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Geometric morphometrics of 
nested symmetries unravels 
hierarchical inter- and intra-
individual variation in biological 
shapes
Yoland Savriama   1 & Sylvain Gerber2

Symmetry is a pervasive feature of organismal shape and the focus of a large body of research in 
Biology. Here, we consider complex patterns of symmetry where a phenotype exhibits a hierarchically 
structured combination of symmetries. We extend the Procrustes ANOVA for the analysis of nested 
symmetries and the decomposition of the overall morphological variation into components of 
symmetry (among-individual variation) and asymmetry (directional and fluctuating asymmetry). 
We illustrate its use with the Aristotle’s lantern, the masticatory apparatus of ‘regular’ sea urchins, a 
complex organ displaying bilateral symmetry nested within five-fold rotational symmetry. Our results 
highlight the importance of characterising the full symmetry of a structure with nested symmetries. 
Higher order rotational symmetry appears strongly constrained and developmentally stable compared 
to lower level bilateral symmetry. This contrast between higher and lower levels of asymmetry is 
discussed in relation to the spatial pattern of the lantern morphogenesis. This extended framework 
is applicable to any biological object exhibiting nested symmetries, regardless of their type (e.g., 
bilateral, rotational, translational). Such cases are extremely widespread in animals and plants, 
from arthropod segmentation to angiosperm inflorescence and corolla shape. The method therefore 
widens the research scope on developmental instability, canalization, developmental modularity and 
morphological integration.

The anatomical organisation of almost all organisms appears to follow precise patterns of symmetry in which 
body parts are repeated and geometrically arranged according to specific positions and orientations. As an impor-
tant feature of morphological phenotypes, symmetry is at the core of numerous research programs in evolu-
tionary and developmental biology, such as the origin of symmetry in the corolla of flowers1, the mechanisms 
of phyllotaxis and branching in plants2, and the patterns of segmentation and serial homology3. Deviation from 
symmetry, or asymmetry, is also critical to our understanding of the origin of phenotypic variation. The meas-
urement of directional asymmetry, the population average systematic deviation from perfect symmetry, and of 
fluctuating asymmetry, the small random deviations from perfect symmetry or around the average directional 
asymmetry, underlies research on developmental instability, canalization, morphological integration, and devel-
opmental modularity4–7.

The study of biological forms has greatly benefited from the advent of geometric morphometric methods 
(GMMs), a powerful array of mathematical and statistical tools for quantifying and analysing shape and shape 
variation. Geometric morphometric frameworks have also been devised for the study of symmetry and asym-
metry in bilaterally symmetric structures, and these frameworks have been recently generalized to all types 
of symmetry8–11. Morphometric analyses of symmetric structures allow the partitioning of the total variation 
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into components of symmetric and asymmetric variation. A two-way mixed model Procrustes ANOVA further 
decomposes this total variation into biologically meaningful components. Its design includes the main effect 
‘individual’ that represents variation among individuals, the main effect ‘side’ that represents directional asymme-
try (DA), the ‘individual × side’ interaction that represents fluctuating asymmetry (FA), and measurement error 
if two or more replicates have been taken12.

More complex, composite types of symmetry can be found in nature. They correspond to cases where a phe-
notype displays a hierarchically structured combination of symmetries. The vertebral column is for instance com-
posed of bilaterally symmetric vertebrae that are themselves arranged according to translational symmetry along 
the body axis. This same type of nested symmetries is exhibited in arthropod segmentation3. Plants also show 
nested symmetries. In angiosperms, the tight arrangement of flowers forming a capitulum is such that it generates 
spiral symmetry, while the flowers themselves have symmetries ranging from bilateral symmetry (zygomorphy), 
left-right asymmetry, to rotational symmetry as their distance from the centre of the capitulum increases13,14.

How should the total variation be decomposed in a sample of phenotypes with nested symmetries? Central to 
the study of symmetric phenotypes is the identification of the repeated unit underlying the symmetry of the phe-
notype considered. In the case of equivocal symmetry where distinct symmetry groups can account for the sym-
metric pattern observed, developmental hypotheses can help identify the unit and the symmetry group involved, 
and reject competing alternatives suggested by contingent by-products of its symmetry transformations (e.g. 
corals)10. For nested symmetries, the key is to consider the repeated unit at the higher level of symmetric organ-
isation as being itself a product of symmetry transformations applied to a lower level unit. Theoretically, each of 
these levels can be expected to display among-individual variation in symmetric shape and within-individual 
deviations from perfect symmetry, but little is known about their possible patterns. Are these nested levels of 
symmetry equally sensitive to developmental perturbations? If not, how are patterns of developmental stability 
structured across levels and how well do they align with patterns of individual variation?

