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Epidemiological studies have found an increased incidence of colorectal cancer (CRC) in
people who undergo cholecystectomy compared to healthy individuals. After
cholecystectomy, bile enters the duodenum directly, unregulated by the timing of
meals. Disruption of the balance of bile acid metabolism and increased production of
primary bile acids, which in turn affects the composition and abundance of intestinal
microorganisms. The link among cholecystectomy, the gut microbiota, and the
occurrence and development of CRC is becoming clearer. However, due to the
complexity of the microbial community, the mechanistic connections are less well
understood. In this review, we summarize the changes of gut microbiota after
cholecystectomy and illuminate the potential mechanisms on CRC, such as
inflammation and immune regulation, production of genotoxins, metabolism of dietary
ingredients, activation of signaling pathways, and so on. By reviewing these, we aimed to
unravel the interactions between the gut microbiota and its host and be better positioned
to develop treatments for CRC after cholecystectomy.

Keywords: colorectal cancer, gut microbiota, bile acid, genotoxin, diet, epidemiology, cholecystectomy
INTRODUCTION

As one of the most common malignant tumors worldwide, colorectal cancer (CRC) ranks second
and third in morbidity and mortality rates, respectively, and its incidence is gradually increasing in
developing countries (1). It has been estimated that by 2030, the global disease burden of CRC will
increase by 60%, and there will be more than 2.2 million new cases and 1.1 million deaths worldwide
(2). Moreover, the morbidity and mortality rates of CRC are increasing yearly, particularly, in
individuals under the age of 50 (3). Furthermore, there is continuous growth in the overall number
of diagnosed cases, which contributes to the increasing disease burden of CRC (2). Therefore,
research on the risk factors and pathogenesis of CRC is becoming increasingly essential.
Abbreviations: CRC, colorectal cancer; ETBF, enterotoxigenic Bacteroides fragilis; IBD, inflammatory bowel disease; NF-kB,
nuclear factor kappa B; SCFAs, short-chain fatty acids.
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CRC is associated with multiple factors, including genetic
susceptibility and environmental factors, which play a greater
role in its occurrence and development (4). The gut microbiota is
among the various environmental factors recognized in cancer
biology. There are more than 3×1013 bacterial cells in the human
colorectum, which interact with host cells to regulate many
physiological processes. Disruption of the gut microbiota
affects the balance of physiological processes, contributing to
the development and progression of many diseases, such as
inflammatory bowel disease (IBD) and CRC (5–8).

Changes in lifestyle and eating habits are directly linked to an
increase in gallbladder diseases (9). Although cholecystectomy is
an acceptable standard treatment for gallbladder diseases (2016),
there is evidence that it is likely to increase the incidence of CRC
(10–13). However, little is known about the mechanisms
responsible for this process. There are two major theories on
the effects of cholecystectomy on CRC development (1):
cholecystectomy may alter the concentration, composition, and
excretion rhythm of bile acids, leading to an increase in the
content of secondary bile acids, which can continuously
stimulate intestinal cells. For example, deoxycholic acid and
lithocholic acid directly induce DNA damage and activate
signaling pathways, including epidermal growth factor
receptor-, Wnt-b-catenin-, and protein kinase C pathways,
thereby promoting the occurrence and development of CRC
(14) (2). Cholecystectomy causes changes in the composition and
abundance of the gut microbiota in both stool and tumor tissues.
The main manifestations are a decline in the diversity of the
microbiota, particularly, a decrease in beneficial bacteria and an
increase in pathogenic bacteria (15–19), including carcinogenic
bacteria, such as Fusobacterium nucleatum, enterotoxigenic
Bacteroides fragilis (ETBF), Clostridium difficile , and
Escherichia coli, which promote CRC development (20–23). A
recent study showed that the gut microbiota of patients who
underwent cholecystectomy was significantly different from that
of healthy people, but similar to that of patients with CRC, which
suggests that changes in the gut microbiota in patients
undergoing cholecystectomy may activate CRC occurrence and
progression (24).

