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Abstract

Background: Accurate structural annotation is important for prediction of function and required for in vitro approaches to
characterize or validate the gene expression products. Despite significant efforts in the field, determination of the gene
structure from genomic data alone is a challenging and inaccurate process. The ease of acquisition of transcriptomic
sequence provides a direct route to identify expressed sequences and determine the correct gene structure.

Methodology: We developed methods to utilize RNA-seq data to correct errors in the structural annotation and extend the
boundaries of current gene models using assembly approaches. The methods were validated with a transcriptomic data set
derived from the fungus Laccaria bicolor, which develops a mycorrhizal symbiotic association with the roots of many tree
species. Our analysis focused on the subset of 1501 gene models that are differentially expressed in the free living vs.
mycorrhizal transcriptome and are expected to be important elements related to carbon metabolism, membrane
permeability and transport, and intracellular signaling. Of the set of 1501 gene models, 1439 (96%) successfully generated
modified gene models in which all error flags were successfully resolved and the sequences aligned to the genomic
sequence. The remaining 4% (62 gene models) either had deviations from transcriptomic data that could not be spanned or
generated sequence that did not align to genomic sequence. The outcome of this process is a set of high confidence gene
models that can be reliably used for experimental characterization of protein function.

Conclusions: 69% of expressed mycorrhizal JGI ‘‘best’’ gene models deviated from the transcript sequence derived by this
method. The transcriptomic sequence enabled correction of a majority of the structural inconsistencies and resulted in a set
of validated models for 96% of the mycorrhizal genes. The method described here can be applied to improve gene
structural annotation in other species, provided that there is a sequenced genome and a set of gene models.
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Introduction

Advances in sequencing technology have led to an improved

appreciation of the biological diversity associated with specific

ecosystems and the complexity of the molecular systems involved

in the perception and response to external stimuli. Mapping these

signaling and response pathways is especially challenging in

sequence data sets from environmental sequencing projects where

uncharacterized organisms often represent a high proportion of

the sequence data. The standard mechanisms for functional and

structural annotation of genomes are less than perfect and

prediction methods that rely on sequence homology have

limitations for inferring the structural and functional properties

of some genes [1,2,3]. Even proteins with homologs of known

function may have a different biological role due to altered

regulation, posttranslational modification, or cellular compart-

mentalization [4,5]. Estimates vary, but there is a general

consensus that 50–70% of ORFs in newly sequenced genomes

are described as having unknown or poorly characterized function

[1,6,7]. Increased understanding of the biological information

content in the sequence data will require a combination of

bioinformatic and experimental approaches to characterize the

function of these gene products.

Experimental approaches for functional characterization of

gene products are often compromised by incorrect or insufficient

knowledge of the gene structure to enable extraction of the protein

sequence for experimental studies. To facilitate the process for

acquisition of function from complex sequence data sets, we have

developed methods to utilize RNA-seq data to detect and correct

errors in the structural annotation. Software tools have been

developed that perform spliced alignments of EST sequences to

DNA [8,9] or map RNA-Seq reads [10] to recover splice
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junctions. Our approach delineates the exon/intron structure

necessary to extract the protein coding sequence for experimental

and homology based approaches for functional interrogation. We

also evaluated methods to extend the boundaries of current gene

models using assembly approaches applied to the RNA-seq data.

Both of these approaches support accurate structural annotation

which is a requirement for experimental approaches for functional

characterization and also provides validated sequence to utilize

tools that enable identification cellular localization signals,

domains. Structural annotation of genes in sequenced genomes

from basidiomycetes is a challenge due to the high intron density

and the frequent presence of small exons coding for less than 10

amino acids. The process developed for validation and improve-

ment of the structural annotation can be applied on a genome

scale to support experimental studies of the molecular events

associated with mycorrhizal symbiosis as well as facilitate better

comparative genomics and evolutionary analyses of gene families

and their functions.

To validate our proposed system, we used a transcriptomic data

set derived from the fungus Laccaria bicolor. This fungus is a

member of the Basidiomycota and its intron density and

distribution of small introns provide a challenge for structural

annotation [11,12,13]. L. bicolor develops a mutualistic symbiotic

association with many tree species [14,15]. This complex

association of the fungus and the plant roots provides nutritional

benefits to both partners [15]. The fungi contribute phosphorous,

nitrogen and mobilized nutrients from organic matter and in

return the fungus obtains plant-derived carbohydrates [16,17]. In

mycorrhizal systems, up to 25% of the plant photosynthate is

utilized by the fungal partner [18]. This fungal-plant symbiosis is a

widespread process of major ecological importance. Knowledge of

the molecular events associated with the development of the

mycorrhizal system is essential for our understanding of natural

biological processes related to carbon sequestration, carbon

management, sustainability and bioenergy.

Results

Method Overview
Our approach for validation and/or correction of gene models is

organized in a framework of five conceptual components (Figure 1).