Here, we extend the statistical design of Procrustes ANOVA to analyse symmetric and asymmetric variations 
in organisms exhibiting hierarchically organised symmetries. We illustrate this approach with a small dataset 
of Aristotle’s lanterns, the masticatory apparatus of ‘regular’ sea urchins, which is considered as a key character 
underlying the adaptive radiation and evolutionary success of sea-urchins15–17. The lantern is a complex ensemble 
of calcitic skeletal pieces that all show bilateral symmetry and are themselves nested within the more complex 
five-fold rotational symmetry typifying the echinoderm body plan.

We consider three possible analyses of symmetry for this ambiguous case study based on three hypotheses 
regarding which fundamental repeated unit generates the type of symmetry of biological interest: the rotational 
symmetry of the lantern, the bilateral symmetry of the pyramids, and the bilateral symmetry nested within the 
rotational symmetry. For each case, we carry out Procrustes analysis and statistical decomposition of the symmet-
ric and asymmetric components of variation in order to unravel and display patterns of inter-individual variation, 
directional asymmetry, and fluctuating asymmetry. We show that the full model of nested symmetries, by contrast 
to the alternative models, allows testing the significance of rotational and bilateral asymmetries considered jointly 
and according to their hierarchical layout. The results indicate contrasted degrees of rotational and bilateral asym-
metries, which we discuss in the context of differential developmental stability and functional constraints acting 
at these two levels.

Geometric morphometrics of symmetric structures
Bilateral symmetry is one of the simplest type of symmetry and is relatively widespread in biological systems. 
Other common but more complex types of symmetry include rotational symmetry (e.g. the corona of ‘regular’ 
sea urchins), translational symmetry (e.g. the segments of arthropods) or combinations of them (e.g. the spiral 
symmetry in Molluscan shells). Following Mardia et al’s framework9, all these biological instances of symmetry 
can be classified into two categories of symmetry depending on the features of the biological structure considered: 
matching symmetry and object symmetry. We now briefly review their general treatment in geometric morpho-
metrics before elaborating the case of nested symmetries.

Geometric morphometrics of matching symmetry.  In the most general case, matching symmetry 
refers to the case where a structure is composed of a series of k repeated units that are physically disconnected and 
geometrically organised with respect to the symmetry transformation characterising the structure (e.g., reflec-
tional symmetry of the butterfly wings, rotational symmetry of petals in some flowers). For its analysis, a common 
configuration of homologous landmarks is defined for the repeated unit and is recorded for each of the repeats. 
If necessary, the configurations are adjusted to place them in a comparable orientation. For instance, in the case 
of bilateral symmetry, one of the x, y or z coordinates of one of the two sides is multiplied by −1 so that the left 
and right sides can be meaningfully superimposed. All the configurations are then superimposed by a single 
Generalized Procrustes Analysis (GPA) which extracts shape variation by filtering out the effects of scale, orien-
tation and translation18. A resulting mean shape (consensus) is simultaneously estimated and the shape variation 
around it can be decomposed into components of symmetric and asymmetric variation. Symmetric variation (i.e. 
variation among individuals) is calculated as the differences among the averages of all parts, and asymmetry (i.e. 
variation within individuals) is measured as the deviations from the respective individual average parts. Since a 
separate landmark configuration is recorded for each of the k units, components of symmetric and asymmetric 
variation can also be calculated for size (centroid size).

A two-way mixed model ANOVA with individuals and parts as the two factors is used to partition the total 
variation into components of interest6,12,19. The main effect of ‘individual’ reflects the variation among individuals 
(symmetric component), the main effect ‘part’ represents directional asymmetry (the average deviation among 
parts), and the ‘individual × part’ interaction represents fluctuating asymmetry (small random deviation from 
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the average asymmetry among parts). Measurement error due to imaging and digitizing can be assessed if repli-
cate measurements have been taken.

