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ABSTRACT 
The high dimensionality of data in single cell transcriptomics 
(scRNAseq) requires investigators to choose subsets of genes 
(feature selection) for downstream analysis (e.g., unsupervised 
cell clustering). The evaluation of different approaches to feature 
selection is hampered by the fact that, as we show here, the 
performance of feature selection methods varies greatly with the 
task being performed. For routine cell type identification, even 
randomly chosen features can perform well, but for cell type 
differences that are subtle, both number of features and 
selection strategy can matter strongly. Here we present a simple 
feature selection method grounded in an analytical model that, 
without resorting to arbitrary thresholds or user-defined 
parameters, allows for interpretable delineation of both how 
many and which features to choose, facilitating identification of 
biologically meaningful rare cell types. We compare this method 
to default methods in scanpy and Seurat, as well as 
SCTransform, showing how greater accuracy can often be 
achieved with surprisingly few, well-chosen features.  

INTRODUCTION 
Single cell RNA sequencing (scRNAseq) measures the 
transcriptional profiles of individual cells, enabling cell type 
classification, lineage inference, and elucidation of experimental 
differences in both gene expression and cell type abundance 
(Das et al., 2022; Junttila et al., 2022; Nguyen et al., 2021; 
Simmons, 2022; Tam & Ho, 2020; Tritschler et al., 2019; Xie et 
al., 2021). As cell type identity is generally not known a priori, it 
is traditional to use unsupervised clustering to group 
transcriptomically similar cells. As a first step, genes (“features”) 
considered most likely to be markers of cell type or state are 
selected and used for subsequent dimensionality reduction and 
clustering (Heumos et al., 2023).  

In general, limiting features to those that are most informative 
for downstream applications improves interpretability, increases 
computational efficiency, prevents overfitting, and improves the 
performance of clustering algorithms (Li et al., 2017). However, 
there is no one-size-fits-all definition of “most informative”. Most 
widely-used algorithms calculate gene expression variation 
across cells, but they differ significantly in how variation is 
measured, as well as how the appropriate number of features is 
determined (Andrews & Hemberg, 2018; Brennecke et al., 2013; 
Hafemeister & Satija, 2019; Jiang et al., 2016; Lall et al., 2022; 
Satija et al., 2015; Stuart et al., 2019; Su et al., 2021; Townes et 
al., 2019; Tyler et al., 2024). Although some comparisons have 
been made of the effects of different feature selection methods 
on clustering (Germain et al., 2020; Su et al., 2021; Zhao et al., 
2024), it occurred to us that performance of a selection method 
will likely depend on aspects of the dataset to which it is applied. 
These could include how many cell types are present, their 
relative abundance, and the number and magnitude of gene 

expression differences between cells of different types. To our 
knowledge, the interaction of these factors with different 
methods for ranking and selecting genes has not been explored 
in a systematic way.  

Here we show that, for datasets in which the desired goal is to 
cluster relatively abundant cells that differ greatly in gene 
expression, how features are selected is almost irrelevant. Even 
random sets of genes, if large enough, tend to perform nearly as 
well as algorithmically-chosen features. In more demanding 
situations, in which random feature selection does not suffice for 
clustering, we identify cases in which both the method of feature 
selection and the number of features used markedly influence 
clustering outcomes.  

This led us to revisit the question of how best to identify genes 
for which cell-to-cell variation is greater than otherwise 
expected. Starting with an analytical model for the structure of 
un-normalized scRNAseq data, we developed a method for 
quantifying both degree of expression variation and probability 
of occurrence by chance. This method, which we call BigSur 
(Basic Informatics and Gene Statistics from Unnormalized 
Reads), provides a theoretical framework for scRNAseq data 
analysis which enables both feature selection and the inference 
of gene regulatory networks from gene-gene correlations (the 
latter use outlined elsewhere (Silkwood et al., 2024)). Here we 
show that using BigSur for feature selection enables 
identification of biologically relevant groups of cells while 
minimizing loss of discriminatory power due to the use of 
excessive numbers of features.  

RESULTS 

For common tasks, random sets of genes can perform as 
well as algorithmically-chosen features.  
Existing feature selection algorithms often choose up to several 
thousand genes for use in cell clustering. As this can represent 
a substantial fraction of the expressed genome, one is left to 
wonder how many of these features are necessary, and whether 
the number chosen is particularly important.  

In common scenarios, in which cell types of interest are 
relatively abundant and well separated in gene expression 
space, we find that features chosen at random often perform 
nearly as well as those selected by popular algorithms. We 
illustrate this by clustering the 10k cell PBMC (peripheral blood 
mononuclear cell) dataset from 10x Genomics, which is 
commonly used for methods evaluation. Initially, we used 
scanpy’s default feature selection method (highly variable 
genes, “HVGs”), with cutoffs and parameters set to their default 
values. HVGs bins genes by mean expression and ranks each 
gene by their z-score calculated from the genes in that bin 
(Satija et al., 2015). Using the 3643 genes chosen by HVGs, 
cells were clustered according to the default pipeline: finding the 
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first 50 principal components, creating a nearest neighbor graph 
in PCA space, and clustering using the Leiden algorithm. 
Clusters were then labeled based on the expression of known 
marker genes. As expected, cell groups were well separated on 
a UMAP plot (Figure 1A, left; see also Supplementary Figure 1). 

For comparison, we used an equal number of genes (3643) 
chosen at random as features, and performed the same task. As 
shown in Fig. 1A, right, the same cell types grouped well and 
separated similarly from each other, with the one exception that 
some of the CD4+ and CD8+ T cells were intermixed.  

We next asked how many random genes were needed to cluster 
cells correctly, and how repeatable the results were. Since labels 
are already assigned to each cell in this case, we can treat this 
question as a supervised problem. We therefore set as ground 
truth the cell type labels identified using HVGs (Fig. 1A) and 
assessed the ability of a straightforward classifier (a linear 
support vector machine, or SVM) to identify the cell types from 
the 50 top PCs of randomly selected genes (see methods). We 
varied the number of genes from 25 to 22,300, testing 10 
samplings at each size, retraining the SVM at each step.  

As the numbers of randomly selected genes increased, both the 
adjusted Rand index (ARI) and the normalized mutual 
information (NMI)—two common classification metrics—
increased  quickly to an ARI of 0.8 at 725 genes and an NMI of 
0.8 at 925 genes (Fig. 1B). Both scores continued to slightly rise 

up to 0.98 and 0.96 for ARI and NMI respectively with all genes. 
The variance (across the 10 trials) of the ARI and NMI scores 
decreased as the number of genes increased, but was already 
low by 525 genes (Fig. 1B). These results show that almost any 
random set of genes of size greater than a few hundred is 
potentially sufficient to correctly classify groups of cells that are 
well separated in gene expression space. Although we are not 
aware of this observation having been explicitly noted before, it 
supports the view, voiced by others, that the effective 
dimensionality of gene expression is far lower than the number 
of expressed genes (Heimberg et al., 2016; Lenz et al., 2016; 
Lukk et al., 2010). In other words, any random sample of 
reasonable size would be expected to include a substantial 
number of genes that correlate with all major patterns of gene 
expression.   

Some tasks are sensitive to choice of feature selection 
algorithm  
Given the results above, the task in Fig. 1A is clearly not suitable 
for assessing the performance of any feature selection 
algorithm, as the lack of an algorithm (using all genes) or a trivial 
algorithm (random gene selection) perform extremely well.  