In this article, we described the current knowledge on
changes in the gut microbiota after cholecystectomy, the
interaction between cholecystectomy and CRC, and potential
mechanisms, aiming to clarify the role of gut microbiota
alteration on the occurrence and development of CRC after
a cholecystectomy.
EPIDEMIOLOGICAL RELATIONSHIP
BETWEEN CHOLECYSTECTOMY
AND CRC

In 1978, Capron was the first to report that cholecystectomy
could increase the incidence of CRC (25). Subsequently, scholars
worldwide conducted a series of studies on the relationship
between cholecystectomy and the incidence of CRC, and two
studies published in 1981 involving patients in Finland and the
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United States provided evidence of a significant link between
cholecystectomy and CRC (10, 11).

A retrospective study in 2005 analyzed more than 8 million
people on a general medicine research database in the United
Kingdom and found that cholecystectomy was associated with
increased risk of colon cancer, but not rectal cancer (12). Some
meta-analyses have also indicated a correlation between
cholecystectomy and the increasing risk of CRC. Among these,
one analysis included ten cohort studies which indicated a strong
correlation between the proximal colon with a history of
cholecystectomy and carcinogenesis (13, 26, 27). These results
indicate that a history of cholecystectomy is closely associated
with the occurrence and progression of CRC.
EFFECT OF CHOLECYSTECTOMY ON
GUT MICROBIOTA

Trillions of microorganisms, such as bacteria, viruses, fungi, and
other life forms, live inside every person. Various organs show
distinct microbial inhabitants, but the inhabitants that have
drawn the most attention are those in the colorectum (28).
The gut microbiota is a key player in physiological activities,
including metabolism of food residues, synthesis of
micronutrients (such as vitamins), metabolism of primary bile
acids, synthesis of secondary bile acids, regulation of immune
responses, and metabolism and production of butyric acid and
other substances which provide substances for epithelial cell
renewal and mucosal integrity maintenance (29). Of note, the gut
microbiota is related to the development of a wide range of
digestive diseases, such as IBD, irritable bowel syndrome, and
CRC (30–32).

Cholecystectomy induces dramatic changes in intestinal
microecology, including the composition and function of the
gut microbiota. The changes in the gut microbiota after
cholecystectomy are shown in Table 1 (24, 33–37). At the
phylum level, the abundance of Fusobacteria increased,
whereas that of Proteobacteria decreased. Other phyla,
including Bacteroidetes, Firmicutes, and Actinobacteria,
showed distinct variations in different studies. Interestingly, the
changes in bacterial abundance of Firmicutes and Actinobacteria
were similar in all studies, in contrast to the alteration in the
bacterial abundance of Bacteroidetes. Different Bacteroides
species affect the health of the host in different ways (38–40).
For example, ETBF can induce colitis and promote the
occurrence of intestinal tumors, while other species, such as
Bacteroides vulgatus and Bacteroides fragilis, are associated with
the protection of the intestinal barrier. At the genus level, existing
research has not reached a consensus. Genera reported with
increasing abundance mainly include Anaerostipes, Dorea,
Clostridium, Mogibacterium, Flavonifractor, Shigella, and
Escherichia, whilst those with reduced abundance include
Parapr evo t e l l a , Prevo t e l l a , Barne s i e l l a , Al i s t i p e s ,
Faecalibacterium, Haemophilus, and Desulfovibrio. Few studies
have focused on the species level; Blautia obeum, Veillonella
parvula, Bacteroides ovatus, Parabacteroides distasonis, and
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Fusobacterium varium were found to increase, and Eubacterium
rectale, Roseburia faecis, and Bifidobacterium adolescentis were
reported to decrease.

It was widely reported that Escherichia and ETBF had increased
in abundance of CRC patients, promoting CRC development
through damaged DNA, and produced toxins. While beneficial
bacteria, including Alistipes and Faecalibacterium, which can
produce active metabolites, such as butyrate and folic acid and
inhibit the occurrence and development of CRC, were significantly
reduced in patients with cholecystectomy history (24, 33–37). Due
to differences in race, diet, and experimental conditions, changes
in the gut microbiota after cholecystectomy are inconsistent.
However, all the relevant studies confirm that alterations in the
gut microbiota promote CRC occurrence and progression.