The initial process uses Bowtie [19] to align RNA-seq reads to the

set of gene models (BestModels v1.0 available for download at the

Joint Genome Institute [JGI], denoted as BestModelsv1 in the text)

and the genome (laccarria.allmasked available for download at the

JGI). The outcome of this process for the set of transcript sequences

which aligned to both the scaffold and the gene models is the

generation of a graphical representation (Figure 1, A) and the

identification of regions where expressed RNA sequence does not

match predicted gene model. The algorithm described in the

Methods Section enables analysis of the aligned reads and the

identification of sequence incongruities between the predicted gene

models and the observed transcriptomic data (Figure 1, B). These

sequence discrepancies are saved as Flagged Deviations from the

Model (FDM) sequences and provide sufficient information for

sequence reconstruction using the transcriptomic reads. Sequence

discrepancies internal to the gene model are corrected by

identification of bridging sequences that span introns or contiguous

reads that eliminate inserted introns (Figure 1, C). A slight

modification of this approach addresses FDM at the beginning or

end of the gene model and enables extension of the sequence

upstream or downstream or the original gene model termini

(Figure 1, D). The outcome of these successive processes is a

contiguous Bridged and Extended Sequence (BES) which is

validated by alignment to the genome scaffold sequences (Figure 1,

E).and used to generate the gene model’s corrected structural

annotation. The gene structure with the correctly identified splice

regions is derived from the scaffold alignment and saved in a

General Feature Format (gff) file. Revised gene models and

modified transcript sequences derived from this study are provided

as supporting data in gff format (Text S1) and fasta format (Text S2),

respectively. It should be noted that our method to utilize RNA-seq

data to correct errors in the structural annotation and extend the

boundaries of current gene models does not require specification of

splice donor or acceptor sites. A consequence of this approach is

increased ambiguity of the exact genome location of the splice site in

the alignments of the transcript-derived models to the genome. This

process can lead to the improper placement of the final coding

nucleotide associated with the beginning or end of an exon. This can

be resolved by manual inspection of the gene of interest or the

output of this method can also be used in conjunction with other

splice assembly programs. A list of all project data files and resources

are available for viewing and download via the project URL

provided in data resources file Text S3.

Evaluation of optimal sequencing depth parameters for
gene model validation

The algorithm described in the Methods Section enables analysis

of the aligned reads and the identification of sequence incongruities

between the predicted gene models and the observed transcriptomic

data. These discrepancies are noted as flagged deviations from the

BestModelsv1 (FDM) sequence and can either represent regions of

the predicted model sequence with no transcriptomic sequence

coverage or actual errors in the structural annotation. To select a

useful minimum expression threshold for validation of this method

and confidant correction of gene models, we evaluated the number

of FDM sequences for all gene models expressed in our data set at a

range of expression levels (Figure 2). 7023 gene models or 34% of all

best gene models were expressed at a reads per Kb of gene sequence

(RPK) of 60 or greater in the transcriptomic data set. A RPK of 60

represents an average sequence depth of 3; the human genome

sequence standard for 99% accuracy (http://www.genome.gov/

10000923). This set of 7023 expressed genes was used to identify

FDM sequences and contiguous expressed sequence spanning the

internal flags was generated. The analysis was restricted to the

sequence coverage of the original gene models and flags at the

termini of gene models were not considered in this analysis. This

restriction was imposed to avoid erroneous interpretations that arise

by failure to extend a model beyond its predicted termini. For

example, identification of expressed sequence that bridges two

probe sequences can be judged a success. However the failure to

detect expressed extended sequence may result from an appropriate

truncation of the predicted model or may simply arise as a

consequence of insufficient transcript coverage.

At an RPK of 60, no sequence deviations were detected for

3188 or 53% of the expressed gene models. As expected, the

number of gene models with no detectable sequence deviations

shows an inverse relationship to the depth of transcript sequence

coverage (Figure 2). The use of the transcript data to identify and

correct FDM sequences result in a substantial increase in the total

number of the models without flags (indicated by the green trace in

Figure 2). At the same RPK, the difference between the numerical

values of the green and red traces represents the number of

corrected models. It should be noted that this represents a

significant under-representation of the efficacy of our proposed

method, as only models with zero flags after correction are

considered a success. For example the gene model encoding

protein ID 322344 expressed at an RPK of 111, contained 9 flags

Laccaria Gene Annotation
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Figure 1. Overview of the structural annotation analysis method. In the illustrations, the original gene model is shown in blue, the number of
aligned reads at a particular bp in the scaffold is in grey, and the number of reads that align to the gene model but not to the scaffold are in red. A)
Bowtie is used to align RNA-seq reads and identify regions where expressed RNA sequence does not match predicted gene model. B) Errors in the
gene model are identified where there is a predicted intron (i = predicted expressed gene sequence) but no spanning expressed sequence (‘‘1’’ and
‘‘2’’ in example above) or where there is predicted gene but no sequence alignments (‘‘3’’ in above example). The resulting flagged deviation from the
model (FDM) is tagged with ‘X’ to indicate the presence of an internal error in the gene model or and an ‘E’ to indicate an error at the beginning or
end of the gene model as illustrated by the expressed sequence string in Dii. C) For each internal error (red X) in FDM, such as error ‘‘1’’ in (A), an 18-
mer ‘probe’ sequence is generated up and downstream of error (underlined and bold sequence in (Ci). This intron-spanning sequence was used to
search the set of RNA-seq reads. for contiguous expressed sequence between selected probes (Green sequence in (Cii).) D) Error from beginning and
end of FDM (such as Error ‘‘3’’ in above example) are removed by probes sequences generated from beginning and ends of expressed gene sequence

Laccaria Gene Annotation
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in its FDM sequence of which 8 flags were successfully bridged.

While correcting 89% of a gene model’s detected deviations may

be considered significant progress towards correctly determining a

gene model’s structure, the result is still considered a failure for the

purpose of method validation. The over all frequency of deviations

is also under-represented in this analysis as only internal flags in

the FDM sequence were considered.

This analysis illustrates that at all expression levels considered,

many observed deviations between expressed sequence and

predicted model can be corrected by this method. Some of those

deviations in expression from the model can be attributed to low

or uneven depth of coverage, while other deviations might be

attributable to errors in the gene model. Deviations due to low

sequence coverage will not be corrected by this method. At higher

expression levels, the number of zero-flag FDM sequences after

correction approaches 100% of the expressed models, presumably

in part because at higher expression deviations due to poor

sequence coverage occur more infrequently and the majority of

observed deviations are due to correctable errors in the predicted

gene models. The number of expressed genes however also drops

considerably with increasing expression thresholds.