This led us to consider more challenging tasks, for example one 
involving more subtle gene expression differences. We thus 
subsetted just the CD4+ T cells in the PBMC dataset, and 
subclustered them. Using the 350 features selected by HVGs, 

 
Figure 1: Performance of randomly selected genes as features. A. UMAP representation of PBMCs calculated using either HVG-selected genes 
(left) or the same number of randomly selected genes (right). B. Adjusted Rand index (ARI) and normalized mutual information (NMI) of cell type 
identification using a Support Vector Machine (SVM) on the PCs, as a function of number of genes selected. C. UMAP of CD4+T cells, including the 
T regulatory cell (Tregs) subset, calculated using either HVG-selected genes (left) or same number of randomly selected genes (right). D. ARI and 
NMI of Treg identification, as a function of number of randomly selected genes.  
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we could identify a FOXP3+ T regulatory cell (Treg) cluster of 
approximately 1.8% (53/2908) of the cells (Fig. 1C, left; Figure 
S1). Tregs are a well described CD4+ T cell subtype, regulating 
immune responses in many biological systems (Miragaia et al., 
2019). In this case, using an equal number of random genes as 
features, the Treg population was not identifiable (Fig. 1C, right). 
Even using much larger numbers of genes—up to all 16,985 
significantly expressed genes–and testing 20 random gene sets 
for each sample size, ARI and NMI scores remained close to 
zero (Fig. 1D). Thus, in a sufficiently difficult task, HVGs 
performed much better than random.  

Number of features can influence success or failure in 
unpredictable ways 

The fact that random gene selection failed to identify Treg cells 
even when the entire expressed transcriptome was used 
emphasizes that a good feature selection must not only include 
enough genes that are predictors of cell types or states, but also 
exclude enough genes that are not. This reflects a well known 
phenomenon in machine learning, in which the accuracy of a 
classifier initially increases with increasing number of features 
and then decreases (Hughes, 1968). This happens because, in 
high dimensions, consideration of data that have low predictive 
power can “swamp” out the effects of data with high predictive 
power (i.e., the “noise” can overwhelm the “signal”) (Zimek, 
2012).  

Because of this, it is important that feature selection algorithms 
for scRNAseq not only order genes by their utility as features, 
but also decide how far down the list one should go, i.e. the 
number of features to use, when performing unsupervised 
clustering. Currently popular algorithms typically choose feature 
number based either on arbitrary variability cutoffs or on 
calculations that depend upon arbitrarily adjustable 
hyperparameters (Hafemeister & Satija, 2019; Hao et al., 2021; 
Wolf et al., 2018). 

To assess how important these choices are, we selected three 
clustering tasks:  subclustering CD4+ T cells (as in Fig. 1C-D); 
CD8+ T cells (also from the PBMC 10K data set), and human 
retinal amacrine cells (clustering and cell type identification is 
shown in Figure S2) (Menon et al., 2019). In each case, we 
varied the number of features used, starting from those 
considered by HVGs to be most highly variable to the least.  We 
calculated the fraction of the cell state of interest in each 
resulting cluster, and report the fraction of the “best” cluster (the 
cluster with the most cells of the cell state of interest), which we 
refer to as the “purity score” (see methods). 

As shown in Figure 2, the qualitative results differed markedly 
among the three tasks. With amacrine cells, a population of 
SLC12A7-expressing cells could be cleanly identified with either 
150 or 3424 features, the latter representing HVG’s default 
selection (Fig. 2A). In this case, purity was relatively stable 
regardless of the number of features used (Fig. 2B).   

With CD8+ T cells, we identified a subpopulation of memory T 
cells (a CCL5+ population equaling 9.3% of the total) using the 
top 100 HVG features (Fig. 2D), but performance degraded 
markedly when larger numbers of features were used, and 
sometimes declined to very low levels (Fig. 2E). Importantly, 
using the default number of features suggested by HVGs (2744; 
red circle in Fig. 2E), the ability to identify memory T cells as a 
distinct cluster was lost.  

Finally, we turned again to the CD4+ T cells. The Treg population 
previously discussed (Fig. 1C) mostly grouped together when 
the default number of 3220 HVGs was used (Fig 2G-H, Fig. 2H 
red circle), but adding in even 5 more features destroyed the 
ability to identify this cluster (Fig. 2H, green circle).  

It is worth commenting that the observed “choppiness” in panels 
2E and 2H—where purity scores jump from high to low with the 
addition or subtraction of just a few features—partly reflects the 
sensitivity of Leiden clustering to the choice of random starting 
seed (Traag et al., 2019). Accordingly, we also carried out the 
analyses in panels 2B, E and H using 50 randomly selected 
starting seeds at each feature number, and plot the mean and 
standard deviation of the results in panels C, F and I, 
respectively.  

Taken together, the results in Fig. 2 indicate that, for tasks in 
which having an algorithm for feature selection matters, 
selecting the right number of features can be important, affecting 
both the average and the range of purity scores one could 
expect to encounter in practice. Too many features can be as 
harmful as too few, and within some ranges, even small changes 
in feature number can have dramatic consequences. 
Importantly, feature numbers chosen by commonly used 
procedures under default conditions would be expected to lead 
to systematic misclassification. We therefore asked whether 
there might be a principled way to optimze the joint tasks of 
finding features and determining how many to use.  

 
Figure 2: Numbers of features and feature selection method influence 
clustering. A. UMAPs of amacrine cells and SLC12A7-expressing 
amacrine cells using either 150 HVGs (left) or the default number of HVGs 
(3424; right). B. Purity score for SLC12A7+ cells, in clusters derived from  
amacrine cells using different thresholds for numbers of HVG features. 
Green and red circles show results using 150 and 3424 genes, 
respectively. C. Mean and standard deviation of purity scores for 
SLC12A7+ cells, using 50 randomly selected starting seeds for the Leiden 
clustering algorithm. D. UMAPs of CD8+ T cells and memory CD8+ T cells 
using 100 HVGs (left) and the default number of HVGs (right). E. Purity 
score as the number of HVGs increases. Green and red circles mark 
enrichment scores at 100 HVGs and the default number of HVGs (2744), 
respectively. F. Mean and standard deviation of purity scores using 50 
different Leiden starting seeds, as in C. G. UMAPs of CD4+ T cells and 
Regulatory T cells (Tregs) using either 3220 genes (left) and default 
number of HVGs (right, 3225). H. Purity score of Tregs as in panels B and 
E. I. Mean and standard deviation purity scores of 50 randomly selected 
Leiden starting seeds, as in panels C and F. 
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A statistical approach to feature selection 
Common feature selection methods tend to choose genes by 
the degree to which they are variable within a dataset, with 
differences among methods typically involving the way data are 
initially transformed, the way variability is defined and 
measured, and how the appropriate number of features is 
determined. Ideally, one would want to select features that are 
more variable than expected by chance, but this requires 
knowledge of the null distribution, i.e. the data distribution to 
expect when all cells are biologically equivalent (i.e., the only 
sources of variability being technical and biological noise). 
Because there has long been a lack of general agreement on 
the appropriate null distribution for scRNAseq data, it has 
become common to estimate one empirically from the data, by 
fitting gene expression data to some kind of flexible model (e.g. 
negative binomial). This is, for example, the principle used by 
SCTransform, which also takes advantage of such fitting to 
normalize gene expression values (Hafemeister & Satija, 2019; 
Satija et al., 2015; Stuart et al., 2019). 

Defining “null” using data in which cell type differences are 
expected to exist is fundamentally problematic, but might be 
justified if the genes that differ between cell types are relatively 
few in number. Unfortunately, the results in Fig. 1 suggest this is 
rarely a good assumption. The fact that relatively small numbers 
of random genes can often be used as features to drive correct 
cell clustering tells us that gene expression differences 
associated with cell types are, in fact, pervasive, involving a 
large fraction of the genome.  