Transformation of the gut microbiota after cholecystectomy
can be attributed to the following reasons (Figure 1): first, bile
excretion regulation weakens or disappears after cholecystectomy;
as a result, the bile flows into the intestine continuously (41). This
changed pattern is conducive to the growth of bacteria that
metabolize bile acid or live through bile-dependent fat
decomposition but has adverse effects on the growth of other
bacteria, thereby reshaping the gut microbiota. For example,
experiments have shown that deoxycholic acid inhibits the
growth of Lactobacillus, Bifidobacterium, and other bile-sensitive
bacteria (42). Second, cholecystectomy alters bowel movements by
changing the biophysical properties, fluid content, and pH of the
colorectum, thereby providing favorable or harmful growth
conditions for certain bacteria. For example, persistent secretion
of bile, which is alkaline, after cholecystectomy, increases the pH
value in the intestines, thereby inhibiting the proliferation of
Frontiers in Endocrinology | www.frontiersin.org 3
acidic-adapted bacteria, including Lactobacillus and
Bifidobacterium. Third, changes in immune homeostasis in the
intestines after cholecystectomy should be considered. For
example, surfactant protein D, an important substance secreted
by the gallbladder, can be transported to the intestinal lumen with
the entered bile and inhibits the growth of symbiotic bacteria
through direct binding. Cholecystectomy unavoidably decreases
the level of surfactant protein D in the human intestines, which
leads to disorders of bacterial and host-bacterial interactions and
affects the natural environment of the gut microbiota (43).
ROLE OF GUT MICROBIOTA IN CRC

CRC development and progression is a multi-factor interaction,
in which the role of the gut microbiota is now attracting
increasing attention. A study that analyzed the Health Care
Claims Database from the United States confirmed the
relationship between the recurrence of CRC and disorders of
the gut microbiota (44). Widespread use of antibiotics,
alterations in diet, obesity, stress, and other risk factors are
attributed to disorders of the gut microbiota in young people,
which may partly explain their increased risk of CRC (45). A
gradual increase in some bacteria and a constant decrease in
some bacteria in normal, para-adenoma, adenoma,
pericarcinomatous, and cancerous tissues have been found,
suggesting that bacterial distribution may act as an essential
factor in CRC development (46). Yu et al. conducted
metagenomic sequencing of the stool samples of patients with
CRC and healthy individuals and found significant differences in
TABLE 1 | Comparison of gut microbiota between patients who have undergone cholecystectomy and healthy individuals.

Country (Author & Year) Sample size Sequencing method Changes of gut microbiota after cholecystectomy

1 Israel (Keren et al., 2015) (33) 20 16S rRNA The diversity of microbiome is basically stable.
Phylum Bacteroides↑
Family Bacteroides, Parabacteraceae↑

2 China (Wang et al., 2018) (34) 135 16S rRNA The diversity of microbiome declined.
Phylum Actinomycetes, Firmicutes↑
Bacteroides, Proteobacteria↓
Genus Bifidobacterium, Dallella, Anaerobic↑
Palapuella, Prevotella, Barnesella, Alternaria,
Desulfovibrio↓

3 Korea (Yoon et al., 2019) (35) 108 16S rRNA The diversity of microbiome declined.
Phylum Firmicutes↑
Bacteroides↓
Species Broutella ovale, Veillonella parvula↑

4 China (Ren et al., 2020) (24) 104 16S rRNA The diversity of microbiome increased.
Phylum Bacteroides, Fusobacteria↑
Firmicutes, Actinomycetes↓
Genus Prevotella↑
Faecalibacterium↓
Species Bacteroides ovatus, Parabacteroides diundi,
Fusobacterium proteus↑
Eubacterium rectale, Roseburia faecis,
Bifidobacterium adolescentis↓