Geometric morphometrics of object symmetry.  Object symmetry refers to symmetric structures for 
which the symmetry operators (centre, axis or plane) belong to the structure, which is therefore symmetric as 
a whole (e.g., reflectional symmetry of the human skull, rotational symmetry of a coral polyp). The structure 
is separable into k connected parts. The analysis of structures with object symmetry considers the variation 
among parts as in matching symmetry, but with additional information about the way the k parts are physically 
connected to each other. Methodologically, a unique configuration of landmarks is considered for the entire 
structure. For each individual configuration of landmarks, n copies are generated, where n is the number of 
transformations that characterises the symmetry group of the structure8–10. For instance, the symmetry group of 
bilateral symmetry includes two such transformations: identity and reflection with respect to a symmetry plane. 
These n copies are then transformed according to their respective transformation and their landmarks appropri-
ately relabelled. The relabelling procedure simply consists in mutually swapping the labels of the landmarks that 
are images of each other with respect to the symmetry transformation considered (note that shared landmarks – 
i.e., located on the symmetry operators – map onto themselves). Thereafter, a GPA is performed on the full dataset 
which contains all original configurations and their respective transformed and relabelled copies. The result-
ing consensus is perfectly symmetric with respect to the symmetry group. As for matching symmetry, variation 
around this average shape can be decomposed into a component of symmetric shape variation (differences among 
the averages of the original and appropriately transformed and relabelled copies) and a component of asymme-
try (within-individual variation, differences between the original and transformed relabelled copies). However, 
unlike the case of matching symmetry, these components occupy separate subspaces of the shape tangent space 
that are orthogonal and complementary to each other9,20–22. This particular feature of the shape analysis of object 
symmetry has specific implications for the statistical testing of ANOVA effects. The same two-way mixed model 
Procrustes ANOVA still applies, but the main effect of ‘part’ is replaced by the main effect of ‘transformation’ and 
the calculation of F-ratios needs considering the mean squares of the appropriate tangent subspace8,10. Since there 
is a unique configuration for the whole structure, there is no asymmetry in size to consider.

The case of combined symmetries: the Aristotle’s lantern as an example.  The Aristotle’s lantern 
is the masticatory apparatus of ‘regular’ sea urchins. It consists of a set of 40 calcitic skeletal elements activated by 
an intricate series of muscles23–25. Each of these skeletal elements shows bilateral object symmetry and all of them 
are arranged according to a rotational matching symmetry of order five (Fig. 1a). The largest skeletal pieces are 
the pyramids that draw their names from their triangular shape. Each pyramid is made of two halves or hemipy-
ramids that are mirror images of each other and physically connected by a strong interradial suture. The interior 
parts of the hemipyramids have elongated skeletal processes operating as scabbards allowing the teeth to slide 
through them during growth and feeding. The teeth are reinforced by a high content in magnesium that renders 
them durable as they scrape, cut, chew food and dig holes into hard rocky substrates16. The epiphyses are directly 
connected at the base of these pyramids and act as their further extensions. They can be fused together along 
the axis of bilateral symmetry or not depending on the species. Each aboral joint of the pyramids are specifically 
shaped to allow the fitting of a rectangular element called the rotula, effectively connecting the pyramids together. 
On top of the rotulae and directly sitting on them are narrow and thin elements named the compasses that trigger 
the tip of the lantern to move in or out of the corona during feeding26. Protractor and retractor muscles connect 
the lantern to the corona via the perignathic girdle which provides anchors called the apophyses that are them-
selves symmetric and surround the oral opening (peristome)27. Other ligaments such as compass depressors 
and peristomial membrane also exist and are combined with strong muscles between the hemipyramids to exert 
strong biting and rasping action. These intricate tissue connections between the perignathic girdle and the lantern 
confers the latter a wide range of motion24.