For method validation, a conservative threshold of 500 RPK (an

average depth of coverage of about 23) was selected. This threshold

is considerably higher than the standard required for genomic

sequencing but provides reasonable sequence coverage for gene

with nonuniform transcript coverage, In addition, the alignment

parameters for Bowtie resulted high confidence alignments and

minimize alignments containing insertions or deletion. As will be

illustrated, the stringent alignment parameters and high redundancy

are essential for identification of sequence deviations and sequence

reconstruction. At this expression level, over 95% of bridged FDMs

were without internal flags and about 10% of total predicted best

gene models are expressed in our RNAseq data set. Even at an

average depth of coverage of 3 however, 70% of expressed gene

models could be successfully validated or corrected by our proposed

method, indicating utility even at relatively low levels of gene

expression. If the principle restriction on applicability of this method

is depth of coverage, then additionally collected expression data is

all that is required to validate and correct larger proportions of the

expressed gene models.

Structural Annotation of Differential Expressed
Mycorrhizal Genes

To validate the methods proposed here, we selected a dataset

that fit three criteria: 1) the set must be sufficiently large to provide

reasonable assurance of method validation; 2) the selected set must

be small enough that a researcher could usefully consider each

individual result; and 3) the selected set must be composed to be of

general, biological interest. We validated our tools for evaluation

and improvement of structural annotation using set of gene models

significantly differentially expressed mycorrhizal relative to the

free-living mycelial fungus, previously described [12]. We

identified 1501 gene models from the differentially expressed set

with a transcriptomic sequence coverage of 23 or higher. To verify

the biological relevance of this mycorrhizal subset (Myc-BestMo-

del), we evaluated the GO-assigned functional annotation of the

statistically enriched expressed gene set (Table 1). The Myc-

BestModel gene set is enriched for the GO-functional annotations

of carbohydrate metabolism (GO:0005975) indicative of the shift

in global metabolism. This transition is consistent a shift from

environment-derived nutrients to a symbiotic state in which the

fungus utilizes simple sugars provided by the plant symbiont. The

enriched annotations for membrane (GO:0016020), electron

transport (GO:0006118), H(+)-transporting two-sector ATPase,

and ATP synthesis coupled proton transport (GO:0015986) are

consistent with the changes occurring in transport across the

(Bold and underlined sequence in example Di). These probes are used to search for expressed contiguous sequences to extend the gene model up
and downstream (Grey sequence in Dii). The merged identified expressed sequence with correctly ascribed splice sites is the Bridged and Extended
Sequence expressed (BES). E) The BES (Dii) is aligned to scaffold sequences to determine gene structure. In cartoon below, unchanged gene model is
in blue, internal additions to gene model is in green, extensions up or downstream of the model are grey, and deletions from the initial gene model
are indicated by red ‘X’s.
doi:10.1371/journal.pone.0009780.g001

Figure 2. Relationship between the RPK expression levels and
gene model characteristics. The traces represent the total number
of gene models expressed (blue line) at or above some minimum RPK
(log scale), the number of models in the subset of expressed genes that
have at least one detectable internal sequence deviation (red line), and
total number of expressed models that still contain at least one
detectable internal sequence deviation after attempts were made to
bridge those flags with the set of expressed RNAseq data (green line).
doi:10.1371/journal.pone.0009780.g002

Table 1. Enriched Annotations in Myc-BestModels.

Branch Annotation pVal*

GO-bp protein biosynthesis_GO:0006412 0

GO-mf structural constituent of ribosome_GO:0003735 0

GO-cc membrane_GO:0016020 2.68E-06

GO-bp electron transport_GO:0006118 2.04E-06

GO-bp carbohydrate metabolism_GO:0005975 5.21E-06

EC-def Proteasome endopeptidase complex. 3.19E-13

GO-cc proteasome core complex (sensu Eukaryota)_GO:0005839 7.27E-12

GO-bp ubiquitin-dependent protein catabolism_GO:0006511 2.15E-07

EC-def H(+)-transporting two-sector ATPase. 8.76E-11

GO-bp ATP synthesis coupled proton transport_GO:0015986 0.000528

*Gene models annotations in the set of Myc-BestModel that are significantly
enriched (p,0.001), with at least 10 gene models with a specific annotation.

doi:10.1371/journal.pone.0009780.t001
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membrane between a free living state drawing all of it required

nutrients from its environment to a symbiotic state. The highly

enriched annotations associated with protein biosynthesis

(GO:0006412, GO:0003735, 0006511, and GO:0005839) are

consistent with the significant shift in protein expression between

the free living mycelial and mycorrhizal states. These sets of

enriched annotations suggest that the 1501 gene models in the

Myc-BestModel subset are of potential biological interest and are

specific to the changes in L. bicolor that accompany the shift from a

free living mycelium to symbiotic mycorrhizal transcriptome.

Analysis of Differentially Expressed Mycorrhizal Genes
The transcriptomic data provide an independent approach for

both validation and correction of the gene models. The initial phase

of the process identifies regions where the transcriptomic sequence

deviates from the gene model and also validates intron exon

boundaries incorporated in the gene models. For the Myc-

BestModel subset of 1501 genes, application of the analysis method

resulted in the validation of ,80% of all intron-exon boundaries

(.6000) within the limits of the gene models. The transcriptomic

sequence depth of 23 provides a high level of confidence for the

quality of these models. This level of validation for the original gene

models is notable in view of the complexity of the fungal genome (L.

bicolor genes contain an average of 5.4 introns) and the annotation

limitations arising from the relatively small number of sequenced

fungal genomes, especially basidiomycetes. However, the combi-

nation of the error rate and intron density means that 42% of the

gene models in the mycorrhizal set contain sequence deviations that

largely represent intron/exon boundaries that do not map to the

mRNA sequence data (Figure 3). For 465 (31%) of the Myc-

BestModels in the original best gene model set, we did not detect

any inconsistencies and therefore have independently confirmed the

previously published BestModelv1 annotation.