5 Germany (Frost et al., 2021) (36) 1968 16S rRNA The diversity of microbiome declined.
Genus Clostridium XIVa, Flavonoids, Clostridium
difficile, Escherichia, Shigella↑
Faecalibacterium, Haemophilus↓
February 2022 | Volume 13 | Article 815999
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FIGURE 1 | Role of cholecystectomy in the alternation of gut microbiota.
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the composition of the gut microbiota between the two groups
(47). Fecal bacterial transplantation studies were conducted, and
the incidence of CRC in mice inoculated with stool samples from
patients with CRC increased. The gut microbiota in the stool of
patients with CRC can activate the intestinal mucosal immunity
of mice and induce inflammation, so as to promote the
proliferation of epithelial cells and induce the development of
CRC (48). A number of clinical and animal studies have clarified
the relationship between the gut microbiota and CRC and
identified specific bacteria as key factors that affect the
occurrence and development of CRC (19, 46, 47, 49–58), as
summarized in Table 2, including relevant studies in the past
decade, reflecting the differences in the gut microbiota between
patients with CRC and healthy individuals. The diversity of the
gut microbiota in patients with CRC was lower than in healthy
individuals, with a decrease in beneficial bacteria and an increase
in pathogenic bacteria. For example, Fusobacterium nucleatum,
Campylobacter, ETBF, and Escherichia coli that express the
polyketide synthase gene (pks+ Escherichia coli) were enriched
in the intestines of patients with CRC, induced inflammation,
damaged DNA, and produced toxins, thereby promoting CRC
development. Beneficial bacteria, including Bifidobacterium,
Lachnospira, Alistipes, and Faecalibacterium, which can
produce active metabolites, such as butyrate and folic acid and
inhibit the occurrence and development of CRC, were
significantly reduced.

Patients who underwent cholecystectomy and those with
CRC had similar gut microbial changes, an increased
abundance of pathogenic bacteria, including Escherichia,
Clostridium, and Dorea, and a decrease in beneficial bacteria,
including Prevotella, Alistipes, and Faecalibacterium (24, 33–37).
The gut microbiota can regulate the biological behavior of the
host through direct cell interactions and in a metabolite-
dependent manner. In addition, intestinal inflammation caused
by the gut microbiota, secretion of flora-derived factors, such as
genotoxins to induce DNA damage, production of metabolites,
Frontiers in Endocrinology | www.frontiersin.org 4
and direct activation of carcinogenic signaling pathways are
major factors in CRC development. Next, we proposed to
focus on the role of the gut microbiota in the process of CRC
and the carcinogenic mechanism of gut microbiota alterations
after cholecystectomy (Figure 2).

Inflammation and Immune Regulation
Inflammation is an established risk factor of CRC carcinogenesis.
Patients with IBD are more susceptible to CRC than the general
population (59, 60). Inflammation plays a key role in the
development of colitis-associated cancer, even in CRC
unrelated to IBD, and the levels of pro-inflammatory cytokines
are increased (61). The gut microbiota has the potential to form
an inflammatory microenvironment and, vice versa,
inflammation may affect gut microbiota composition. Colon
polyposis in Apcmin/+ mice is accompanied by the
accumulation of microorganisms in the polyps, triggering a
local inflammatory response (Dennis etal. (62). Besides,
defective expression of alarmin/IL-33 renders mice highly
susceptible to probiotic microbiota-promoted IL-1a-dependent
colitis and colitis-associated cancer (63). Gavage with stool
samples from patients with CRC caused enhanced
inflammation and intestinal adenoma development in a sterile
mouse model (48), indicating that specific components of the gut
microbiota promote the occurrence and development of CRC
through the activation of inflammation. For example, enriched
Fusobacterium nucleatum and Escherichia coli in the intestines of
patients with CRC can activate the nuclear factor kappa B (NF-
kB) signaling pathway and drive the infiltration of myeloid cells
in the tumor, producing a pro-inflammatory environment that is
conducive to the progression of colorectal tumors in Apcmin/+

mice (64, 65). ETBF can trigger an inflammatory cascade
involving interleukin 17, signal transducer and activator of
transcription 3, and NF-kB conduction in colonic epithelial
cells via the production of a metalloproteinase toxin,
promoting the local inflammatory environment in the
February 2022 | Volume 13 | Article 815999
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intestines and inducing carcinogenesis (66). Cholecystectomy
increases the abundance of Escherichia coli and decreases the
abundance of Faecalibacterium, which can secrete small-
molecule anti-inflammatory substances to inhibit intestinal
inflammation (36, 50).