Materials and Methods
Here, we analysed a small dataset of pyramids and epiphyses collected from 10 lanterns (50 sets of pyramids 
plus epiphyses) randomly selected from a larger dataset collected from a population of Paracentrotus lividus 
(Echinodermata, Parechinidae) located in Niolon (Le Rove, France) and that will be fully analysed elsewhere. 
Prior to any measurement, we recorded the pyramid aligned with the madreporite (a modified genital plate from 
the corona) in order to effectively orientate the lantern across specimens. This is a critical step to estimate DA in 
subsequent analyses. Thereafter, all soft tissues were removed by dissolution in hydrochloric acid baths to reveal 
the skeletal structures of the lantern28. A set of 12 landmarks in two dimensions was used to capture the shape of 
the planar external surface of the pyramids (Fig. 1b). The pyramids were photographed in standardized orienta-
tion using a Lumenara camera (Model # Infinity2-1C-ACS) mounted to a Zeiss Stemi-2000-C stereomicroscope. 
Landmarks {1, 4, 10, 12} are unpaired landmarks located on the interradial suture between the left and right 
hemipyramids and epiphyses, i.e., on the plane of bilateral symmetry of the pyramid. Paired landmarks {5, 6, 7, 
8} are located at the junction of the hemipyramids and epiphyses. These landmarks also mark the insertion of 
muscles and other connective soft tissues: Landmark 1 is placed at the bottom-most part of the hemipyramids and 
connected to the peristomial membrane; landmarks {2, 3} describe the tips of the retractor muscles; landmarks 
{5, 6, 7, 8, 9, 10, 11, 12} locate the insertion of the protractor muscles, and landmark 4 describes the bottom part 
of the foramen magnum. To assess measurement error, all measurements were taken twice by the same operator 
(YS) during separate sessions using tpsDig2 ver. 2.1729. For convenience, we hereafter simply use the term ‘pyra-
mid’ to refer to the combination of the two hemipyramids (true pyramid) with the epiphyses.
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We analysed patterns of symmetry and asymmetry at the different levels of symmetric organisation of the 
Aristotle’s lantern: (1) rotational matching symmetry of order five only, (2) bilateral object symmetry, and (3) 
bilateral object symmetry nested within rotational matching symmetry of order five (Fig. 2). In each case, all 
transformed and appropriately relabelled copies of the landmark configurations were aligned by partial GPA and 
orthogonally projected onto the tangent space. All subsequent analyses were performed using the tangent space 
coordinates. We conducted Procrustes ANOVAs with the statistical design appropriate for each case (see below) 
and tested for the significance of effects using Goodall’s F-test30. In order to relax the assumption of isotropic 
shape variation, we also performed MANOVAs with Pillai’s trace as the test statistics (with the use of the gener-
alized inverse for the total sum of squares and cross-products matrix involved in the calculation of Pillai’s trace)8. 
For both tests, we use parametric and resampling approaches. The degrees of freedom (d.f.) for the parametric 
tests accounted for the shape dimension of the shape (sub)space considered (conventional d.f. multiplied by the 
shape dimension). The resampling procedures used 10,000 permutations, with restricted permutations for the 
main factors, permutations across main factors for the test of interaction after subtraction of their effects, and 
restricted permutations for the test of nested effects31–33. Finally, we used Principal Component Analysis (PCA) of 
the covariance matrices associated with the main effects, interaction terms, and measurement error, to visualize 
the shape changes associated with each of them. All morphometric and statistical analyses were programmed and 
carried out in R34.

Analysis 1: Rotational matching symmetry of order five (symmetry group C5).  The functional 
role of the lantern as a masticatory apparatus is ensured by the set of five radially arranged teeth. Their relative 
positioning, shape, and size are constrained by their firm collagenous attachment to the pyramid allowing them 
to withstand the mechanical stresses associated with feeding activities16,35. The adequate closing of the protruding 
teeth, and thus the relative degree of rotational (a)symmetry among pyramids, is critical for the feeding efficiency 
(for both soft substrate ingestion and crushing power). In this context, we focus on the five-fold rotational match-
ing shape symmetry of the lantern (symmetry group C5) while considering the pyramids as perfectly bilaterally 
symmetric structures (Fig. 2a). For this purpose αand prior to the analysis of rotational matching symmetry, each 
pyramid was treated with the method of object symmetry to extract its symmetric average (the consensus of each 
pyramid and its reflected copy). The resulting symmetric pyramids are considered as the fundamental units being 
repeated to generate the rotational symmetry of the lantern. The framework to analyse the rotational symmetry 
of the lantern is then a natural extension of the approach for studying matching symmetry in bilaterally symmet-
ric structures. The Procrustes ANOVA design is the traditional two-way mixed model with the exception of the 
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Figure 1.  (a) CT-Scan of the Aristotle’s lantern of the ‘regular’ sea urchin P. lividus showing its nested 
symmetries. The lower level bilateral object symmetry of the pyramids is nested within the higher level 
rotational matching symmetry of order five characteristics of echinoderms (see text for details). This 
hierarchical architecture rests on symmetry transformations applied to sets of hemipyramids and epiphyses 
(highlighted). Scale bar 5 mm. (b) The configuration of homologous anatomical landmarks used to capture the 
geometry of the pyramids and epiphyses.
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‘side’ effect being replaced by a ‘pyramid’ effect that includes five levels instead of two. It reads as follows (Greek 
symbols indicate fixed effects and Latin letters stand for random effects):

Y E( )ikr i k ik ikrμ β β= + α + + α +

where Yikr is the measurement for lantern i, pyramid k, replicate r (with i = 1, 2, …, 10; k = 1, 2,…, 5; r = 1, 2). The 
parameter μ is the grand mean. The main effect ai is the ‘lantern’ random effect ~N (0, σ1). The main effect βk 
is the ‘pyramid’ effect. It is a fixed effect, since we made a systematic distinction among pyramids by orientating 
them, representing rotational directional asymmetry (DA). The interaction term (aβ)ik is a measure of the lan-
tern rotational fluctuating asymmetry (FA) ~N (0, σ2). Eikr is measurement error (ME) ~N (0, σ3). This model 
extended to k repeated units (with k > 2) was recently used in studies of translational FA in centipedes36,37. Size 
asymmetry can also be analysed since measures of centroid size are available for each pyramid. The same ANOVA 
design is used for the analysis of size asymmetry but with the conventional degrees of freedom for the calculations 
of mean squares.

