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Hôpital de l’Est Francilien (GHEF), Meaux, France, 3 University Hospital Center (CHU) Amiens Picardie, University of Picardie
Jules Verne (UPJV), Amiens, France, 4 Laboratory of Mathematics and Applications (LMA), Unité Mixte de Recherche (UMR)
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The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-
2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic
proportions. Cytokine profiles observed in COVID-19 patients have revealed increased
levels of IL-1b, IL-2, IL-6, and TNF-a and increased NF-kB pathway activity. Recent
evidence has shown that the upregulation of the WNT/b-catenin pathway is associated
with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome)
and especially in COVID-19 patients. Several studies have shown that the WNT/b-catenin
pathway interacts with PPARg in an opposing interplay in numerous diseases.
Furthermore, recent studies have highlighted the interesting role of PPARg agonists as
modulators of inflammatory and immunomodulatory drugs through the targeting of the
cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the
angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/b-
catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the
expression of ACE2. Evidence has highlighted the fact that PPARg agonists can increase
ACE2 expression, suggesting a possible role for PPARg agonists in the treatment of
COVID-19. This review therefore focuses on the opposing interplay between the canonical
WNT/b-catenin pathway and PPARg in SARS-CoV2 infection and the potential beneficial
role of PPARg agonists in this context.
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INTRODUCTION

The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Like SARS-
CoV, SARS-CoV-2 is a member of the Beta-coronavirus family. Although the majority of COVID-
19 patients present mild to moderate clinical features (1, 2), some may develop severe pneumonia or
suffer from the acute respiratory distress syndrome (ARDS) and multi-organ failure, leading to high
death rates. Nevertheless, the pathophysiology of Corona Virus Disease-19 (COVID-19) remains
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unclear. Currently, in patients with life-threatening ARDS, there
is growing evidence that virally-induced pro-inflammatory
cytokines (such as Interleukin (IL)-6 and tumor necrosis
factor-a (TNF-a)) enhance inflammation in the latter stages of
this disease (3–5). Such findings are further corroborated by
recent studies indicating that high levels of IL-6 are predictors of
mortality (6). Cytokine profiles in COVID-19 patients have
revealed increased levels of interleukin-1b (IL-1b), IL-2, IL-6
and tumor necrosis factor-alpha (TNFa) (7). TNF-a is one of the
main activators of IL-6 expression and an increase in baseline
plasma levels of IL-6 may predict that survival chances are poor
(7). Moreover, an increase in the proportion of Th17 cells has
been observed in COVID-19 patients, leading to the stimulation
of IL-6 (8). Recent evidence has shown that the upregulation of
the canonical WNT/b-catenin pathway is associated with
inflammation and a cytokine storm in ARDS (9) and especially
COVID-19 patients (10). Several studies have shown that, in
numerous diseases (11–14), the WNT/b-catenin pathway
interacts with PPARg (peroxisome proliferator-activated
receptor gamma) in an opposing interplay, with the effects of
one opposing those of the other. Recent studies have also
highlighted the possible role of PPARg agonists as modulators
of inflammatory and immunomodulatory drugs by targeting the
cytokine storm in COVID-19 patients (15, 16). This review
focuses on the opposing interplay between WNT/b-catenin
and PPARg in SARS-CoV-2 infection and the potential role of
PPARg agonists in this context.
INFLAMMATION AND SARS-CoV-2
INFECTION

The severity of symptoms in SARS-CoV-2 infection depends on
the viral infection and the host immune system. The COVID-19
cytokine profile of patients is closely associated with cytokine
release, indicating macrophage activation, and an increase in the
level of cytokines such as the TNFa, IL-6 and interferon-gamma
(IFN-g) (4).

