen, Org. Biomol. Chem. 2016, 14, 7334-7344.
[14] For simplicity, all numbering used in this manuscript followed that shown in Figure 1, whereas IUPAC names and numbering are used in the Supporting Information.
[15] a) N. Saito, K. Tashiro, Y. Maru, K. Yamaguchi, A. Kubo, J. Chem. Soc. Perkin Trans. 1 1997, 53-69; b) M. Yokoya, K. Shinada-Fujino, S. Yoshida, M. Mimura, H. Takada, N. Saito, Tetrahedron 2012, 68, 4166-4181; c) S. Kimura, S. Kawai, M. Azuma, Y. Umehara, Y. Koizumi, M. Yokoya, N. Saito, Heterocycles 2015, 90, 327-343.
[16] N. Saito, R. Seki, N. Kameyama, R. Sugimoto, A. Kubo, Chem. Pharm. Bull. 2003, 51, 821-831.
[17] We thought that the methylenedioxy bridge would make the A ring slightly bent, thereby decreasing the electron-donating ability. See also ref. [16].
[18] S. Kimura, N. Saito, Tetrahedron, 2018, 74, 4504-4514.
[19] a) T. Fukuyama, L. Yang, K. L. Ajeck, R. A. Sachleben, J. Am. Chem. Soc. 1990, 112, 3712-3713; b) E. R. Ashley, E. G. Cruz, B. M. Stoltz, J. Am. Chem. Soc. 2003, 125, 15000-15001.
[20] a) M. F. Hediger, Bioorg. Med. Chem. 2004, 12, 4995-5010; b) S. Tani (Ihara Chemical Industry), Patent WO2010150548A1, 2010.
[21] As compounds $15-17$ were inseparable mixtures of diastereomers, none of the signals in the ${ }^{1} \mathrm{H} N M R$ and ${ }^{13} \mathrm{C}$ NMR spectra were split. Thus, we decided to present the spectral information in compound 18.
[22] We found that sodium p-toluenesulfinate was the most effective additive, as it exclusively afforded the desired product in the total synthesis of saframycin A (3). However, whereas the transformation of 17 into 18 in the presence of sodium p-toluenesulfinate led to removal of the allyl group in the diester at C1 and to the decarboxylation of 17, the allyl group in the Ering could not be removed. Finally, we found that sodium p-toluenesulfinate and dimedone were used in the removal of allyl groups and the decarboxylation sequence of 17 , and desired ethyl ester 18 was obtained in 67% overall yield in a one-pot process.
[23] Additional renieramycin-type marine natural products fennebricins A and B were discovered from the blue sponge Xestospongia sp . in the South China Sea; a) W. F. He, Y. Li, M. T. Feng, M. Gavagnin, E. Mollo, S. C. Mao, Y. W. Guo, Fitoterapia 2014, 96, 109-114; b) R.-Y. Huang, W.-T. Chen, T. Kurtán, A. Mándi, J. Ding, J. Li, X.-W. Li, Y.-W. Guo, Future Med. Chem. 2016, 8, 17-27.

[^0]
[^0]: Received: June 12, 2018