For both size and shape asymmetry analyses, the ANOVAs indicate significant individual variation, taking 
up most of the overall variation, and significant rotational FA, but non-significant rotational DA (Table 1). The 
MANOVA, which circumvents the assumption of isotropic variation, gives similar results, and both parametric 
and non-parametric (permutation) tests provide similar P-values. The absence of rotational DA might appear as a 
surprise since one could have expected the asymmetric positioning of the oesophagus and digestive tube around 
the lantern to induce a systematic deviation among the pyramids.

The PCA of the covariance matrix for the individual effect reveals that lanterns mostly differ by the rela-
tive proportion of their basal part (captured by landmarks 5 to 12), with nearly vertical shifts at the base of the 
hemipyramids and opposite shifts at the junction between epiphyses (Fig. 3). These vertical displacements most 
likely reflect among-individual variation in the strength of the antagonistic action of the protractor and retractor 
muscles which have vertical ranges of action. For rotational FA, variation mostly corresponds to the opening of 
the foramen magnum (PC1), possibly reflecting developmental imprecision during the formation of the inter-
radial suture and interactions with teeth sliding along small bilaterally symmetric hooks within pyramids. PC2 
indicates variation in the height-width ratio of the pyramid maybe due to mechanical constraints exerted by the 
rotulae and the strong interpyramidal muscles located on the external edges of hemipyramids.

Analysis 2: Bilateral object symmetry (symmetry group C1v).  Alongside their diversified habitats 
and ecological lifestyles, regular sea urchins have a wide range of food types ranging from shelled mollusks to soft 
substrates16. This has led to diverse types of lantern architectures (cidaroid, camarodont, aulodont, strirodont) 
primarily distinguished by the connectivity of the epiphyses and the depth of the foramen magnum. Despite this 
substantial diversity of architectures, the bilateral symmetry of the pyramids and epiphyses appears as a pervasive 
feature of their shapes, suggesting strong functional constraints for the maintenance of symmetry and justifying a 
particular focus on this level of symmetric organisation. We therefore now consider the bilateral object symmetry 
of the pyramid, i.e., the differences between the left and right hemipyramids (symmetry group C1v, Fig. 2b). Prior 
to their analysis we corrected for the individual effect and for individual deviation from rotational symmetry 
(correction for differences in means), in order to adjust the measurement errors artificially inflated by pooling 
labelled pyramids from distinct individuals. The total source of variation is decomposed around the mean shape 
according to the following design (note that the Procrustes ANOVA becomes a two-way model with only fixed 
main effects):

μ α β αβ= + + + +Y E( )ikr i k ik ikr

Figure 2.  Alternative options for the analysis of the symmetric architecture of the Aristotle’s lantern. (a) 
rotational matching symmetry of order five only (symmetry group C5), (b) bilateral object symmetry only 
(symmetry group C1v), and (c) bilateral object symmetry nested within rotational matching symmetry of order 
five (symmetry group C5v).
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where Yikr is the measurement for pyramid i, hemipyramid (or reflection) k and replicate r (with i = 1, 2,…, 5; 
k = 1, 2; r = 1, 2). The parameter μ is the grand mean. The main effect αi is the ‘pyramid’ fixed effect. The main 
effect βk is the ‘hemipyramid’ (or ‘reflection’) effect and measures bilateral DA. The interaction (αβ)ik is a measure 
of the pyramid bilateral FA. Eikr is measurement error (ME) ~N (0, σ1). Since we are dealing with object symme-
try, the tests for the main effects and interaction must consider the error effects from the appropriate symmetric 
or asymmetric shape subspaces: the symmetric component of measurement error for the ‘pyramid’ effect (whose 
significance in the MANOVA can be assessed within this fixed model), and the asymmetric component for the 
‘hemipyramid’ effect and the interaction term.