The increased levels of these cytokines is a characteristic of
ARDS, with a low level of oxygen in the blood and shortness of
breath (17). The SARS-CoV-2 infection mainly damages the
endothelial cells of the airway, alveoli, vascular system, and
macrophages in the lungs. SARS-CoV-2 recruits the receptor
of angiotensin-converting enzyme 2 (ACE2) for infection (18).
The expression of the ACE2 receptor is decreased in the lungs in
the SARS-CoV-2 infection, dysregulating the renin-angiotensin
system, which damages the fluid and electrolyte balance, blood
pressure levels, and increases the vascular permeability and
inflammatory processes in the airway (19–21).

SARS-CoV recruits several immune-suppressive proteins
thereby increasing the immune response (22). SARS-CoV
enhances several structural and non-structural proteins acting as
antagonists of interferon signaling. Stopping interferon signaling
could be a response to: a) prevent the recognition of viral RNA via
the pattern recognition receptor (PRR), b) decrease the synthesis
of type I interferon protein by interrupting the toll-like receptor-1
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(TLR-1) and the retinoic acid-inducible gene I (RIG-I), and c)
increase the STAT pathway activity (23).

The SARS-CoV-2 virus causes massive damage to the infected
epithelial and endothelial cells, with an excessive release of
cytokines and chemokines (18). In SARS-CoV-2, stimulation
of the caspase-1 enhances the production of pro-inflammatory
cytokines such as IL-1b and IL-6 (24). These cytokines bind with
other immune cells, including T-lymphocytes and monocytes (8,
25). Severe COVID-19 patients show increased levels of the
granulocyte colony-stimulating factor (G-CSF), IL-2, IL-6, IL-10,
monocyte chemo-attractant peptide (MCP)-1), macrophage
inflammatory protein 1a (MIP1a) and TNF-a (26).

The nuclear factor-kB (NF-kB) pathway is one of the main
inflammation processes. NF-kB is a hetero-dimeric transcription
factor belonging to the Rel protein family. Under physiological
conditions, RelA/p50, the heterodimer’s predominant form of
the NF-kB pathway, is inactivated in the cytoplasm by the IkB
protein (27). SARS-CoV infection leads to a release of pro-
inflammatory cytokines and growth factors to activate the IkB
Kinase (IKK), which phosphorylates and degrades the IkB
protein through an ubiquitination mechanism (28).

The NF-kB pathway can modulate the expression of pro-
inflammatory genes responsible for the cytokine storm. SARS-
CoV-2 can induce the nuclear translocation of the NF-kB
pathway to stimulate IL-6 expression (28). Numerous studies
have shown that SARS-CoV (29–31), including SARS-Cov-2
(32), can activate the NF-kB pathway.
THE CANONICAL WNT/b-CATENIN
PATHWAY

The name WNT is derived from Wingless drosophila
melanogaster and its mouse homolog Int. The canonical WNT/
b-catenin pathway is involved in several mechanisms, controlling
signaling, including embryogenesis, cell proliferation, migration
and polarity, apoptosis, and organogenesis (33). Nevertheless, the
WNT/b-catenin pathway can be altered in several pathological
diseases, such as inflammation, metabolic, neurological and
psychiatric disorders, fibrosis and cancer processes (34–42).

The WNT ligands belongs to the family of secreted lipid-
modified glycoproteins (43). WNT ligands are produced by
neurons and immune cells localized in the central nervous
system (CNS) (44). WNT pathway dysfunction can affect
numerous neurodegenerative pathologies (11, 45–48). The
canonical WNT pathway comprises the b-catenin, T-cell factor
and lymphoid enhancer factor (TCF/LEF). Cytoplasmic
accumulation of b-catenin is modulated by the destruction
complex AXIN, tumor suppressor adenomatous polyposis coli
(APC), and glycogen synthase kinase-3 (GSK-3b). In the absence
of WNT ligands, the destruction complex has a role in the
phosphorylation of the cytoplasmic b-catenin and leads to its
proteasomal destruction. However, when they are present, WNT
ligands bind with Frizzled (FZL) and LDL receptor-related protein
5/6 (LRP 5/6) to interrupt the destruction complex and prevent b-
catenin degradation into the proteasome. b-catenin translocates to
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the nucleus to interact with the TCF/LEF. This stimulates the
WNT target genes (49–51).