Intestinal homeostasis is achieved by the continuous
interaction between the intestinal microbiome and the host
Frontiers in Endocrinology | www.frontiersin.org 5
immune system. Once this balance is disrupted, a variety of
diseases, such as IBD, appear due to immune system dysfunction
(67). In mice, BFT+ B. fragilis colonization was able to induce
Th-17-mediated colitis and distal CRC in an IL17-mediated NF-
kB upregulation-dependent manner in the APCmin/+ mouse
model (40), as demonstrated by Chung et al. (68) who
observed repressed BFT-induced tumor formation in APCmin
TABLE 2 | Comparison of gut microbiota between patients with colorectal cancer and healthy individuals.

Country (Author &
Year)

Sample
size

Sample
type

Sequencing
method

Changes of gut microbiota after cholecystectomy

1 China (Wang et al.,
2012) (19)

102 Stool 16S rRNA The diversity of microbiome is basically stable.
Phylum Firmicutes, Proteobacteria, Actinomycetes↑
Bacteroides, Fusobacteria↓
Genus Porphyromonas, Escherichia, Shigella, Enterococcus, Streptococcus, Peptostreptococcus↑
Bacteroides, Rossella, Alternaria, Eubacteria, Trichospirillum↓

2 China (Wu et al.,
2013) (50)

39 Stool 16S rRNA The diversity of microbiome is basically stable.
Phylum Fusobacterium↑
Family Eubacteriaceae, Clostridiaceae, Staphylococcus, Enterococcus, Fusobacteria,
Campylobacter, Porphyridaceae↑
Genus Bacteroides, Alternaria, Blautella, Dallella, Fusobacterium, Campylobacter, Escherichia,
Shigella, Odorbacterium, Oscillatoria, Testa Lactobacillus, Rumenococcus↑
Rossella, Faecalibacterium↓

3 America (Ahn et al.,
2013) (49)

151 Stool 16S rRNA The diversity of microbiome declined.
Phylum Bacteroides↑
Firmicutes↓
Genus Porphyromonas, Fusobacterium, Mirabilis↑
Faecococcus, Trichospirillum↓

4 America (Zackular
et al., 2014) (51)

60 Stool 16S rRNA Family Porphyridaceae, Enterobacteriaceae↑
Lacetospiraceae↓
Genus Porphyromonas, Fusobacterium↑
Bacteroides↓

5 France (Zeller et al.,
2014) (52)

114 Stool Metagenomic
sequencing

The diversity of microbiome is basically stable.
Phylum Bacteroides, Fusobacteria, Proteobacteria↑
Actinomycetes, Firmicutes↓
Species Saccharolytic Porphyromonas, Oral Peptostreptococcus, Fusobacterium nucleatum↑

6 Australia (Feng et al.,
2015) (53)

109 Stool Metagenomic
sequencing

The diversity of microbiome declined.
Genus Bacteroides, Alternaria, Bileophilus, Trichospira, Escherichia, Micromonas, Fusobacterium↑
Bifidobacterium, Streptococcus, Rumenococcus↓

7 China (Nakatsu et al.,
2015) (46)

113 Tissue 16S rRNA Genus Fusobacterium, Gemini, Peptostreptococcus, Micromonas, Streptococcus granulosus↑
Species Bacteroides fragilis↑

8 America (Baxter et al.,
2016) (54)

292 Stool 16S rRNA Genus Porphyria, Peptostreptococcus, Fusobacterium, Micromonas, Prevotella, Gemini↑
Species Saccharolytic Porphyromonas, Fusobacterium nucleatum, Micromonas parvum, Oral
Peptostreptococcus↑

9 Ireland (Flemer et al.,
2017) (55)

115 Stool/
Tissue

16S rRNA Genus Bacteroides, Rossella, Rumenococcus, Oscillatoria, Porphyromonas, Peptostreptococcus,
Micromonas, Fusobacterium↑