The Procrustes ANOVA and the MANOVA both indicate statistically significant ‘pyramid’ effect, ‘hemipyr-
amid’ effect, and ‘pyramid × hemipyramid’ interaction (Table 2). Bilateral object DA is the largest of all effects 
and expresses systematic differences between left and right hemipyramids. This asymmetry of pyramids has to 
our knowledge never been described and does not seem ascribable to a systematic bias in the data acquisition. It 
is illustrated in Fig. 4 (ten-fold amplification). The oral tip of the pyramid is very subtly curved towards the left, 
and the pyramid-epiphysis left junction (landmark set {5, 6, 11}) is higher and narrower than its right counterpart 
(landmark set {7, 8, 9}).

Among-pyramid variation is mostly marked by the relative narrowing of the foramen magnum, while 
within-pyramid variation (FA) is spread more evenly across the pyramid and affect the relative length of the 
hemipyramids (Fig. 5).

Analysis 3: Bilateral object symmetry nested within rotational matching symmetry of order 
five (symmetry group C5v).  The previous analyses were solely concerned with either the bilateral object 
symmetry of the pyramids or their rotational matching symmetry. Both cases are simplifications of the true com-
plexity of the lantern, since the latter in fact possesses an intertwined combination of the two types of symmetry. 
We now describe a design that considers the variation in bilateral (left-right) object symmetry at the pyramid 
level as hierarchically nested within the variation in rotational matching symmetry at the lantern level (symmetry 
group C5v, Fig. 2c). The design changes into a mixed model ANOVA with nested and crossed factors:

μ β γ β γ= + + + + + +Y a a a E( ) ( )ijkr i j k j ij ik j r ijk( ) ( ) ( ) ( )

where Yijkr is the measurement for lantern i, pyramid j, hemipyramid (or reflection) k, replicate r (i = 1, 2,…, 10; 
j = 1, 2,…, 5; k = 1, 2; r = 1, 2). The parameter μ is the grand mean. The main effect ai is the variation among lan-
terns ~ N (0, σ1). The main effect βj is the ‘pyramid’ effect and is the measure of rotational DA. The nested fixed 
effect γk(j) is the ‘hemipyramid’ (or ‘reflection’) effect standing for the nested bilateral DA. The interaction (aβ)ij 
is a measure of the lantern rotational FA, ~N (0, σ2). The interaction (aγ)ik(j) is a measure of the pyramid bilateral 
FA, ~N (0, σ3). Er(ijk) is measurement error (ME) ~N (0, σ4).

In this nested design, the among-lantern variation is significant and similar to that of analysis 1, but rotational 
FA no longer appears significant (Table 3). Bilateral DA is still significant and fairly pronounced within this nested 
design, with a pattern identical as that shown in Fig. 4. Bilateral FA also remains significant but slightly differs from 
the pattern of shape variation highlighted in analysis 2. Here, the FA variation in the basal part of the pyramid 
(landmarks {5, 6, 7, 8, 9, 11}) does not appear as strongly correlated with variation at its tip (landmarks {1, 2, 3})  
as previously suggested by the integrated pattern of analysis 2, where most of the FA variation was taken up by the 
first principal component (Fig. 6). This suggests some degree of developmental modularity in the architecture of 
the pyramids.

Procrustes ANOVA MANOVA

Effect Conv. df Shape df SS MS F P (param) P (permut) Pillai’s trace P (param) P (permut)

Lantern 9 90 0.111301 0.001237 125.639 <0.0001 <0.0001 6.8479 <0.0001 <0.0001

Pyramid 4 40 0.000429 0.000011 1.090 0.33348 0.3783 1.0868 0.3149 0.3097

Lantern*Pyramid 36 360 0.003544 0.000010 3.377 <0.0001 <0.0001 6.8693 <0.0001 <0.0001

Measurement 50 500 0.001457 0.000003

Centroid size ANOVA

Effect SS MS df F P (param) P (permut)

Lantern 141.697309 15.744145 9 1353.196 <0.0001 <0.0001

Pyramid 0.037473 0.009368 4 0.805 0.53 0.3856

Lantern*Pyramid 0.418852 0.011635 36 7.807 <0.0001 <0.0001

Measurement 0.074512 0.001490 50

Table 1.  Procrustes ANOVA, MANOVA, and centroid size ANOVA of the lantern’s five-fold rotational 
matching symmetry only (analysis 1). Conv. df, conventional degrees of freedom; Shape df, shape degrees of 
freedom; SS, sum of squares; MS, mean square; F, F-value; P(param), parametric P-value; P(permut), P-value 
obtained by permutation.
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Discussion
In this paper, we have discussed the analysis of symmetric and asymmetric shape variation in biological struc-
tures exhibiting patterns of hierarchically organised symmetries. We illustrated the problem with the case of the 

Figure 3.  Analysis 1: rotational matching symmetry of order five (C5). Principal components describing the 
patterns of the lantern’s rotational symmetric shape variation, rotational FA, and measurement error shown 
as lollipop graphs. Open circles represent the consensus configuration and the thick black lines illustrate the 
magnitude and direction of the vectors of shape change over the first two principal components (PC).