Glycogen synthase kinase-3b (GSK-3b) is one of the major
inhibitors of the WNT/b-catenin pathway (35, 36, 52–55). As an
intracellular serine-threonine kinase, GSK-3b is a major negative
controller of WNT signaling (56). GSK-3b is involved in the
control of numerous kinds of pathophysiological pathways,
including cell membrane signaling, cell polarity, and
inflammation (57–59). GSK-3b interacts by downregulating the
cytoplasmic b-catenin and stabilizing it to enhance its nuclear
migration (60).

A positive interplay has been recently observed between the
WNT/b-catenin pathway and inflammation, expressed by an
activated NF-ϰB pathway (37). Over-stimulation of WNT/b-
catenin leads to the enhancement of IϰB-a degradation and then
NF-ϰB pathway transactivation (61). The WNT/b-catenin
pathway increases COX expression, which then influences the
inflammatory response (62). In addition, the NF-ϰB pathway
downregulates GSK-3b and positively enhances b-catenin
signaling (63, 64).
WNT/b-CATENIN PATHWAY
AND SARS-CoV-2 INFECTION

Several studies have shown that WNT ligands, secreted by
immune cells, can control inflammatory response and immune
cell modulation (65–68). Moreover, WNT ligands play major roles
in tissue damage and repair (65). The WNT/b-catenin pathway is
upregulated in severe sepsis-induced acute lung injury and sepsis
mouse models (67, 69). TheWNT pathway is damaged in sepsis or
ARDS, and therefore plays a major role in fibrosis and
inflammation (66, 70). In COVID-19 patients, the transforming
growth factor (TGF-b) stimulates the WNT/b-catenin pathway,
leading to an increased risk of pulmonary fibrosis (70) and
pulmonary infection (10, 71) (Table 1). Several studies have
shown that the TGF-b and WNT/b-catenin pathways upregulate
each other in a positive feedback (54, 88).
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The TGF-b pathway is one of the main signaling pathways
involved in fibrosis through the enhancement of EMT and
fibroblast differentiation (89). Several inflammatory cytokines
have a positive relationship with the TGF-b pathway (89).
Interactions between the TGF-b pathway and Smad pathway
are involved in pulmonary fibrosis (90). The TGF-b/Smad
pathway has been shown to be a promotor of PAI-1 synthesis
in SARS-CoV (91). Moreover, cytokines can activate the JAK/
STAT pathway (92) to dysregulate cellular homeostasis,
proliferation and apoptosis (93). IL-6 can activate the JAK/
STAT pathway in T helper cells (4, 94) to induce several
biological functions, such as immune regulation, lymphocyte
differentiation and oxidative stress (72, 95). The increase in IL-6
observed in severe COVID-19 patients is associated with
significantly lower survival rates (6, 96). COVID-19 patients
present both dysregulated JAK/STAT pathway (97) and
important role of TGF-b/Smad pathway (98).

In severe COVID-19 patients, serum IL-6 is significantly greater
than in non COVID-19 subjects (99). The excessive production of
inflammatory cytokines in the lungs of COVID-19 patients is
associated with the increase in macrophage activation (100). In a
mouse model of systemic inflammation, PAI-1 is involved in the
regulation of host inflammatory responses through Toll- like
Receptor-4 (TLR4)-mediated macrophage activation (101).
Activation of the NF-kB pathway results in stimulating the TGF-
b pathway in a vicious loop (73) and in concordance with PAI-1
(74). Thus, PAI-1 seems to be partly responsible for the excessive
production of cytokines by macrophages in severe COVID-19
patients (75). PAI-1 expression is associated with increased IL-10
and an activated TGF-b pathway (102). Thus, the activated TGF-b
pathway observed in COVID-19 patients may drive the pulmonary
fibrosis process (102). In COVID-19 patients, ECM dysregulation
could be one of the sources of stimulation of the TGF-b pathway
(76, 103) (Table 1). This stimulation is responsible for the activation
of integrin avb6 and thrombospondin induced by the STAT
pathway (76, 104). In COVID-19 patients, a vicious loop is
involved between the TGF-b pathway, the STAT pathway and
PAI-1 (75). Furthermore, the targets involved in fibrosis, such as
TABLE 1 | Mechanisms by which the WNT/b-catenin pathway is modulated and the possible roles of PPARg agonists in treating SARS-CoV-2 infection.