Additional analysis scripts enable delineation of the 59 and 39

boundaries sequences as defined by the transcriptomic data. The

impact of changes at the gene model sequence boundaries is

qualitatively assessed by analysis of the change in the size of the

gene models. For this analysis, we considered only those models

where the sequence length of transcript-derived model differed by

greater than 10% (plus or minus) from the initial Myc-BestModel.

These criteria result in an observed absolute change in expressed

gene size for ,62% of the Myc-BestModel gene model set. This

observation demonstrates that delineation of the boundary

sequences results in modification of a significant number of the

Myc-BestModel sequences.

To improve the experimental utility of the gene model set, we

developed algorithms that use the RNA-seq data to extend the

boundaries of the current gene model set where appropriate,

identify those intron-exon boundaries that can be validated by the

transcriptomic data, and generate novel intron-exon boundaries to

bridge those regions of the gene models that are not supported by

RNA-seq data. The BES sequences represent the complete,

expressed gene sequence but do not themselves have the structural

annotation of the gene. This extended and bridged contiguous

expressed sequence was then aligned to the genome using a

modified Smith-Waterman algorithm to recover gene model’s

structural annotation. Of the set of 1501 gene models, 1439 (96%)

generated modified gene models from BES’s in which all error flags

were successfully spanned and sequences aligned to genomic

sequence. The remaining 62 (4%) of gene models either had error

flags that could not be spanned or generated BES’s that did not align

to genomic sequence. If we consider a gene model significantly

changed if it had at least one flag in the FDM sequence that was

successfully bridged and aligned to scaffold, a change in the total

number of exons, and/or an absolute change in expressed gene size

of more than 10%, then of the set of 1439 aligned BESs, 974 (69%)

of gene models required changes to match gene expression. 465

(31%) of BESs were not significantly changed, confirming the

previously published BestModelv1 annotation.

For the 974 significantly modified gene models, it is useful to

look more closely at the nature of the modifications made.

Considering the FDMs and counting the number of deviations in

expression from the model, 228 (23%) of the 974 significantly

modified models had at least one error flag not at the ends of the

sequence and 62 (6%) had more than one error flag. 247 (25%) of

gene models had error flags at one end of the sequence or both.

582 (40%) of gene models had at least one error flag, either at a

terminus or in the middle of sequence. Overall, the average

change in gene model size was 27.9%, a substantial general

increase in the sequence length of the Myc-GeneModel set,

although not necessarily a change in the translated sequence. 594

(61%) of gene models showed a more than 10% increase in gene

size while only 28 (3%) of validated gene models showed a more

than 210% change in gene size.

Overall, there was an average increase of 0.5 exons added per

gene model. Within the initial boundaries of the BestModelv1

genes, however, there was an average 20.1 changes to the number

of exons, indicating that most of the increase in number of exons

derived from the up and downstream sequence added to the gene

model. 339 (35%) of modified gene models showed a net increase in

total exons while 126 (13%) showed a net decrease. It is important to

note that comparing the number of exons in the BestModelv1 set

and in the aligned BESs may be a significant underestimation of the

changes made to the BestModelv1. It is possible, for example, that

an exon is removed from the model and a new exon added, making

the net change in number of exons zero, in spite of the fact that

significant changes to the gene model’s structure were made. A case

in point is the gene model encoding Protein ID 294735.

Transcriptomic sequence supports a single intron while the original

gene model contained three introns. Similarly, the gene model

encoding Protein ID 294625 contained seven introns while the

transcriptomic sequence supports a model with 12 introns.

Figure 3. Summary of structural annotation outcome for the
Myc-BestModel set.
doi:10.1371/journal.pone.0009780.g003
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Discussion

Deep RNA sequencing of the L. bicolor transcriptome provides a

resource for validation and improvement of structural gene models.

This approach is an extension of the classical approach to utilize

EST libraries to seed and define gene models [8,20]. The two

approaches are complementary and there is a general consensus for

structural annotation derived using the EST or RNA-seq data [21].

However, transcriptomics using next generation sequence technol-

ogy provide superior coverage and redundancy of the transcriptome

[22,23]. Although the available EST libraries for L. bicolor contain

approximately 20K clones, the amount of sequence data from the

single transcriptomic data set generates 30-times more sequence

data than the combined EST reads. The combination of reads

derived from a single set of transcriptomic data (30 million reads)

enables comprehensive examination of ,3000 of the gene models in

the Bestmodelv1 set using a transcript sequence coverage depth of

23. The sequence coverage depth of 23 was empirically selected to

enhance gene coverage and thereby maximize the number of gene

with corrected deviation. At this coverage depth, a large fraction of

the models are improved by application of algorithms and using the

transcriptomic sequence. Even minor changes in the intron/exon

boundaries can be resolved by analysis of aligned sequences. A large

fraction of sequence discrepancies can be resolved by adjustment of

the requirement for transcript sequence coverage depth and

inclusion of additional gene models from the BestModelv1 set.

Decreasing the sequence coverage depth will expand the number of

Bestmodelv1 gene model sequences included in the analysis set and

lead to the identification of additional deviations from the model

sequence. However, nonuniform transcript distribution will results

in coverage gaps for comparison of the gene models with the

transcriptomic sequence. A qualitative assessment of relative

variability in transcript coverage can be obtained by inspection of

transcript coverage for gene models from the corrected set (e.g.