10 China (Yu et al., 2017)
(47)

128 Stool Metagenomic
sequencing

The diversity of microbiome declined.
Phylum Fusobacteria, Basidiomycota↑
Species Micromonas parvum, Oral Peptostreptococcus, Fusobacterium nucleatum, Bacteroides
fragilis, Solobacterium moorei↑

11 Saudi Arabia (Alomair
et al., 2018) (56)

58 Tissue Metagenomic
sequencing

The diversity of microbiome is basically stable.
Genus Peptostreptococcus, Porphyromonas, Listeria, Atopobium, Burkholderia, Collins,
Comamonas, Fusobacterium↑

12 Japan (Yachida et al.,
2019) (58)

616 Stool Metagenomic
sequencing

The diversity of microbiome increased.
Phylum Firmicutes, Fusobacteria, Bacteroides↑
Genus Bacteroides, Peptostreptococcus↑
Prevotella, Bifidobacterium↓
Species Fusobacterium nucleatum, Micromonas parvum, Streptococcus oralis, Solobacterium
moorei↑
Phascolarctobacterium succinatutens, Desulfovibrio longreachensis, Atopobium parvulum↓

13 Italy (Thomas et al.,
2019) (57)

826 Stool Metagenomic
sequencing

The diversity of microbiome increased.
Genus Peptostreptococcus, Clostridium, Porphyromonas, Escherichia coli↑
Bifidobacterium, Trichospirillum, Alternative Mycobacterium↓
Species Fusobacterium nucleatum, Porphyromonas saccharolyticus, Micromonas parvum, Oral
Peptostreptococcus, Escherichia coli↑
February 2022 | Volume 13 | Article 815999
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IL17/IL17 mice. Furthermore, it is reported that an accumulation of
regulatory T-expressing cells (Treg) cells in APCmin/+ mice after
BFT colonization, which could be a trigger for IL17-mediated
pro-oncogenic inflammatory responses. Certain probiotics, such
as Bifidobacterium infantis (69) and Bifidobacterium breve (70),
are able to activate intestinal dendritic cells (DCs) by interacting
with Toll-like receptors (TLRs) and inducing retinoid
metabolism, leading to the release of Foxp3+ Treg and type 1
regulatory T cells (Tr1) and IL-10 (71).

Production of Genotoxins
Another carcinogenic mechanism of the gut microbiota is the
production of genotoxins, which may interact with intracellular
signal cascades or result in mutations by binding to particular
cell surface receptors and it could also damage DNA. Colibactin
is a characteristic toxin produced by Escherichia coli, which
induces double-strand DNA breaks in intestinal cells, causing
cancer through its deoxyribonuclease activity (72–74). In
addition, the enriched ETBF in the intestine of patients with
CRC can produce a metalloproteinase toxin, which initiates cell
proliferation, activates c-Myc expression, increases polyamine
metabolism, and induces DNA damage, thereby promoting the
occurrence and development of CRC (75). Furthermore,
Salmonella typhi secretes virulence protein A, which enhances
the development and proliferation of colon tumors (76).
Interestingly, although many genotoxins can cause tumors,
recent research has indicated their potential use in cancer
Frontiers in Endocrinology | www.frontiersin.org 6
therapy (77). For example, Clostridium perfringens enterotoxin
is a pore-forming toxin with selective cytotoxicity, which rapidly
and effectively kills tumor cells (78). Several genotoxins have
been studied as therapeutic tools for cancer, including CRC (79);
however, their role as a cancer promoter is beyond doubt.

Metabolism of Dietary Ingredients
Metabolism is an essential process in the interaction between the
host and the microbiome. Genes encoded by the microorganisms
can metabolize several dietary nutrients, including host-
indigestible carbohydrates, such as dietary fiber, and host
endogenous compounds, such as bile acids. Bacteria in the
intestines produce a series of metabolites, including secondary
bile acids, sulfides, ammonia, nitrosamines, and short-chain fatty
acids (SCFAs), which are involved in the occurrence and
development of CRC.