Target Expression Co-modulator Disease complications Model References

WNT/b-catenin Increase TGF-b Pulmonary fibrosis COVID-19 patients (65)
WNT/b-catenin Increase TGF-b Pulmonary infection COVID-19 patients (10, 67)
serum IL-6 Increase – – COVID-19 patients (72)
IL-10, TGF-b Increase PAI-1 Pulmonary fibrosis COVID-19 patients (73)
TGF-b Increase – ECM dysregulation COVID-19 patients (74, 75)
TGF-b Increase PAI-1 and collagen I Lung fibrosis SARS-coronavirus patients (76)
ACE2 Decrease Spike (S) viral protein Fibrosis, endothelial dysfunction, increased

inflammation, oxidative stress
COVID-19 patients (77–80)

ACE2 Increase pioglitazone – Animal models (81)
ACE2 Increase pioglitazone – Hypothesis research in

COVID-19 patients
(82)

NF-kB Decrease Pioglitazone – COVID-19 patients (15, 83)
Cytokines storm Decrease PPARg agonists – COVID-19 patients (84–86)
SARS-CoV-2 RNA synthesis
and replication

Decrease Pioglitazone (as 3CL-
Pro inhibitor)

– Hypothesis research in
COVID-19 patients

(87)
April 2021 | Volume 12 | A
ACE2, angiotensin-converting enzyme 2; COVID-19, Coronavirus disease 2019; Il-6, Interleukin-6; NF-kB, Nuclear factor-kB pathway; PPARg, peroxisome proliferator-activated receptor
gamma; SARS-CoV, severe acute respiratory syndrome coronavirus; TGF-b, transforming growth factor-beta; TNF-a, tumor necrosis factor-a.
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collagens, proteoglycans, integrins, the connective tissue growth
factor, and matrix metalloproteinases (MMPs) are activated by the
TGF-b pathway (105). SARS-CoV proteins may enhance the TGF-
b-induced expression of PAI-1 and collagen I to induce lung
fibrosis (106).
PPARg

PPARs (peroxisome proliferator-activated receptors) are ligand-
activated transcription factors that bind PPREs (PPAR-response
elements). In the nucleus, PPARs form a heterodimer with the
retinoid X receptor (RXR) (107). They are composed of a ligand-
binding domain that interacts with a DNA-binding domain to
modulate it (108). PPARs are involved in numerous
pathophysiological processes, such as cell differentiation, protein
metabolism, lipidmetabolism, carcinogenesis (109, 110), adipocyte
differentiation, insulin sensitivity and inflammation (111, 112).
PPARs are subdivided into three isoforms: PPARa, PPARg and
PPARb (113). PPARg is highly expressed in adipose tissue and
macrophages (114). PPARg ligands can be synthetic or natural.
PPARg ligands have hypoglycemic and hypocholesterolemic roles.
PPARg agonists such as thiazolidinediones (TZDs) have been used
to treat type 2 diabetes patients (115) and to decrease inflammatory
activity (115). Natural ligands include prostaglandins and
unsaturated fatty acids (116). Natural ligands include
prostaglandins and unsaturated fatty acids. Moreover, PPARg
ligands, such as thiazolidinediones, can directly decrease
inflammatory activity (12), fibrosis processes (117) and lung
inflammation (118). In adipocyte mitochondria, pioglitazone
(30–45 mg/day for three months) can reduce the expression of
cytokines, including IL-6 and TNFa in humans (119). In patients
with impaired glucose tolerance, four months (45 mg/day) of
treatment with pioglitazone is associated with a reduction of
monocyte IL-1, IL-6, IL-8 and lymphocyte IL-2, IL-6 and IL-8
(120). Pioglitazonehas also shown apotential for decreasing ferritin
in a rat model of angiotensin II-induced hypertension (121).
Moreover, pioglitazone can decrease the secretion of pro-
inflammatory cytokines (IL-1b, IL-6, and IL-8) and increase the
anti-inflammatory ones (e.g. IL-4 and IL-10) in astrocytes
stimulated by lipopolysaccharide (122). Pioglitazone (treatment
for 7 days) could decrease TNFa and IL-6mRNA expression in the
peritoneal lavagefluid (15, 123).Furthermore,pioglitazone is awell-
known inhibitor of lung inflammation and fibrosis (118), through
normalization of the expression of TNF-a (124). Pioglitazone and
rosiglitazone use can reduce both the increase in inflammatory
markers and the decrease in the glutamate transporter (GLT-1)
expression, in a primary mixed culture of astrocytes and microglia
caused by exposure to in vitro viral proteins (HIVADA gp120) and
in vivo models (125). Pioglitazone can decrease the neuro-
inflammation and maintain mitochondrial respiration (126). The
use of pioglitazone has also produced encouraging results in the
form of decreasing CRP and IL-6 levels (127). In animal studies,
pioglitazone has been shown to decrease mortality from sepsis and
lung injury by reducing inflammatory cytokine production in
omental tissue (123).
Frontiers in Immunology | www.frontiersin.org 4
OPPOSING INTERPLAY BETWEEN THE
WNT/b-CATENIN PATHWAY AND PPARg