Gene model 143003, accessible via the URL provided in the data

resources file provided in Supporting Data).

Comparison of the transcript and Myc-BestModel subset

sequences led to changes in 974 (69%) of gene models. The large

fraction of gene models with revised structural annotation is not

perhaps surprising in view of the relative complexity of the target set.

The set of best models used for analysis was generated primarily by

an automated annotation process [12]. This process effectively

identified gene candidates and requires little manual input.

However, this homology-based process often results in unresolved

structural features and a limited ability to associate relevant

biological information with the sequences [1,6]. Current approach-

es for structural annotation are unable to accurately define exon

content or location [24,25] for many genes. Analysis of internal

sequence deviations in gene model sets from different annotation

methods indicates a variance in the frequency of internal sequence

deviation in gene model sets derived by different annotation

methods (Supplemental Data Table S1). In general, EST-based

prediction methods tend to have a lower percentage of models with

internal FDMs. However, there is a wide variance in the number of

models derived by the methods. The presence of a significant

number of short exon segments in basidiomycetes further increases

the complexity of the structural annotation process for L. bicolor. In

spite of these impediments, the sequence depth and ease of data

generation indicate RNA sequencing provides a reliable resource

for validation and improvement of structural gene models.

Corrections to the Gene Models
The transcriptomic sequence provides the opportunity for

accurate identification and localization of exons and enables the

verification or correction of the structural annotation. Our targeted

approached leverages previously collected information to find splice

sites that match observed data and focuses computational effort only

on those splice sites that are not supported by RNAseq data. Analysis

of internal gene model deviations suggest 42% of the expressed and

selected set of L. bicolor gene models contain sequence deviations that

largely represent intron/exon boundaries that do not map to the

mRNA sequence data (Figure 3). Our method has no restrictions on

intron lengths and can identify exons as short at 9 bp. The method

also places no expectations on splice donor and acceptor sites. Unlike

other published methods, our method has an advantage for

identification of splice sites even if they are not a previously reported

or observed. This strategy reasonable at high sequence coverage

depth and enable identification of the maximum number of exons. A

drawback of this approach is increased ambiguity of the exact

genome location of the splice site. Our alignments of the transcript-

derived models to the genome can lead to the improper placement of

the final coding nucleotide associated with the beginning or end of an

exon. This can be resolved by manual inspection of the gene of

interest or the output of this method can also be used in conjunction

with other splice assembly programs [8].

One additional interesting category of modified gene models are

those which contain no deviations from observed expression data

within the boundaries of the BestModelv1 gene models, but

nonetheless showed significant changes to gene structure by

addition of up and/or downstream expressed sequence. A case in

point is the gene model encoding protein ID 163800. The initial

model consisted of two exons and did not contain an appropriate

start methionine (Figure 4). The revised model is more than doubled

in size, contains four exons, and candidate start codons. Of the 974

modified gene models, 453 (30%) had no error flags within their

FDM sequences, but showed a more that 10% increase in gene size.

Of these 453 expanded genes, 193 (43%) also showed in increase in

the total number of exons. Changes that enabled definition or

extension of the N- or C-termini are especially informative to enable

expression and provide clues for function. Modification of the N- or

C-terminus can result in the identification of additional sequence

features such as signal peptides, regions with membrane spanning

helices or pfam domains. This information is useful for functional

annotation and is often essential to enable in vitro protein expression

and future biochemical characterization. Substantial changes to

predicted UTRs also affect the ability to predict the regulatory

mechanisms of mycorrhizae-specific genes.

Uncorrected models
A vast majority of the Myc-BestModel gene models (1439 or

96%) generated modified gene models with all error flags were

successfully spanned and transcript sequences well aligned to

genomic sequence. The remaining 62 (4%) of gene models either

had error flags that could not be spanned or generated BES’s that

did not align to genomic sequence. The quality of the genome

scaffold contributes in part to the inability to reconcile these gene

models is attributable to genome correct some of this sequence lies

in the incomplete nature of the genomic sequence. The genome is

currently contained in 1178 scaffolds with some unresolved

nucleotide regions. Several gene models contain regions of

unresolved sequence (e.g. N nucleotide designations) in middle

of gene sequence (e.g. gene models coding for the 293291 or

298293 proteins) and/or unusually long introns regions (e.g. the

model coding for the 298293 protein). For several genes, the

presence of alternative transcripts resulted in an uncorrected model

(e.g. the model coding for the 247279 protein) indicating the

method may not identify multiple splice variants when more than

one variant is simultaneously present in dataset. For this study, we
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restricted the RNA-seq data set to a single biological condition to

minimize the contribution of alternative transcripts and facilitate the

methods development and evaluation process. The current method

will generate a corrected gene model if one of the variant represents

.50% of all transcript sequences at the site of the alternative splice.

The gene model encoding the 308888 protein contains five exons

with clearly identified bridging sequences spanning each of the

introns (accessible via the URL provided in the data resources file

provided in Supporting Data). However, inspection of the transcript

map reveals the presence of transcripts that likely span this intron

and likely represent a read through intron variant. The identifica-

tion of splice variants associated with the free living, interaction, and

mycorrhizal states may have implications for the regulation of

metabolic, functional, and metabolic capabilities. In view of the

biological relevance of these genes, we are developing methods for

identification of splice variants using RNA-seq data. For several

uncorrected models, reasons for failure were not immediately

obvious and will likely require extensive biological confirmations to

resolve which is beyond the scope of this study.