We therefore chose the alternative approach of constructing a 
null distribution analytically, based on assumptions about how 
scRNAseq data arise. Specifically, we assume that biological 
noise—random fluctuations in transcript numbers in the same or 
identical cells—follows a log-normal distribution, which agrees 
with both theoretical predictions and empirical observations in 
mammalian cells (Bahar Halpern et al., 2015; Beal, 2017). 
Beyond this, we assume that the technical noise associated with 
cell preparation, library preparation, sequencing, etc., can 
simply be approximated as sampling noise, i.e., by the Poisson 
Distribution. This agrees with a number of recent observations 
and arguments in the scRNAseq literature (Choi et al., 2020; 
Kim et al., 2015; Sarkar & Stephens, 2021; Wang et al., 2018).  

 We thus write the following model: 

𝑥!"   ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛  )𝐿𝑜𝑔-𝑁𝑜𝑟𝑚𝑎𝑙2𝜇!" , 𝑐!"67  

where µ#" 	is the expected number of transcripts of gene 𝑗 in cell 
𝑖, and 𝑐!" is the coefficient of variation of that value, and 𝑥!" is 
the observed counts (UMI) detected for gene 𝑗 in cell 𝑖. Note 
that, in our terminology, we parametrize the log-normal 
distribution in terms of its actual mean and coefficient of 
variation, and not the mean and coefficient of variation of the 
underlying normal distribution from which it may be derived. 

To guide the use of this model in developing statistics for the 
analysis of real-world data, we first generated synthetic data 
potentially representative of a situation in which two cell types or 
states are present in a dataset, and differ only in the expression 
of a known number of genes (Figure 3). Specifically, we 
generated data for 2,000 cells and 15,000 genes expressed at 
a range of levels, using an underlying coefficient of variation of 

gene expression of 0.7 for each gene (Fig. 3A; see Methods). 
For a fraction of genes, the two cell types—which are present in 
equal proportions—were made “truly variable”, i.e. they drew 
from distributions with different means; for the rest of the 
genome the cells drew from a single distribution for each gene. 
For simplicity, in Fig. 3 we do not include additional effects due 
to differential sequencing depths among cells (we discuss this 
issue later on), and values were chosen independently for every 
gene.  

If we generate a large number of datasets in this manner, in 
which the number of truly variable genes varies from 100 to 1000 
we immediately see that there is a threshold above which 
randomly selected features (genes) begin to work very well in 
correctly classifying the two cell types. The threshold depends 
both on how many features are truly variable and how many 
random genes are selected as features, but tends to occur when 
the number of truly variable genes expected to be found among 
the random features lies in the vicinity of 30-150. Interestingly, 
the larger the set of random features one uses, the greater the 
fraction of truly variable features they must include in order to 
perform well; this demonstrates how both signal (inclusion of 
truly variable features) and noise (exclusion of non-truly variable 
features) both matter for classifying high dimensional data 
(Zimek et al., 2012).  

Ideally, an algorithm for identifying features should seek to 
compare the observed variance of a feature with the variance 
expected under the null hypothesis, i.e., when features are not 
truly variable. For data that are Poisson-distributed, variance is 
equal to the mean, so the ratio of observed variance to mean, 
also known as the Fano Factor, equals 1 under the null 
hypothesis. Hereinafter we use 𝜙" to stand for the Fano factor 
of gene j, 𝜎"$ the observed variance of gene j, and 𝜇" the 
observed mean. Thus 𝜙" ≡ 𝜎"$/𝜇". 

Fig. 3C shows the distribution of observed Fano factors for 
synthetic data generated as in Fig. 3B, in which the number of 
truly variable genes was set to 1,000. Although one should 
expect to observe 𝜙>1 for truly variable genes, many non-
variable genes also display large values of 𝜙; in particular this is 
true for highly expressed genes. This reflects the fact that the 
variance of a Poisson sample from any distribution is equal to 
the variance of the Poisson distribution (i.e., the mean) plus the 
variance of that distribution. As we may equivalently express 
variance as the square of the coefficient of variation times the 
mean, i.e., (𝑐𝜇)$, a modified Fano factor expressed as: 

%!
"

&!'()&!)"
=

%!
"

&!(+')"	&!)
       (1) 

should have an expectation value of 1 for a compound Poisson 
distribution. Indeed, using this metric on the data in Fig. 3C, one 
no longer observes large values for highly expressed genes, 
and non-variable genes are cleanly separated from truly variable 
ones (Fig. 3D).  

Although the modified Fano factor serves as an appropriate 
metric for identifying truly variable genes in the synthetic data in 
Fig. 3, it is not suitable for use on real-world single cell RNA 
sequencing data without an additional correction. The reason is 
that, in real-world data, cells are typically sequenced to widely 
different depths. Normalizing gene expression to read depth 
recovers an estimate of gene expression in each cell, but the 
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distribution of that estimate will not be the same as if each cell 
had actually been sequenced to the same depth. Accordingly, 
the expectation value under the null hypothesis for expression 
(2) will not be 1. As recently pointed out (Lause et al., 2021), one 
way to correct for this is not to scale gene expression values, 
but instead correct their Pearson residuals. The Pearson 
residual, a measure of deviation from the mean, is defined, in 
cell i and gene j, as 

𝑃!" =
-#!.&!
/&!

     (2) 

where 𝜇" is the mean expression over all cells. The Fano factor 
may then be expressed as an average of squared Pearson 
residuals: 

𝜙" =
+

0.+
∑ 𝑃!"$0
!1+    (3) 

Lause et al. noted that, when sequencing depth is variable, the 
expectation value for 𝜙" can be made equal to 1 if the term 𝜇" in 
the Pearson residual of every cell i is replaced by 𝜇!", an 
estimate of the mean specifically for that cell (i.e. an estimate of 
the global mean scaled by the total sequencing depth of the cell) 

(Lause et al., 2021). If we further modify that term by dividing by 

C(1 + 𝑐"$𝜇!"), we obtain (𝑃′!"), which we refer to as a “modified 

corrected Pearson residual”: 

𝑃′!" =
-#!.&#!

2&#!(+')!
"&#!)

    (4) 

as well as a “modified corrected Fano factor”, 𝜙"3: 

𝜙"3 =
+

0.+
∑ 𝑃′!"

$0
!1+     (5) 

Note that 𝑃′!" and 𝜙"3 are calculated from raw, unnormalized 
counts, as it is the 𝜇!", and not the 𝑥!", that undergo correction 
for sequencing depth variation.  

Because we may expect 𝜙"3 = 1 under the null hypothesis, 
observing 𝜙"3 > 1 should identify features likely to be truly 
variable. To do so in a principled way, however, requires knowing 
the probability of observing any value of 𝜙"3 under the null 
hypothesis. While it is generally not possible to obtain an 
analytical expression for the full distribution of 𝜙"3, we may 

 
Figure 3: BigSur identifies truly variable features. A. Synthetic data generation pipeline (see Methods). B. Average purity of clusters (see Methods) 
generated using genes selected at random as features. Each purity score is the average of ten trials of random feature selection. The numbers on 
each tile indicate the expected number of truly variable genes to be found among the selected features. C. Observed relationship between the Fano 
factor and the mean for simulated data. Orange crosses indicate genes that were truly variable, i.e., were selected from different distributions for the 
two different cell types. Blue dots are genes that were selected from the same distributions for the two cell types. The red line depicts the expected 
relationship, under the null hypothesis, between the Fano factor and mean expression. The dashed line at f = 1.5 shows the large number of non-
truly-variable genes that would be chosen if the Fano factor is used to select features. D. Observed relationship between the modified corrected Fano 
factor (f’) and mean expression. The red line again depicts the expected relationship under the null hypothesis. Using f’ as a feature criterion avoids 
the inclusion of non-truly-variable genes. E. Points from panel D colored by their FDR-adjusted p-value. Markers are as in panels C-D. F. Purity scores 
(color scale as in panel B) for clusters obtained using features selected by BigSur at different p-value thresholds. Underlying data were identical to 
those in panel B. Numbers overlaid on each tile indicate the number of features selected by BigSur in each case. 
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construct an arbitrary number of moments of that distribution 
from the moments of the distributions of the individual 𝑃′!", which 
we can in turn construct from the moments of the Poisson-Log 
Normal distribution parametrized by 𝜇!" and c in each cell 
(Silkwood et al., 2024). Given a sufficient number of moments, 
procedures exist for estimating tail probability densities (Cornish 
& Fisher, 1938). In this manner, one can associate any value of 
𝜙"3 with a p-value, i.e. the probability of observing it by chance. 
Given a set of p-values, one can further identify a p-value 
threshold for any level of false discovery (Benjamini & Hochberg, 
1995). In Fig. 3E, the data in panels C-D are colored by the false 
discovery rate (FDR) threshold interval into which their p-values 
fall. It is immediately apparent that, for these data, few non-
variable genes display FDR-adjusted p-values less than 0.05, 
and none display values less than 0.001.  