Several studies have shown that the canonical WNT/b-catenin
pathway and PPARg act in an opposing manner in numerous
disorders, including cancers, neurodegenerative diseases,
psychiatric disorders and fibrosis processes (47, 117, 128). In
many diseases, PPARg expression is downregulated by b-catenin
signaling over-activation (12, 13, 48, 129–131). PPARg agonists
are considered to offer promising treatment through this
crosstalk process (13, 132, 133). Indeed, PPARg is considered
to be a negative b-catenin target gene (134, 135). The WNT/b-
catenin pathway and PPARg interact through a TCF/LEF
domain of b-catenin and a catenin-binding domain within
PPARg (77, 136). Through this link, a decrease in WNT/b-
catenin pathway activity enhances the activation of PPARg (78),
while PPARg over-expression inhibits b-catenin signaling (79).
OPPOSING INTERPLAY BETWEEN THE
WNT/b-CATENIN PATHWAY AND PPARg
IN SARS-CoV-2 INFECTION: THE ACE2
HYPOTHESIS

SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2)
as a main cell receptor to infect humans (80, 137–139) (Table 1).
ACE2 plays a leading role in the regulation of cardiovascular and
renal functions (140) and has also been shown to have a major
role in SARS-CoV-2 infection (80, 138). SARS-CoV-2 may invade
human organs besides the lungs through the expression of ACE2
(141). Recent findings have revealed that ACE2 is downregulated
in SARS-CoV-2-infected lung tissue (142). Evidence from studies
has shown that SARS-CoV-2 gains direct access to cells through
ACE2 receptors (80, 143), as happens with SARS-CoV (144).
SARS-CoV-2 infection leads to the downregulation of the
expression of ACE2 by binding with the spike (S) viral protein
– 1273 amino acid long protein (145). The pivotal role of ACE2 is
its degradation of angiotensin II into angiotensin1-7 (146). This
degradation mechanism is blocked by a selective ACE2 inhibitor,
such as MLN-4760 (147). A recent study focusing on SARS-CoV-
2 has shown that angiotensin II accumulation leads to fibrosis,
endothelial dysfunction, increased inflammation and oxidative
stress (81). Moreover, angiotensin II is associated with
macrophage act ivat ion and both IL-6 and TNF-a
overexpression (148). Furthermore, the deficiency in ACE2
could exacerbate outcomes in COVID-19 patients (148). In
COVID-19 patients, ACE2 expression is inversely associated
with the WNT/b-catenin and TGF-b pathways (141). ACE2
presents a positive association with PD-L1, a predictive marker
for active response to immune inhibitors (142). The stimulation of
ACE2 allows it to play a major protective role in the treatment of
hypertension, heart disease, cancer and COVID-19 (141), which
are all disorders that show an upregulation of the WNT/b-catenin
pathway. Rats with renal ischemia/reperfusion-induced injury
treated by pioglitazone have shown a downregulated WNT/b-
April 2021 | Volume 12 | Article 666693
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catenin pathway and increased ACE2 expression (82). Even
though very few studies have so far highlighted the possible role
of PPARg agonists in treating COVID-19 patients, rosiglitazone
has been shown to increase ACE2 expression in animal models
(81) and it could also potentially be used in diabetic patients with
COVID-19 (85).
PPARgAGONISTS IN SARS-CoV-2 INFECTION