High-throughput transcriptomic data was found to provide far

greater resolution for resolving gene structure than a previously

collected data set of ESTs. The outcome of this process is a set of

high confidence gene models that can be reliably used for

experimental characterization of protein function. The corrected

gene structures improve capabilities for the prediction of protein

function and are required for in vitro approaches to characterize

the function of these proteins. The method described here can be

applied to improve gene structural annotation in other species,

provided that there is a sequenced genome and a set of gene

models. This improved annotation process can be extended to

other important gene families and will facilitate the process to

identify the molecular mechanisms leading to the development of

the mycorrhizal symbiosis and its implications in improving

carbon sequestration by poplar.

Methods

Laccaria bicolor culture, In vitro interaction setup and
RNA extraction

L. bicolor (Maire) Orton (strain S238N) culture was maintained

on Modified Melin Norkan’s media as described [26] at 20uC.

Total RNA was extracted from control, interaction and mycor-

rhizal samples by CTAB method [27]. Total RNA is treated with

RQ-DNase (Promega, Madison, WI).

mRNA-Seq sample preparation
Procedures described for preparation of mRNA for the mouse

transcriptome analysis [28] were used with some modifications. Ten

ug of total RNA from each was hybridized to Sera-mag oligo (dT)

beads (Thermo Scientific) for mRNA purification. Purified mRNA

was fragmented by addition of 56 fragmentation buffer (Illumina,

Hayward, CA) and was heated for 5 min at 94uC in a thermocycler.

First strand cDNA was synthesized using random primers to

eliminate the general bias towards 39 end of the transcript. Second

strand cDNA synthesis was done by adding GEX second strand

buffer (Illumina, Hayward, CA), dNTPs, RNaseH and DNA

polymerase I followed by incubation for 2.5 h at 16uC. Second

strand cDNA was further subjected to end repair, A-tailing, and

adapter ligation in accordance with the manufacturer supplied

protocols. Purified cDNA templates were enriched by PCR

amplification with Phusion DNA polymerase (Illumina, Hayward,

CA) and the samples were cleaned using QIAquick PCR purification

columns and eluted in 30 ml EB buffer as per manufacturer’s

instructions (QIAGEN, CA). Purified cDNA libraries were quantified

using Nanodrop spectrophotometer and loaded onto Illumina flow

cells. A total of three sequencing lanes were run. One lane was run to

46 bp reads, the others were run to 72 bp reads. For this study, all

72 bp reads were truncated to a uniform 46 bp by removal of bases

from the 39 end. The total sequence yield was 39.1 million reads.

Figure 4. Comparison of the original and revised gene models encoding protein 163800 on genome sequence scaffold 19. Location
on scaffold is on x-axis and numbers of read alignments at each bp is on the y axis. The gray line represents alignments to genomic sequence, The red
lines are read alignments to JGI gene model and corrected gene model, but not to the genomic sequence. The sequence span of original gene model
is displayed a green horizontal bar at the bottom of the transcript coverage trace. The revised gene model is displayed as a blue horizontal bar.
doi:10.1371/journal.pone.0009780.g004
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Gene Models and L. bicolor Genomic Sequence
L. bicolor genomic sequence and gene models were taken from

Joint Genome Institute, using publically available data files. Best

Modelsv1 is the filtered set of models representing the best gene

model for each locus from the Joint Genome Institute (JGI).

‘‘BestModels1.na.fasta’’, contains 20614 gene models which

average 1.1 Kbp per gene with an average of 5.4 exons of an

average 210 bp per exon [12]. The intron density and average

intron length is consistent with that observed in other basidiomy-

cetes. In the BestModelsv1 set, 92% of the splice donor sites are

GT and 5% GA. AG and GC comprise 94% and 5% of the splice

acceptor sites, respectively.

Identification of L. bicolor Mycorrhizal Transcriptome
Affymetix data from [12] was used to identify genes differen-

tially expressed in mycorrhizal L. bicolor relative to free-living

mycelial L. bicolor. Samples compared were ‘‘Laccaria/Populus

ECM greenhouse’’ and ‘‘Laccaria/Populus ECM in vitro’’ vs.

‘‘Free-living mycelium Laccaria bicolor S238N 1’’ and ‘‘Free-

living mycelium Laccaria bicolor S238N 2’’

We selected 1501 gene models expressed at greater than 500

RPK from Set 3 of the ‘Bowtie’ alignments. Gene models in the

selected set were differentially expressed in Mycorrhizal vs. Free

Living Mycelium at a absolute value log 2 fold change greater than

0.6 (a minimum 1.5 fold change) at a Benjamini-Hochberg (BH)

[29] False Discovery Rate (FDR) corrected Local Pooled Error

(LPE) test [30] p-value ,0.05.

Biological significance of L. bicolor Mycorrhizal
Transcriptome

To assign a p-value to observations that can be considered as

the probability that some number of successes is observed in a set

of observations, the Cumulative Binomial Distribution (CBD) can

be used. The binomial probability mass function is written as:

b(x, n, p)~
n

x

� �
px(1{p)n{x

The cumulative binomial distribution is a function of the binomial

probability mass function:

B(x, n, p)~
Xx

y~0

b(y, n, p)

The CBD as written here returns the probability that there are at

most number x successes in n trials where each trial has a

probability of success p. A CBD-derived p-value is reported as 1-B.

For determining the significance of enrichment of annotations in

the set of 1501 gene models (myc-BestModels) representative of

the mycorrhizal transcriptome, The enrichment of a specific

annotation is determined as CBD p-value with x equal to the

number of gene models in the transcriptome set with a that specific

annotation, n equal to 1501, and p, the probability of success equal

to the fraction of BestModelsv1 with that annotation.