We have named the algorithm for jointly computing modified 
corrected Fano factors and their p-values BigSur, which stands 
for Basic Informatics and Gene Statistics from Unnormalized 
Reads. Fig. 3F applies BigSur to all eight datasets (columns) in 
Fig. 3B, reporting both the number of features that satisfy 
different significance thresholds, and their success in clustering 
the two cell types (the latter represented using the same color 
scheme as in Fig. 3B). A surprisingly small number of features 
suffice to produce good clustering. For example, in the dataset 
containing only 100 truly variable genes, as few as 22 
statistically significant features recovered pure clusters, 
whereas no number of random features (from 100 to 15,000) 
could do so. This reflects the ability of BigSur to recover a large 
fraction of true positives while minimizing false discovery. 

The only hyperparameter used by BigSur is 𝑐", the underlying 
coefficient of variation of gene expression (i.e. the actual 
biological variation among equivalent cells). While this number 
may, in principle, differ for each gene, experimental studies 
suggest it does not vary greatly (Bahar Halpern et al., 2015), and 
we provide a method here to estimate a consensus value of 𝑐" 
(which we hereafter simply call 𝑐) from a full gene expression 
dataset (see Methods).  

It is worth noting that the modification and correction of Pearson 
residuals may also be generalized to higher order statistics, 
such as correlation coefficients, and that this can be leveraged 
to more accurately assess gene-gene correlations (Silkwood et 
al., 2024). 

BigSur helps identify rare, biologically relevant cell states  
We next examined the performance of BigSur on experimental 
data, focusing on cases in which the presence of rare cell types, 
or subtly different cell types, might be expected to pose 
challenges for clustering. First, we chose the CD4+ T cell subset 
from the 10k PBMC set. As shown in Figure 4A-B, the Fano 
factors associated with gene expression rose sharply with 
expression level, similar to what was observed with synthetic 
data (Fig. 3C). In contrast, the modified corrected Fano factors 
(using a fitted 𝑐 = 0.25) were generally mean-independent, with 
most genes displaying a value of 𝜙3 near 1. These results 
suggest that the statistical properties of real data resemble 
those of the synthetic data; they also suggest that, in this 
dataset, the patterns of expression of most genes are consistent 
with not being truly variable. For a small subset of genes, 
however, values of 𝜙3 up 10 were observed, and most of those 

above 1.5 were associated with FDR-adjusted p-values less 
than 0.05. Overall, 156 genes were characterized by 𝜙3 >2 and 
p <0.05 (Fig. 4C). Among these was FOXP3, considered a 
marker for regulatory T cells (Treg).  

To investigate which factor,	𝜙3 or the p-value, played a greater 
role in enabling identification of Tregs as a unique cluster, we 
carried out Leiden clustering using features identified at different 
thresholds for these parameters, calculating a FOXP3-
enrichment score for each cluster produced. The enrichment 
score was calculated by dividing the mean normalized 
expression of FOXP3 in each cluster by the mean expression of 
FOXP3 in the dataset. As shown in Fig. 4D-E, use of an adjusted 
p-value threshold of 0.05 was particularly important to achieve 
good cell separation, i.e. the inclusion of non-statistically 
significant features appears to be especially detrimental to rare 
cell type identification. Among statistically significant features, 
the magnitude of 𝜙3 appeared to be less important, unless the 
cutoff became so high that the absolute number of selected 
features became very small—somewhere in the vicinity of 50-
150 genes (Fig. 4E).  

We next extended this analysis to five other datasets that 
contained known cell “subtypes”: the full T cell subset of the 10k 
PBMC dataset, the CD4 and CD8 subsets of those T cells, a 
macrophage dataset (Carvalho et al., 2021), an M1 macrophage 
subset of those, and the retinal amacrine cell subset. These 
datasets span a wide range of at least three characteristics: the 
fraction of all 𝜙3 observed to be statistically significant (p<0.05), 
the number of cells sequenced (Fig. 4G), and the median 
sequencing depth (median UMI/cell) (Fig. 4H). The latter two of 
these may be expected to have a strong influence on the 
statistical power to identify differences—fewer cells mean fewer 
observations, and lower sequencing depth means more 
observations that are zero and thus minimally informative. An 
alternative metric that captures a sense of the combined 
statistical power of these two observations is the total number of 
UMI in the entire dataset (i.e. the product of the number of cells 
and the mean UMI/cell). Plotting this against the fraction of 𝜙3 
values that is statistically significant (Fig. 4I) shows that, overall, 
the significant 𝜙3 fraction declines with decreasing total UMI. 
This general pattern is to be expected, as loss of statistical 
power should correlate with identification of fewer 𝜙3 as 
significant, however the magnitude of the effect varies with 
dataset (for example, that fraction is particularly low for CD8 T 
cells). Such variation provides a measure of cellular 
heterogeneity—i.e. when the fraction of 𝜙3 that is significant is 
unexpectedly low, it suggests that gene expression differences 
between cells are especially subtle.  