A substantial accumulation of primary bile acids in the
intestines was discovered after cholecystectomy, and the
enriched Bacteroides ovatus and Parabacteroides diundi due to
cholecystectomy metabolized primary bile acids into secondary
ones, which participated in cell proliferation, apoptosis, DNA
injury, and other processes, promoting CRC carcinogenesis
(24, 80, 81). Dietary fiber is metabolized and decomposed into
SCFAs, including acetate, propionate, and butyrate, in the colon.
Among them, butyrate (the most widely studied SCFA) regulates
cell proliferation, apoptosis, and differentiation to inhibit CRC
(82, 83). Cholecystectomy drastically reduced the abundance of
intestinal bacteria responsible for metabolizing butyrate,
including Faecalibacterium and Roseburia faecis, thereby
decreasing the expression level of butyrate and promoting the
occurrence of CRC (24). Broutella ovale and Veillonella parvula,
which can activate azo reductase and produce toxic ammonia
substances which promote the occurrence of CRC, were observed
in patients who underwent cholecystectomy (35). Additionally,
the gut microbiota can also destroy the mucus barrier function
by producing sulfide, thereby intensifying the stimulation
of intestinal cells (84). For instance, cholecystectomy
significantly decreased the abundance of Desulfovibrio,
producing more sulfides and leading to metabolic disorders,
thereby stimulating intestinal epithelial cells and promoting
carcinogenesis (34).

Activation of Signaling Pathways
Multiple signaling pathways, such as the epithelial growth factor
receptor (EGFR), Wnt/b-catenin, NF-kB, and transforming
growth factor-beta pathways, are involved in CRC
development. Notably, the gut microbiota activates host
carcinogenic signaling pathways.

The EGFR signaling pathway is closely related to the
proliferation, apoptosis, and survival of colonic epithelial cells.
Activation of the EGFR signaling pathway by secondary bile acids
is achieved mainly by disturbing the structure of the cell
membrane (reduced membrane fluidity, altered membrane
cholesterol distribution), binding to natural ligands (e.g.,
epidermal growth factor), or inducing calcium signaling-
mediated non-dependent activation of ligands (85). Activation
of EGFR activates downstream MAPK/RAS/RAF/MEX/
FIGURE 2 | Role of the gut microbiota in the process of CRC and the
carcinogenic mechanism of gut microbiota alterations after cholecystectomy.
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extracellular signal-regulated kinase/proto-oncogene activator
protein-1, which in turn mediates cell proliferation and activates
RAS/RAF1/extracellular signal-regulated kinase signaling pathway
leading to upregulation of mucin 2, also activates the
phosphatidylinositol 3 kinase/Akt signaling pathway, which
regulates downstream target molecules such as Caspase-8,
leading to apoptosis (86, 87). When it comes to practical clinical
applications, using biomarkers to target anti-EGFR treatments for
metastatic CRC is well established, while the anti-EGFR antibody
cetuximab is only effective against a subgroup of CRC (88, 89).

Wnt/b-linked protein signaling plays a key role not only in
maintaining intestinal homeostasis but also in regulating the
proliferation of CRC cells. The Wnt/b-linked protein classical
signaling pathway regulates the expression of Wnt/b-linked
proteins through the binding of Wnt ligands to Frizzleds
receptors. The Wnt/b-linked protein can transfer to the
nucleus and interact with T-cell factor and lymphatic enhancer
transcription factors to modulate the transcription of
downstream gene targets (survivin, Cyclin D1, and c-Myc) and
affect the cell cycle pathway (90). A marked accumulation of
Fusobacterium nucleatum, which expresses FadA adhesin on its
surface, was found in patients with CRC. FadA adhesin
stimulates CRC cell growth by increasing the expression of
inflammatory genes, oncogenes, and transcription factors by
binding to E-cadherin, activating the Wnt/b-catenin signaling
pathway, and promoting the transcription of oncogenes (91).
Fusobacterium nucleatum can also directly activate toll-like
receptor signaling to promote tumor development (92).