Alignment of RNA-seq reads to gene models and
genomic sequence

The ultra-fast sequence alignment program ‘‘Bowtie-0.9.9’’ [19]

was used to generate alignments of RNA sequence reads to the

genome and gene models. ‘‘Bowtie’’ uses a Burrows-Wheeler

index to rapidly align sequences to a pre-processed indexed set of

sequences and uses a small memory footprint. The output of

‘‘Bowtie’’ includes the names of the reads that aligned, the

orientation of the reads in the alignments, the names of the

sequence to which the reads aligned, and the offsets into the

reference sequences of the alignments. The default Bowtie

conditions of a default high-quality read length of 28, two

permitted mismatches in the high-quality end of a read, and

maximum acceptable quality distance of the overall align-

ment = 70 were used to generate the following subsets of sequence

alignments from the total 39.1 million collected RNA-seq reads:

Set 1– RNA-seq reads aligned to genomic sequence ‘‘laccar-

ia.allmasked’’ (15.4 million reads aligned)

Set 2- RNA-seq reads cDNAs aligned to gene models

‘‘BestModels1.na.fasta’’ but not to genomic sequence

(3.7 million reads aligned)

Set 3- RNA-seq reads cDNAs aligned to gene models

‘‘BestModels1.na.fasta’’ (16.9 million reads aligned)

Identify deviations in RNA-seq data from gene models
A Perl script was written to analyze the output from ‘Bowtie’ to

determine how many aligned reads were found for every base pair

on the scaffolds how many reads aligned to the proposed splice

sites of each gene. The script parameters were initially validated

using a subset of 1501 genes associated with the mycorrhizal

transcriptome. The gene models in this subset of the Bestmodels

were used to validate the ability to find and correct discrepancies

between the predicted gene models and the observed transcrip-

tomic data. The complete method is also summarized in Figure 1.

For each gene model analyzed, a Flagged Deviations from

Model (FDM) sequence is generated by the following method.

For every gene, indexed n, in analysis set

FDMn~null

For i~tartBpn to stopBpn

If GeneModel i½ �

If GenomeAlign n,i½ �zBorderAlign n,i½ �

vThreshold

FDMn~FDMnz}X}

Else

If Not GeneModel n,iz1½ �

and BorderAlign n,i½ �vThreshold

FDMn~FDMnz}X}

Else

FDMn~FDMnzScaffold i½ �

startBPn and stopBPn are the start and stop positions of the gene model

on the scaffold for gene n. GeneModel[n, i] is an array, indexed by

scaffold bp equal to TRUE when the base pair at scaffold position i

belongs to the gene model n, and equals FALSE otherwise.

GenomeAlign[i] is the number of RNA reads from Set 1 ‘Bowtie’

alignments to scaffold at position i. BorderAlign[i] is the number of

RNA reads alignments from Set 2 ‘Bowtie’ alignments to scaffold at

position i that align to the gene model but not to the scaffold,

indicating a read that spans a splice site. Scaffold[i] is the positive

strand base (A, G, C, T, or N) at position i. FDMn is the Flagged
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Deviation from Model sequence for gene n. Threshold is the minimum

number of read alignments required to consider there to be

expression. For this study, a Threshold of 2 alignments was used. A

base pair of ‘‘X’’ here is used as an error flag in the FDM sequence,

identifying regions in the gene model not supported by the expression

data and that require correction. The resulting FDMn is the sequence

for the gene model n as it is expressed in the set of RNA-seq data with

error flags inserted into the sequence where the observed expression

was found to deviate from the published gene model.

Bridge potential model errors with assembled contigs of
RNA-seq reads using FDMs as starting points

For each FDM generated above, identify regions of gene model

not supported by RNA-seq data. Concatenate any sets of multiple,

contiguous error flags into a single flag and remove from FDM any

sets of sequences less than 36 bp long between error flags and

concatenate into a single Error Flag. For every error flag in FDM,

identify an expressed 18-mer probe sequence, up and downstream of

the error flag. The contig is identified, assembled between the

upstream and downstream probes using the method described below,

and the transcript derived sequence is used to replace the error flag.

Error flags at the beginning and end of the FDM are noted, but

removed from the sequence. Being at the ends of the sequence,

probes up and downstream from the expressed portions of the

gene model cannot be generated. Using a slight modification of the

method used to bridge error flags, the FDM is extended upstream

and downstream of its initial boundaries if possible. The

computational method for bridging and extending gene models,

‘‘Bridge’’ is described in detail below. The result of the FDM with

bridged error flags and extensions up and down stream of the

initial gene model boundaries is new sequence saved as a Bridged

and Extended Sequence (BES).

Identify Bridging Contigs between probe sequences
RNA-seq data was used to extend and bridge errors in gene

models with the following procedure, ‘‘Bridge’’. Bridge accepts two

probe sequences as input and searches the set of RNA-seq data for

a continuously expressed spanning sequence, if any, that connects

the two probe sequences.

Bridge StartProbe, EndProbeð Þ

Iterations~0

nextProbe~StartProbe

While IterationsvMaxLook

nextProbe~FindNextProbe nextProbeð Þ

Concatenate nextProbe to Bridge

If nextProbe has more than MaxN }N}s then

Return Bridge, }Reached Maximum N0s}ð Þ

If Bridge contains EndProbe then

Return Bridge, }Successfully found EndProbe}ð Þ

Increment Iterations by 1

Return Bridge, }Reached maximum number of iterations}ð Þ

StartProbe and EndProbe are the probes upstream and downstream of a

flagged deviation from model respectively. Bridge is the variable,

initialized to an empty string, that stores the identified expressed

contiguous sequence between StartProbe and EndProbe. MaxLook is the

maximum number of iterations allowed and MaxN is the maximum

number of unknown ‘N’ base calls in the assembled bridge permitted

before the procedure terminates. The function FindNextProbe is

described below. This function returns the identified and expressed

consensus sequence that bridges the StartProbe and EndProbe

sequences. As it is possible the procedure may not identify a bridging

sequence, the procedure also returns a message describing why the

search for the bridge sequence was terminated. In this study, to bridge

probes that spanned errors in FDMs, maxLook was set equal to 27 and

maxN equal to 6. To extend the gene sequences past its initial borders,

Bridge is called without a value for EndProbe, and maxN equal to 1.