We next examined how well Leiden clustering relying on BigSur 
for feature selection performed in enriching for markers of known 
cell subsets in each dataset. For example, we used enrichment 
for CD8A to assess clustering of CD8 T cells from mixed T cells; 
FOXP3 for Tregs from CD4 T cells; CCL5 for memory T cells 
from CD8 T cells, SOD2 for M1 macrophages from mixed 
macrophages, GBP5 for a subset of M1 macrophages, and 
TCF4 for glycinergic amacrine cells from total amacrine cells 
(Figure S3). In each case we considered three different FDR- 
corrected p-value thresholds of 0.05, 0.5 and 1.0 and varied the 
𝜙3	cutoff. To facilitate comparisons between datasets, the 𝜙3 
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Figure 4: Clustering performance using values and significance levels of modified corrected Fano factors. The Fano factor ϕ (A) and the modified 
corrected Fano factor ϕ' (B) were calculated for all genes in the CD4+ T cell dataset, and are plotted as a function of gene expression level, and colored 
according to the p-value of ϕ'. C. For the same dataset, values of ϕ' and their p-values are plotted against one another. Green and red distinguish p-values 
smaller or greater than 0.05, respectively. Bold and pale colors distinguish values of ϕ' greater or smaller than 2, respectively. D-E. Enrichment for FOXP3 
after Leiden clustering using features determined by different p-value and ϕ' cutoffs. Enrichment was defined as mean expression of FOXP3 within each 
cluster divided by mean FOXP3 expression across the dataset. Each point represents an individual cluster. D. Enrichment scores using solely a ϕ' threshold 
(top) or solely an adjusted p-value threshold. E. Using an FDR-adjusted p-value threshold of 0.05, the ϕ' threshold was progressively increased from 0 to 
5 (note drop in number of selected genes). F. UMAP of the CD4+ T cell dataset with ϕ' cutoff of 3 and p-value cutoff of 0.05. Cells are colored by their 
cluster’s enrichment. G-H. For each of six datasets, the percentage of ϕ' that were significant (FDR < 0.05) was plotted against the number of cells (G) 
and the median sequencing depth (H) (see main text for information on the datasets). I. For the datasets in panel F, as well as the full PBMC dataset (Fig. 
1), the percentage of ϕ' that are significant was plotted against the total number of transcripts in the entire dataset (which reflects both sequencing depth 
and number of cells). Note how different datasets vary greatly in both total amount of sequence and evidence for cellular heterogeneity (percentage of ϕ' 
that are significant). J-K. For the datasets in panel F, features were selected using different quantile thresholds for ϕ' (abscissa) and different p-value 
cutoffs (by color). The Leiden clustering algorithm was run on the selected features using 40 different randomly chosen starting seeds. The enrichment of 
a gene marking a particular group of cells of interest was calculated for each of the resulting clusters: CD8A for the 10k T Cells dataset, FOXP3 for the 
CD4 dataset, CCL5 for the CD8 dataset, SOD2 for the Macrophage dataset (Macs), GBP5 for the M1 macrophage dataset and TCF4 for the amacrine 
cells dataset (ACs). For each Leiden seed, the enrichment level in the cluster with the greatest enrichment was found. Each point on the plot indicates the 
median of this value over the different Leiden seed choices, and the bars show the inter-quartile range (25% to 75% of the data). 
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cutoff was varied by quantile, i.e. 0.6 means the top 40% of 𝜙3 
values; 0.9 the top 10%, and so on. In each case Leiden 
clustering was performed 40 times using the features obtained, 
with a different random seed each time. Shown in Fig. 4J-K are 
the mean and upper and lower quartiles of the enrichment 
scores obtained from these runs.  

The outcomes support several of the previous conclusions. For 
example, in samples in which cells are numerous, sequencing 
is deep, and differences between cell types considerable, 
clustering succeeds regardless of how features are selected, as 
in the separation of CD8+ T cells from other T cells, Sod2+ 
macrophages from other macrophages, or FOXP3 T cells from 
other T cells, although in the last case, reducing the number of 
features too low by requiring too stringent a significance cutoff 
leads to a decrease in the reliability of clustering. In contrast, for 
the datasets with the smallest percentage of significant 𝜙3 
values, we find that restricting feature selection either by the 
relative magnitude of 𝜙3, the statistical significance of 𝜙3, or 
both, can improve performance.  

BigSur performs comparably to other methods, using fewer 
features 
We compared BigSur to three of the most common methods for 
feature selection: HVGs (current default in scanpy), 
FindVariableFeatures (FvF, default in Seurat V4), and 
SCTransform (SCT) (Hafemeister & Satija, 2019; Hao et al., 
2021; Wolf et al., 2018). HVGs ranks features by binning genes 
by normalized expression level, calculating the z-scores of 
genes with respect to their bin, and ranking the genes by their 
z-scores  (Satija et al., 2015; Wolf et al., 2018). FvF fits the log 
of gene variance to gene mean and ranks genes by 
standardized residuals. (Hao et al., 2021). SCT fits each gene 
to a negative binomial model with sequencing depth as 
explanatory variable, then regularizes the parameters and ranks 
genes based on the resulting Pearson residual (Hafemeister & 
Satija, 2019).  

We first compared the orders in which different methods ranked 
genes as features. We subsetted four datasets such that they 
only contained two groups of cells: a 1M PBMC dataset 
sequenced using Split-seq (containing CD4+ and CD8+ T cells); 
a keratinocyte dataset sequenced using 10x Genomics (basal 
and granular cells); and the 10k PBMC and macrophage 
datasets previously analyzed in Fig. 4 (CD4+ and CD8+ T cells, 
and M1 and M2 macrophages, respectively). Figure 5A shows 
Leiden clustering of these datasets using BigSur for feature 
selection (visualization of marker expression is also shown in 
Figure S4); similar clusters could be obtained using any of the 
other feature selection methods, with the exception of HVGs, 
which was unable to separate M1 and M2 macrophages (Figure 
S4).  

We next compared how the rankings of genes as potential 
features by HVGs, FvF, and SCT, compared with the ranking 
(𝜙′) calculated by BigSur. Since BigSur both ranks genes and 
assigns p-values, we grouped genes into those that had FDR-
adjusted p-values below 0.05, followed by those that did not. As 
shown in Fig. 5B, rankings produced by all three methods 
correlate to some degree with those produced by BigSur—with 
FvF showing the weakest and SCT the strongest correlation—
but all of them highly ranked some genes that BigSur considered 
to be non-significant.  

We also compared the speed of computation of each feature 
selection method. To do so, we randomly sampled increasing-
size subsets of cells from the full 1M PBMC dataset and 
calculated the speed of each method for each set of cells (see 
Methods). BigSur was slower than HVGs and FvF but faster 
than SCT (Figure S4). At least 90% of the computation time for 
BigSur appears to be spent on p-value calculation (compare 
dashed line in Figure S4). Even with 100,000 cells, however, 
BigSur finishes in about a minute.  

To create experimental data sufficiently challenging to 
discriminate between the performance of different methods, we 
downsampled the four datasets in Fig. 5A, randomly selecting a 
small population of cells from one of the two types and a larger 
population from the other type, so that the first type represented 
5% of the total. The detailed steps in generating these “semi-
synthetic” datasets are shown in Supplemental Figure 5 and 
described in Methods. Because sampling was random, the 
process was repeated 20 times, generating 20 independent 
datasets for each of the four cases.  

The total numbers of cells in these semi-synthetic dataset cells 
ranged from 132 to 705 (Fig. 5C). When analyzed using BigSur, 
the percentages of 𝜙′ values that were judged significant (p < 
0.05) was relatively low in all cases, around 3%; median total 
UMIs varied between about 1,500 and 15,000 (Fig. 5D). Given 
the results in Fig. 4, we expected these conditions would make 
it relatively difficult to identify the rare cell type in these cases.  

For each of the 80 semi-synthetic datasets, we ran the three 
common feature selection methods (using default parameters), 
as well as BigSur. In each case we also randomly chose a single 
set of 2000 genes to serve as random features. 

The number of features selected by the different algorithms is 
shown in Fig. 5E. SCT and FvF uniformly chose 3000 and 2000 
features, respectively. The number of features HVGs chose 
varied between a high of 3094 for the 10k T Cells semi-synthetic 
datasets and a low of 589 for the Macrophage semi-synthetic 
datasets. With BigSur, thresholds for feature selection were 
informed by the results in Fig. 4. Since the 10k T Cell and 
Keratinocyte semi-synthetic datasets displayed high median 
UMI/cell (around 5,870 and 9,900, respectively), we used a 𝜙′ 
quantile cutoff of 0.99. Because the 1M T cell and macrophage 
semi-synthetic datasets both have low median UMI/cell (1561 
and 2910 UMIs/cell, respectively) as well as a low numbers of 
cells (298 and 132), we used a more generous 𝜙′ quantile cutoff 
of 0.9 (Fig. 4). In all, the number of features selected by BigSur 
ranged from 79 to 227, far fewer features than those selected by 
any other method. 