Procrustes ANOVA MANOVA

Effect Conv. df Shape df SS MS F P (param) P(permut) Pillai’s trace P(param) P(permut)

Pyramid 4 40 0.000429 0.000011 3.312 <0.0001 <0.0001 1.9941 <0.0001 <0.0001*

Reflection 1 10 0.010059 0.001006 365.744 <0.0001 <0.0001 0.9947 <0.0001 <0.0001

Pyramid*Reflection 4 40 0.000605 0.000015 5.497 <0.0001 <0.0001 1.6941 <0.0001 <0.0001

Symmetric error 45 450 0.001457 0.000003

Asymmetric error 45 450 0.001238 0.000003

Total error 45 900 0.002695 0.000003

Table 2.  Procrustes ANOVA and MANOVA of the pyramid’s bilateral object symmetry only (analysis 2). 
Abbreviations as in Table 1. *Possible in this design because tested against (symmetric) error (2-way model with 
only fixed effects).
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Aristotle’s lantern, a complex organ displaying bilateral symmetry nested within rotational symmetry of order 
five. Different statistical models could be defined depending on prior hypotheses about the developmental archi-
tecture of the lantern and the fundamental unit that was assumed to be repeated to generate the symmetry of the 
structure. These various designs implied extending to k “sides” the standard two-way Procrustes ANOVA for the 
statistical testing of among- and within-individual variation, dealing with instances of both object symmetry and 
matching symmetry, and incorporating their nested arrangement for the comprehensive treatment of the lantern’s 
architecture.

Even if based on a relatively small dataset, the univariate and multivariate approaches and their associated 
parametric and non-parametric tests all lead to congruent results. Overall, these results outline the importance of 
considering all levels of symmetric organisation when trying to decipher patterns of individual variation, direc-
tional asymmetry and fluctuating asymmetry. While reduced models can detect some effects, those might also be 
exaggerated or hidden by the treatment of the data implied by a particular model. The full, nested model reveals 
the absence of rotational DA. This suggests the action of functional constraints ensuring the maintenance of the 
five-fold rotational symmetry. The feeding efficiency of the lantern is indeed driven by interdependencies among 
many skeletal pieces and muscles, which might be optimized by the phenotypic similarity of these elements across 
sides. Likewise, rotational FA is also not detected, suggesting high levels of precision in the developmental pro-
cesses involved in the morphogenesis of pyramids, further supporting the importance of rotational symmetry. 
Ground-samplers inspired  by the Aristotle’s lantern (and its keeled teeth in particular) also base the efficiency of 
their opening and closing mechanisms on the five-fold repetition of a specific structure akin to a “target pheno-
type”38. Results differ at the lower level of organisation. Bilateral DA is present and corresponds to a systematic 
torsion of pyramids, around which can also be detected a significant but subtle degree of bilateral FA. Elucidating 
the genetic or developmental origin of this DA requires more work, but inadequate analysis of the lantern sym-
metry would have prevented its detection. Hence, higher order (rotational) symmetry appears to display greater 
developmental stability than lower order (bilateral) symmetry, but there are no benchmarks in the literature 
to conclude about the generality of this pattern. One possible cause for these differences could be linked to the 
spatial pattern of the lantern formation. While the hierarchical structuring might convey the idea of a temporal 
sequence for the layout of the lower and higher order of symmetry, all the skeletal elements of the lantern form 
in fact synchronously in the metamorphosing pluteus larva from tri-radiate spicules39,40. Nevertheless, the indi-
vidual pairs of left and right hemipyramids which ultimately fuse to produce the pyramids (bilateral symmetry) 
are spatially close neighbours during their growth. They are therefore more likely to be prone to feedback inter-
actions generating left-right asymmetry (e.g. competition between growing hemipyramids and interactions with 
the growing tooth in between them)12. The five pyramids themselves are spatially more isolated from each other 
in the early stage of their formation and might therefore be more immune to such interactions.