The procedure ‘‘FindNextProbe’’ used in ‘‘Bridge’’ is used to

search the set of collected RNAseq reads for consensus sequence

and finds the next probe in a growing contig sequence.

FindNextProbe (probe)

For every Read in RNAseq Data that contains probe

offset~ location in Read where probe aligns

For i~ 1 to SeqLen

If read at position i~}A} then increment A offsetzi½ �

If read at position i~}C} then increment C offsetzi½ �

If read at position i~}G} then increment G offsetzi½ �

If read at position i~}T} then increment T offsetzi½ �

For i~seqLen to seqLenzprobeLenð Þ

If A i½ � has largest value at C i½ �,G i½ � and T i½ �, then

NextProbe~NextProbez }A}

Else If C i½ � has largest value at A½i , G� �i and T� �i�, then

NextProbe~NextProbez }C}

Else If G i½ � has largest value at A½i , C� �i and T� �i�, then

NextProbe~NextProbez }G}

Else If T i½ � has largest value A½i , C� �i and G� �i�, then

NextProbe~NextProbez }T}

Else

NextProbe~NextProbez }N}

Return NextProbe

Where probe is the sequence of length probeLen, and RNAseq_Data is

the set of all sequence reads. SeqLen is the length in base pairs of the

RNA-seq reads used in the analysis. Arrays A, G, C, and T store the

number of instances of each base at each position in the consensus

sequence being constructed and all arrays are initially populated

with zeros. The function returns the next probeLen-sized sequence

from the assembled consensus sequence. For spanning a flagged

region of the FDM, the first probes are selected starting 6 bp up and
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downstream of the flag. If these probes do not identify a spanning

sequence, then new probes 15 bp up and downstream of the flag are

used. If these probes fail, probes 21 bp up and downstream of the

flag are used. If these return no spanning sequence, then the error is

flagged as unidentified. Although a perfect match is required for

finding up and downstream probes, this step-wise procedure will

identify spanning sequence even if there are mismatches in one of

the possible probes. Also, this procedure can accommodate for

possible misalignments at the intron-exon border where some

alignments occur that crosses by a few base pairs the intron-exon

boundary. When extending the FDM up and downstream, the first

and last 18 bp of the FDM are used as the initial probes.

Align BESs to scaffolds
The BESs, constructed from RNA-seq data corrected FDM’s

represent the expressed gene sequence as transcribed under

specific biological conditions, but they do not contain information

regarding the gene structure. Assembled sequence that bridges an

identified error in a BES might contain only corrected intron

boundaries, or might introduce a number of previously unreported

exons. In order to recover gene structure information, it is

necessary to align the BES back to the L. bicolor chromosome. This

was accomplished using the Smith-Waterman algorithm with a

few minor modifications [31]. The L. bicolor scaffold sequences

were taken from ‘‘Laccaria.alllasked’’ from JGI.

The penalty for inserting a gap into the chromosomal sequence

is 224 while the gap penalty for inserting a gap into the BES gene

sequence is 21. The penalty for inserting a gap at the beginning or

end of the BES is 0. This fits our expectations for the alignment.

Gaps in the chromosome are unlikely, but not impossible,

suggesting that some erroneous deletion from the assembled

scaffold has been made. Gaps in the BES sequence, representing

introns, are expected and so the penalty is less than for the scaffold

sequence. Match-Mismatch scores were set to 8 for a match, 212

for a mismatch, and 4 for any nucleotide matching with an ‘N’. ‘N’

nucleotides can be present both in the published genomic

sequence and as a consequence of the bridging contig method

described below. A score of 4 for an ‘N’ prevents inserting spurious

gaps in the contig sequence without over-fitting contiguous ‘N’s

into the alignment. Though L. bicolor exons can be short, isolated

alignments of small sets of nucleotides bracketed by spaces in the

BES should be discouraged. In our modified Smith-Waterman

algorithm, alignments of less than 4 contiguous nucleotides in the

BES, allowing an ‘N’ to match any nucleotide, are not permitted.

Before alignment, 5% off the end of any sequence added from

the gene model extension, upstream or downstream, was trimmed.

The sequence of the scaffold selected for alignment is the region

within the original BestModelv1 boundaries plus three times the

size of the up and downstream sequence added. If the first attempt

to align the BES to the genomic sequence failed, the sequences

were reversed and complimented and a second attempt to realign

was made. From the alignment, the gene model’s structural

annotation can be generated and was saved in GFF format. The

final output of this method is the set of expressed BES gene models

in FASTA format, the structural annotation of the gene models in

GFF format, and a new set of FDMs sequences resulting from the

re-alignment RNA-seq data to the modified gene models using

‘Bowtie’.

Supporting Information

Text S1 A gff format text file containing all revised gene models

for the Myc-BestModel gene model set.

Found at: doi:10.1371/journal.pone.0009780.s001 (0.74 MB

TXT)

Text S2 A fasta format text file containing the modified

transcript sequences for the Myc-BestModel gene model set.

Found at: doi:10.1371/journal.pone.0009780.s002 (1.85 MB

TXT)

Text S3 A text file listing project data files and resources

available for viewing and download. A project URL is provided to

facilitate access to these resources.

Found at: doi:10.1371/journal.pone.0009780.s003 (0.00 MB

TXT)

Table S1 Comparison of Internal Sequence Deviations in Gene

Model Sets from Different Annotation Methods.

Found at: doi:10.1371/journal.pone.0009780.s004 (0.09 MB

DOC)
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