We next used the selected features for clustering. As Leiden 
clustering can be sensitive to the randomly selected starting 
seed, we tested 40 independent starting seeds for each of the 
80 datasets described above. We assessed performance in 
correctly isolating the rare cells, using the same purity score as 
in Fig. 2. For each of the four cases, we show results from 10 
representative semi-synthetic datasets in Fig. 5F-5I, presenting 
the remaining 10 in Figure S5. Error bars illustrate the variation 
in results (interquartile range) introduced by the 40 random 
starting seeds. Fig. 5J summarizes the findings of Fig. 5F-5I. 
showing the median and interquartile range of purities obtained 
using each feature selection method. 
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Figure 5: BigSur improves clustering performance using fewer total features. A. UMAPs of 4 datasets (two PBMC datasets, a keratinocyte dataset 
and a macrophage dataset; see main text) which were subset to contain only two biologically meaningful cell groups in each case. B. The ranking of 
features was calculated using HVGs, FvF, SCT and BigSur for each dataset (see main text for details). For BigSur, rankings are separately presented, 
in declining order of f’, for genes with p-value below <0.05 (blue) and then for all other genes (orange); BigSur ranks are plotted against the ranks 
produced by other algorithms. C. For each dataset in A, we generated 20 “semi-synthetic” datasets comprising of a large population of cells and a rare 
population of cells. Bars show the cell numbers for each population (see methods; the individual steps are shown in Figure S5). D. The generation of 
such datasets was repeated 20 times and the percent of 𝜙′ values that, in each case, displayed p<0.05 is plotted as a function of the median value of 
the total UMI per dataset. E. We selected features for each dataset in D using HVGs, SCT, FvF, and BigSur. The numbers of features were automatically 
selected using the first three methods’ defaults, and BigSur’s cutoffs were manually chosen in accordance with the results of panel D (see main text). 
F–I. For each of the semi-synthetic datasets in panel D, Leiden clustering, using 40 diferent random starting seeds, was performed using features that 
were either a random selection of 2000 genes, or those chosen by HVGs, SCT, FvF and BigSur. Purity scores were calculated (as in Fig. 2). Each line 
represents a different semi-synthetic dataset (for clarity, only 10 of the 20 are shown in each plot; see Fig. S5 for the remaining data), and the markers 
and bars are the medians and interquartile ranges (IQRs) of the purities (over the 40 different Leiden seeds). In panels F – I, the purities from selected 
semi-synthetic datasets are colored for discussion purposes (see main text). J. We calculated the medians of the purities of all the semi-synthetic 
datasets and grouped the medians by dataset. The markers represent medians (of the distribution of medians) and the bars represent IQRs. For the 
insert, we substracted the purities of each semi-synthetic dataset using random feature selection from the purities using the other methods. We then 
calculated the means of the resulting distribution (each marker represents a mean). K. Similar to J, we calculated the IQRs of the purities of all semi-
synthetic datasets and grouped them by method. 
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For the 10k T Cells datasets (Fig. 5F), clustering using random 
features yielded purities ranging from 0.08 to 0.16. Using HVGs 
and SCT, purities ranged from 0.26 to 0.66 and 0.27 to 0.62, 
respectively. FvF yielded a wider range of purities, from 0.25 to 
0.74. With BigSur, purities were higher than 0.8, with the 
exception of a single semi-synthetic dataset (colored in red, 
purity of 0.42), however this dataset was particularly sensitive to 
Leiden starting seed and for many starting seeds cases BigSur 
again produced very high purity. Overall, the average 
performance of features selected by BigSur was higher than 
with any other method (Fig. 5J).  

For the 1M T Cells datasets (Fig. 5G), random feature selection 
yielded purities ranging from 0.22 to 0.33, whereas HVGs, SCT, 
FvF and BigSur produced similar maximal purities (1.0, 0.88, 1.0 
and 0.97 respectively), albeit with considerable variability. 
Overall, BigSur produced the highest median purity (Fig. 5J).  

With the Keratinocyte datasets, random feature selection and 
HVGs both performed poorly, yielding purities spanning 0.28 to 
0.39 and 0.32 and 0.36 respectively (Fig. 5H). SCT, FvF and 
BigSur performance were all highly variable, varying from poor 
to very good depending on the dataset. The average 
performance of FvF exceeded that of BigSur (Fig. 5J), but the 
range was great for both methods.  

Finally, with the Macrophage datasets, all methods yielded very 
poor purities, although an occasional dataset displayed slightly 
better purity when using either HVGs or FvF (Fig. 5I, colored in 
red).  

Overall, even though no feature selection method consistently 
outperformed in all datasets, BigSur was the only method that 
had median scores above 0.6 for the first three datasets (Fig. 
5J). While FvF, on average, outperformed BigSur on one dataset 
(Keratinocytes), the purity scores it produced were more widely 
spread than those of other methods, suggesting that the 
appropriateness of features selected by FvF is especially 
sensitive to the presence or absence of the individual cells in 
each dataset.  

To assess whether sensitivity of clustering to Leiden starting 
seed varied systematically across different feature selection 
methods, we tabulated the sizes of the interquartile ranges for 
all the data in Fig. 5F-I and Fig. S5, and plotted the median and 
interquartile range of those ranges, as a function of selection 
method (Fig. 5K). Interestingly, BigSur had the smallest median 
value, followed by HVGs and random feature selection; and 
finally by SCT and FvF. A possible explanation for this effect is 
that the presence of false positive features increases the chance 
that the Leiden algorithm will be attracted to settle onto 
suboptimal solutions.  

Taken together, the results argue that, despite using far fewer 
features, the performance of BigSur is generally as good as or 
better than other feature selection methods, and achieves 
greater reproducibility.  

DISCUSSION 
Feature selection is an important general step in machine 
learning (Li et al., 2017), but the impact of different methods of 
feature selection on single cell transcriptomics has not been fully 
explored. Currently, several different methods are in common 
use as part of popular analysis packages, and multiple others 

have been proposed as improvements ((Andrews & Hemberg, 
2018; Brennecke et al., 2013; Hafemeister & Satija, 2019; Jiang 
et al., 2016; Lall et al., 2022; Satija et al., 2015; Stuart et al., 
2019; Su et al., 2021; Townes et al., 2019; Tyler et al., 2024)) . 
Clear guidance about how to choose among them, or when to 
consider adjusting their parameters, is difficult to come by. 
Although some head-to-head comparisons have been published 
[e.g., (Germain et al., 2020; Su et al., 2021; Zhao et al., 2024), 
attention is not often paid to the difficulty of the task for which 
feature selection will be used. Here we focus on cell clustering 
and note that, in many cases—such as when cells are highly 
distinct in gene expression—feature selection hardly matters, 
and random sets of genes often do nearly as well as carefully 
chosen ones. Under these circumstances, large differences may 
exist in the accuracy with which different methods identify truly 
variable genes (e.g., (Andrews & Hemberg, 2018)) but they are 
likely to be of little practical importance.  

In contrast, it is when using clustering to separate weakly 
dissimilar subsets of cells, especially when present as minor cell 
subpopulations, that feature selection method can really matter, 
especially when the total number of observations is relatively 
low. The impact of choice of feature selection method in this 
regime has been relatively unexplored, even though it may be 
expected to arise in scenarios of sequential subclustering of cell 
populations; characterizing cell heterogeneity in tumor samples; 
distinguishing intermediate states in cell lineages, and many 
other applications.  

The results presented here argue that, in such cases, it can be 
important to use feature selection methods that not only identify 
genes that are truly variable but also eliminate ones that are not. 
Ultimately, the success of clustering must reflect a balance 
between signal (true positives) and noise (false positives). When 
the proportion of true positives is high, contamination by false 
positives may be irrelevant, but at lower signal strengths 
eliminating false positives is essential.  