To date, few studies have focused on the potentially interesting
link between PPARg agonists and the development of COVID-19.
The role of these agonists in SARS-CoV-2 infection therefore
remains hypothetical (15, 16) (Table 1). Currently, no clinical and
randomized trials have been investigated. However, in a recent
research review article it was hypothesized that pioglitazone could
play a role in attenuating lung injury in COVID-19 patients (15).
Pioglitazone is another available thiazolidinedione that may
inhibit the activation of NF-kB and MAPK pathways by
reducing the expression of CARD9 in COVID-19 patients (15,
86). Several reports have indicated that PPARg agonists could be
candidates for modulating the cytokine storm in the COVID-19
disease (87, 149, 150). A possible therapeutic role for pioglitazone
has been identified with respect to the SARS-CoV-2 infection (16).
Pioglitazone can act as a 3CL-Pro inhibitor to downregulate
SARS-CoV-2 RNA synthesis and replication (151). More
specifically, PPARg agonists can decrease the secretion of several
pro-inflammatory cytokines, including TNF-a, IL-1, and IL-6, in
both the monocytes and macrophages (152).

Recent studies have shown that numerous COVID-19 patients
present hypertension and diabetes, whereas few patients present
chronic obstructive-pulmonary diseases (153, 154). Moreover, a
recent meta-analysis showed that hypertension and diabetes were
highly associated with comorbidities in COVID-19 patients (155).
One of the major roles of PPARg agonists is to decrease TNF-a
expression, the proportion of Th17 cells and NF-kB activity in
order to repress inflammation (12). Numerous inflammatory
cytokines, chemokines, or intracellular pathways, such as TNF-a
and IL-6, can downregulate PPARg expression, whereas in
adipocytes, adiponectin increases PPARg expression and then
Frontiers in Immunology | www.frontiersin.org 5
downregulates the LPS-induced NF-ϰB expression and IL-6
production (156). Pioglitazone suppresses inflammation by
reducing TNF-a and MCP-1 expression, two important
mediators of inflammation (157). However, the use of PPARg
agonists may have some side effects, even though newer molecules
now have fewer disadvantages. The use of PPARg agonists may
therefore increase cardiovascular events, despite numerous studies
showing no significant increase in side effects (14).
CONCLUSION

In the rapidly evolving situation surrounding the COVID-19
pandemic, it is essential to better understand the different
pathways involved in the disease. In the SARS-CoV-2 infection,
the canonical WNT/b-catenin pathway seems to be upregulated in
association with the TGF-b and STAT pathways, whereas both
ACE2 and PPARg expression is downregulated, coupled with an
increased number of pro-inflammatory markers. Since increased
WNT/b-catenin pathway activity is associated with the increase of
immune signaling and fibrosis processes, the inhibition of this
pathway could result in the negative modulation of the SARS-
CoV-2 infection. PPARg agonists provide inexpensive treatments
that are commonly used around the globe. By directly targeting
inflammation, ACE2 and the WNT/b-catenin pathway, PPARg
agonists may well be prospective candidates for delivering SARS-
CoV-2 therapy in clinical settings.
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