We expect that the approach advocated in this paper will be useful in a wide variety of biological contexts and 
for a broad range of organisms where symmetry is a salient feature of phenotypes. The study of serial homologs 
in arthropods and vertebrates for instance can be similarly analysed at their different organisational levels as 
bilateral object symmetry nested within translational matching symmetry (repetition of bilaterally symmetric 
modules along the body axis). Symmetry in plants is also widely studied41, and many inflorescences and floral 
corollae display hierarchical patterns of symmetry (e.g., bilaterally symmetric petals arranged in a rotational 
fashion). Combined with developmental genetic data, morphometric analysis of patterns of individual variation 
and asymmetry across levels can refine our understanding of the evolution of symmetry and the identification of 
its driving factors (e.g., plant-pollinator interactions).

Practically, size and shape data can be obtained from various free software and R packages such as MorphoJ42, 
tpsRelw29, geomorph43, or shapes44. The appropriate ANOVA design for complex and/or nested symmetric 

Figure 4.  Analysis 2: bilateral object symmetry (C1v). Bilateral object directional asymmetry (DA) of the 
pyramids, measured as the difference between the averages of original and reflected configurations (ten-fold 
amplification).
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structures can be implemented with the R function lm() (library {stats}), but the investigator has to carefully 
adjust the degrees of freedom by considering the shape dimensions of the spaces involved10,30. The matrices of 
sum of squares and cross-products (SSCP) associated with the various factors and interaction terms can be cal-
culated from the effect components retrieved from the lm() outputs using the crossprod() function ({base}). The 
covariance matrix attached to each effect can then be obtained by subtracting these SSCPs (once divided by their 
degrees of freedom) following the expected mean squares implied by the ANOVA design12. These covariance 
matrices can be decomposed into their eigenvectors and eigenvalues or used as input in MorphoJ to visualize the 
patterns of individual shape variation, fluctuating asymmetry, and measurement error.

Conclusion
Geometric morphometric methods are now routinely applied to study bilateral symmetry, but complex types of 
symmetry also have recently received increasing interest and the morphometric toolkit has expanded accordingly. 
Here, we have further extended these approaches and suggested a framework for the effective quantification 
of phenotypic variation and developmental instability in organisms with hierarchically structured symmetries. 
This allows the partitioning of biological variation into meaningful components of symmetric and asymmetric 

Figure 5.  Analysis 2: bilateral object symmetry (C1v). Principal components describing the patterns of pyramid 
symmetric variation, bilateral FA, and measurement error. Legend as in Fig. 3. Note that for the measurement 
error panels, the symmetry or asymmetry of the residual vectors with respect to the plane of symmetry depend 
on the way the symmetric and asymmetric components of the total error variation are distributed along 
principal components. Here PC1 captures a part of the symmetric variation while PC2 captures an asymmetric 
part.
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Procrustes ANOVA MANOVA

Effect Conv. df Shape df SS MS F P (param) P (permut) Pillai’s trace P(param) P(permut)

Lantern 9 90 0.111274 0.001236 125.648 <0.0001 <0.0001 6.8480 <0.0001 <0.0001

Pyramid 4 40 0.000429 0.000011 1.090 0.33333 0.3412 1.0869 0.3148 0.3036

Reflection(Pyramid) 5 50 0.010664 0.000213 12.511 <0.0001 <0.0001 1.4737 0.0071 0.0018

Lantern*Pyramid 36 360 0.003542 0.000010 0.577 >0.9999 >0.9999 — — —

Lantern*Reflection(Pyramid) 45 450 0.007671 0.000017 6.198 <0.0001 <0.0001 7.6644 <0.0001 <0.0001

Symmetric error 45 450 0.001457 0.000003

Asymmetric error 45 450 0.001238 0.000003

Total error 45 900 0.002695 0.000003

Table 3.  Procrustes ANOVA and MANOVA of the pyramid’s bilateral object symmetry nested within five-fold 
rotational matching symmetry of the lantern (analysis 3). Abbreviations as in Table 1.

Figure 6.  Analysis 3: bilateral object symmetry nested within rotational matching symmetry of order five (C5v). 
Principal components describing the patterns of variation for nested bilateral object FA, and measurement 
error. The patterns of lantern variation and rotational FA are not shown here since they are similar to those 
shown in Fig. 3. Legend as in Fig. 3.
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shape variation at different levels and the analysis of the patterns associated with each of these components. The 
ability to distinguish components of symmetric variation and asymmetry is of interest in many research contexts 
including developmental and evolutionary biology, ecology and taxonomic studies. Symmetry on its own has 
also long been recognized as a fundamental feature of body plan organisation and in the diversification of many 
major biological groups (e.g., echinoderms, flowering plants, arthropods). The approaches described above offer 
a unified framework for the characterisation of symmetry and the study of its role in phenotypic organisation, 
variation, and evolution.

Data Availability
Data have been archived at DRYAD https://doi.org/10.5061/dryad.kn3p693.
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