Here we develop a straightforward analytical approach, BigSur, 
that models the null distribution of gene expression observations 
as Poisson random variates from a distribution reflecting 
biological gene expression noise, the coefficient of variation of 
which is estimated from the data. For each gene, BigSur returns 
both a measure of variability 𝜙′, and—by modeling the gene 
expression noise distribution as log-normal—the probability of 
observing that value by chance. The method automatically 
accounts for differences in data sparsity across genes, and 
differential sequencing depth across cells, so no data 
normalization or transformation is required. Whereas other 
feature selection methods sometimes also work by fitting data 
to distributions, those distributions are typically inferred from 
empirical observations of scRNAseq datasets, whereas with 
BigSur the use of the lognormal distribution to represent gene 
expression variability is grounded in both theory and observation 
(Bahar Halpern et al., 2015; Beal, 2017). 

We compared the performance of BigSur against three popular 
selection methods, FvF (the default in Seurat), HVGs (the 
default in scanpy), and SCTransform (Hafemeister & Satija, 
2019; Hao et al., 2021; Wolf et al., 2018). Both synthetic data, 
real data, and “semi-synthetic” datasets formed by guided 
downsampling of real data were used, concentrating on what we 
expected to be especially challenging regimes. Not only did 
these three methods highly-rank genes considered non-
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significant by BigSur, they tended to deliver much longer lists of 
features. For the most part, BigSur performed as well as or 
better than other algorithms (Fig. 5), despite using many fewer 
features, suggesting that, overall, it has a substantially better 
signal-to-noise profile. Consistent with this, results with BigSur 
also showed the lowest sensitivity to stochastic effects in Leiden 
clustering (Fig. 5K).  

The fact that BigSur ranks features both by magnitude of 
variability and statistical significance gives investigators the 
opportunity to adjust cutoffs based on details of the data and the 
biological system it represents. Based on the observations in 
Fig. 4-5, we recommend routinely using an FDR-adjusted p-
value threshold of 0.05, however the choice of 𝜙"3 threshold 
should depend on the rarity of the cell type(s) one wishes to find 
(rare cells contribute less to 𝜙"3) as well as whether cell-to-cell 
differences in gene expression are likely to be dominated by 
many small effects or a few large ones. In the absence of 
intuitions about these factors, we recommend starting with a 
quantile cutoff of 1%, increasing it as necessary to obtain at least 
a few hundred features. Observing the consistency of clustering 
performance over a range of quantile cutoffs may also be 
helpful, as may running the Leiden algorithm using more than 
one starting seed.  

Here we did not assess the ability of BigSur to assist tasks other 
than cell clustering, such as pseudotime ordering, but suspect 
that the improvement in signal-to-noise ratio in feature selection 
will be helpful in that setting as well. Also, as noted above, the 
modified corrected Pearson residuals produced by BigSur may 
be used to generate modified corrected Pearson correlation 
coefficients, from which meaningful networks of gene 
expression correlation may be inferred, thanks to a dramatic 
reduction in false positive correlation (Silkwood et al., 2024). 

METHODS 
The Modified Corrected Fano Factor 
The Fano Factor quantifies how much the variance of a 
distribution differs from that of a Poisson distribution. To the 
extent that scRNAseq data are not generally Poisson-
distributed, the Fano factor does not reliably measure 
unexpected variability, but it can be modified, given an 
appropriate model, to do so. For any gene, assuming the null 
hypothesis (all cells draw from the same distribution), we model 
scRNAseq data as a random (Poisson) sample from a log-
normal distribution, the mean of which is scaled in each cell by 
that cell’s sequencing depth.  

In comparing data with the model, we avoid scaling individual 
observations by sequencing depth, as that distorts data 
distributions (Lun, 2018), and follow (Lause et al., 2021) in 
correcting Pearson residuals instead. The Pearson residual is a 
measure of each observation’s difference from the mean, scaled 
to the square root of the mean (expression 2, above). We correct 
it by using a different definition of mean in each cell, one that is 
scaled to account for total number of UMIs in the cell.  

The corrected Pearson residual is then further modified to 
account for the expected greater variance of a compound 
Poisson log-normal distribution than a Poisson distribution. The 
variance of a compound distribution (assuming independence) 
is the sum of variances of the two underlying distributions.	If the 
first is a Poisson Distribution, then 𝜎$ = 𝜇. For the second 

distribution, we equivalently express variance as 𝑐$𝜇$, the 
square of the coefficient of variation times the mean. As both 
distributions must share the same mean, the total variance is 
therefore 𝜎$ = 	𝜇 +	𝑐$𝜇$ = 	𝜇(1 + 𝑐$𝜇). We then use the square 
root of this expression to replace the denominator of the 
corrected Pearson residual. Introducing indices i and j to 
represent cell and gene, respectively, we obtain the following 
modified corrected Pearson residual 𝑃!"3 :   

𝑃!"3 =
𝑥!" − 𝜇!"

C𝜇!"21 + 𝑐$𝜇!"6
 

Just as the Fano factor, for gene j, may be expressed as an 
average over squared Pearson residuals, so may the modified 
corrected Fano factor be defined as 

𝜙!" =
1

𝑛 − 1&𝑃′#!
$ =

1

𝑛 − 1
&

(𝑥𝑖𝑗 − 𝜇𝑖𝑗)
2

𝜇𝑖𝑗(1 + 𝑐2𝜇𝑖𝑗)

𝑛

𝑖=1

,

#-.

 

 
Where n is the number of cells. Note that the modified corrected 
Pearson residual can also be used to derive other useful 
statistics, such as a modified corrected Pearson correlation 
coefficient (Silkwood et al., 2024). 

The analytical nature of the model underlying 𝜙"3 allows one to 
calculate, given a set of observations and cell sequencing 
depths, the probability that any given value of 𝜙"3 would arise by 
chance. Specifically, for each gene, we calculate the first 5 
moments of 𝜙"3 under the null hypothesis, from the moments of 
the individual Pearson residuals, which depend on the moments 
of the Poisson and log-normal distributions. Then we use 
numerical procedures (Cornish & Fisher, 1938) to estimate how 
far out an observed 𝜙"3 is on the tail of the null distribution, which 
may be expressed as a p-value. Derivation of the equations for 
moment calculation may be found in (Silkwood et al., 2024). 

The only hyperparameter used in these calculations is c, which 
may be estimated from the behavior of an entire dataset, as 
described below. Note that the expectation value of 𝜙"3 under the 
null hypothesis is unity regardless of the underlying distribution 
that describes gene expression. The choice of the log-normal 
distribution here only influences the expectation value for higher 
moments of 𝑃′, which are used in the calculation of p-values.  
 
Generation of Synthetic Datasets 
To generate synthetic data, we first generate a log-normally 
distributed collection of mean expression values, i.e. a set of 
values < 𝑦" >= 10-, where 𝑥~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇4, 𝜎4). In Fig. 3, we use 
𝜇4 = −1 and 𝜎4 = 0.8. Then, for each gene j, we generate a 
series of gene expression values as random variates of a log-
normal distribution with mean < 𝑦" > and coefficient of variation 
c. In Fig. 3, a value of c = 0.7 was used. Note that in many texts, 
log-normal distributions are parametrized in terms of the mean 
and standard deviation of the underlying normal distribution from 
which they may be derived, but here < 𝑦" >	 and c refer to the 
actual mean and coefficient of variation of the log-normal 
distribution.  

Given a matrix of synthetic gene expression values, for 𝑛 cells 
and 𝑚 genes: 
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𝑌 = Q

𝑌+,+ 𝑌+,$ … 𝑌+,6
𝑌$,+ 𝑌$,$ … 𝑌+,6
… … … …
𝑌0,+ 𝑌+,$ … 𝑌0,6

S 

 
𝑌!,"~𝐿𝑜𝑔-𝑁𝑜𝑟𝑚𝑎𝑙2< 𝑦" >, 𝑐6 

 
we replace each 𝑌!,"with a random variate from a Poisson 
distribution with rate parameter (mean) = 𝑌!,", to produce a final 
data matrix.  

𝑍 = Q

𝑍+,+ 𝑍+,$ … 𝑍+,6
𝑍$,+ 𝑍$,$ … 𝑍$,6
… … … …
𝑍0,+ 𝑍0,$ … 𝑍0,6

S 

 
𝑍!,"~𝑃𝑜𝑖𝑠𝑠𝑜𝑛2𝑌!,"6 

One could additionally simulate the effects of cell-specific 
variation in sequencing depth, by scaling each column in the Y 
matrix by an arbitrary constant prior to Poisson sampling, but 
this extra step was not carried out in Fig. 3. 
 
The datasets in Fig. 3 simulate 2,000 cells expressing 15,000 
genes each. The cells are divided into two equal sized groups of 
1,000. For some of the genes (“not truly variable” genes), 
expression values for both groups are generated using a single 
< 𝑦" >. For other genes (“truly variable” genes), the < 𝑦" >used 
for the two groups of cells are independent, random selections 
from the set of < 𝑦" >. Thus, the degree to which “truly variable” 
genes differ in expression between the two groups is itself 
distributed about a mean of zero.  
 

Fitting a coefficient of variation for underlying gene 
expression 
Under the assumptions that c is approximately equal across 
genes, and that most of the genes in a dataset are not 
significantly differentially expressed across cells, one can 
estimate c by finding the value that minimizes the difference 
between 𝜙"3 and 1, for the majority of genes. Because c 
influences the modified corrected Pearson residual only through 
the term 1 + 𝑐$𝜇!", it follows that the choice of c has little 
influence on 𝜙"3 when 𝜇!"<<1. Typically we learn c by finding the 
value that minimizes the absolute value of the slope of a linear 
fit to a plot of 𝑙𝑛𝜙"3 vs. ln𝜇", for 𝜇" ∈ [0.01,10].  

Dimensionality reduction and clustering 
Dimensionality reduction and clustering were done using scanpy 
v1.8.2. The PBMC 10k dataset was filtered to retain only genes 
with expression in at least 3 cells and cells with at least 400 
expressed genes and no more than 10% of UMI coming from 
mitochondrially-encoded genes. The retina (Menon et al., 2019), 
keratinocyte (Guerrero-Juarez et al., 2022), 1 M PBMC dataset 
and macrophage (Carvalho et al., 2021) datasets were filtered 
similarly, except cells were not subsetted based on their 
mitochondrial gene content. Counts were normalized as follows: 

𝑥{!"} = 𝑙𝑛X
𝑐𝑜𝑢𝑛𝑡𝑠{!"}
∑ 𝑐𝑜𝑢𝑛𝑡𝑠{!"}!

∗ 109 + 1\ 

Where 𝑥{!"} is the normalized count of gene j in cell i.  

During subsequent subsetting, we removed genes that were 
expressed in fewer than 10 cells. Principal component analysis 
was performed on the normalized data and the top 50 principal 
components (PCs) were retained. The k-nearest neighbors 
graph was calculated from the PCs, and UMAP dimensions 
calculated using scanpy default parameters. Clusters were 
identified using the Leiden algorithm implemented by scanpy 
with default parameters and, if not otherwise stated, resolution 
= 1 and random seed = 0 (default).  

Classification of cell types using random genes 
Cell types in the 10k PBMC dataset were identified using marker 
genes on clusters calculated as specified above, using HVGs 
with defaults as feature selection. scrublet v0.2.3 (Wolock et al., 
2019) was used to identify doublets using default parameters. 
For every set of randomly selected genes (uniform sampling 
using numpy.default_rng.choice function, setting replace = 
False), PCA was calculated using sklearn’s implementation of 
TruncatedSVD with number of PCs = 50, except for 25 genes 
where number of PCs = 25. A linear support vector machine 
(SVM, using sklearn.svm.SVC) was trained on each set of PCs 
calculated by TruncatedSVD, with ground truth labels being the 
cell types identified as described above. The adjusted Rand 
index (ARI) and normalized mutual information (NMI) scores 
were calculated by comparing predicted labels of the SVM to 
ground truth labels, using sklearn’s implementation of both 
scores. 

Generation of semi-synthetic datasets 
To compare feature selection methods, we devised a procedure 
that creates datasets of modest size, in which there are two 
populations of relatively similar but transcriptionally distinct cells, 
one substantially rarer than the other. The procedure entails 
taking pairs of related cells (e.g. CD4+ and CD8+ T cells, basal 
and granular keratinoctyes, etc.) that had previously been 
definitively identified, and mixing small numbers of them 
together. 

Briefly, we first clustered the data shown in Fig. 5A, extracted 
the desired cell pairs, and reclustered to ensure the identification 
of two homogeneous groups. Then we combined all of the cells 
from the larger of the two groups with a random subset of cells 
from the other, of sufficient size so that the resulting ratio of cell 
types was 19:1 (the absolute cell numbers are reported in Fig. 
5C). We then removed genes expressed in fewer than three 
cells. The cell barcodes of each semi-synthetic dataset were 
also saved (see data availability).  

Purity score 
For any group of target cells that we subject to clustering, we 
may define a purity score for those cells in a round of clustering 
as the maximum fraction of each cluster obtained that consists 
of target cells. 

When discussing the purity score for synthetic data in which 
there are two pre-determined groups of cells (Fig. 3B, 3F), we 
chose to present the mean of the purity scores calculated for 
each of the two cell types. Clusters were generated from the 
data using a resolution parameter of 0.1. In Fig. 3B, ten rounds 
of random feature selection and Leiden clustering were 
performed on each dataset and the average results across the 
ten trials is presented. In Fig. 3F, Leiden clustering was 
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performed 50 times using unique random seeds and results 
were averaged across all trials. 

Speed comparisons 
To compare the speed of HVGs, SCT, FvF and BigSur, we used 
the 1M PBMC dataset from Parse Biosciences. The dataset was 
filtered to retain only cells with more than 400 genes and genes 
expressed in at least 3 cells. For the comparison between HVGs 
and BigSur, 10 datasets with increasing numbers of cells (100, 
500, 103, 5*103, 104, 5*104, 105 and 2.5*105 cells) were randomly 
sampled from the 1M PBMC dataset. Each sampled dataset was 
filtered to retain only genes expressed in at least 1 cell. 

Since SCT and FvF were first implemented in R, we randomly 
sampled a 2.5*105 dataset from the filtered dataset and exported 
to R. 10 datasets were randomly sampled from the filtered 
dataset per number of cells, and the features were calculated 
from the sampled datasets. All real dataset results were 
generated on an iMac Pro (2017) with 10 3 Ghz Intel Xeon W 
cores and 256 GB of RAM running Ventura 13.2.1.  

Data availability 
No new data were generated as part of this study. The 10k 
PBMC dataset was downloaded from 10x Genomics, 
https://cf.10xgenomics.com/samples/cell-
exp/6.1.0/10k_PBMC_3p_nextgem_Chromium_X/10k_PBMC_
3p_nextgem_Chromium_X_raw_feature_bc_matrix.h5. The 1 
million PBMC dataset was downloaded from Parse Biosciences, 
https://cdn.parsebiosciences.com/1M_PBMC_T1D_Parse.zip. 
The retina (Menon et al., 2019), macrophage (Carvalho et al., 
2021) and keratinocyte (Guerrero-Juarez et al., 2022) datasets 
were downloaded from GEO, (GSE137537, GSE164498 and 
GSE141526 respectively). The metadata for each dataset, 
including the cell barcodes of each semi-synthetic dataset, are 
included in supplementary data. 

Code availability 
Code is freely available as a python package on github: 
https://github.com/landerlabcode/BigSur. 

An R version can be found at: 
https://github.com/landerlabcode/BigSurR. 

A Mathematica version can be found at:  
https://github.com/landerlabcode/BigSurM. 
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