NF-kB is a key regulator associated with inflammation and
cancer on multiple levels (93). The NF-kB signaling pathway
regulates many genes involved in different cellular processes,
such as cell differentiation, proliferation, genomic stability, and
immune responses (94), and its activation is involved in the
occurrence and development of CRC. Escherichia coli,
Fusobacterium nucleatum, and ETBF, which are enriched in
patients with CRC, are involved in the modulation of this
pathway (95). Mechanistically, Escherichia coli activates NF-kB
through increased phosphorylation of transcription factor 65
and inhibitor of NF-kB kinase alpha, inactivation of inhibitor of
NF-kB alpha, and induction of the Wnt/b-catenin pathway by
upregulation of b-catenin and its downstream genes (96). The
hyperactivation of NF-kB was also found in CRC tissues with
abundant Fusobacterium nucleatum. Furthermore, ETBF
activates the NF-kB pathway by stimulating intracellular
interleukin 17 secretion in Apc min/+ mice (68).

However, most of the existing research on cholecystectomy is
focused on clinical studies, and there is a lack of in-depth
mechanistic investigation after cholecystectomy. More studies
are needed in the future to elucidate the changes in signaling
pathways after cholecystectomy.
CONCLUSION AND PERSPECTIVE

Epidemiological studies on CRC and cholecystectomy have
proved the correlation between these two parameters and
Frontiers in Endocrinology | www.frontiersin.org 7
indicated that changes in the gut microbiota may be a vital
intermediate link. In this review, we summarized the changes in
the gut microbiota after cholecystectomy. With the variability of
sequencing technologies and the complexity of bacterial
populations, the conclusions were not unanimous among the
studies. Despite this, the differences in the gut microbiota
between patients who underwent cholecystectomy and healthy
individuals have been proven, and alterations of the gut
microbiota affect the development of CRC. Based on previous
studies, alterations in the gut microbiota after cholecystectomy
may lead to intestinal inflammation, increased metabolism of
harmful substances (such as secondary bile acids), and reduction
of secretion of beneficial substances (such as butyrate), resulting
in the progression of CRC.

There are some potential problems with the current research
on the relationship between altered gut microbiota and CRC
after cholecystectomy, the results of studies on gut microbiota
may vary by race, and different sequencing methods could also
affect the results. In addition, alterations of gut microbiota in
stool samples cannot fully reflect the tumor microenvironment.
And few studies have focused on the role of beneficial bacteria in
CRC. In the future, it is necessary to pay attention to the gut
microbiota in cancerous and pericarcinomatous tissues and
detect the changes in the local microbiome on the occurrence
and development of CRC. And a decrease in abundance of
beneficial bacteria should also be watched, which may be a
potential therapeutic target in CRC. With the rapid
development of high-throughput sequencing technology, in-
depth information can be provided to understand the links
between CRC, cholecystectomy, and the gut microbiota.
Notably, different bacterial species of the same genus had
mixed efficacy. Therefore, further studies should focus on the
changes and function of the gut microbiota in patients who have
undergone cholecystectomy at the species level. Hopefully, this
approach will elucidate how CRC, cholecystectomy, and gut
microbiota interact, allowing therapies to be targeted to
individual microbiological, cancer, and lifestyle factors.

Studies on gut microbiota and CRC aim to clarify the
mechanisms employed by gut microbiota in the development of
CRC and further apply them to the screening, diagnosis,
treatment, and prevention of CRC. For instance, Yu et al.
discovered a new fecal bacterial marker (‘m3’ from a
Lachnoclostridium) that can be used for the diagnosis of
colorectal adenoma and CRC. This is superior to other stool-
based tests such as fecal microbiota transplantation (FMT) and
may be used for the early screening of CRC in the future (97). In
addition, there are more clinical studies on techniques such as oral
probiotics and FMT. Recent studies have found that the probiotic
bacterium Lactobacillus reuteri and its produced antimicrobial
compound, reuterin, can inhibit the development of CRC by
depleting glutathione and inducing oxidative stress in CRC cells,
resulting in protein oxidation and impaired ribosome activity.
When CRC mice were orally administered Lactobacillus reuteri,
remission, tumor shrinkage, and prolonged survival were observed
in the mice (98). Recently, experimental studies on the efficacy of
FMT have focused on animal models. A recent study reported that
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FMT from wild to laboratory mice improved host adaptation and
resistance to dextran sodium sulfate/azoxymethane-induced
colorectal tumorigenesis, and thus a normal gut microbiome
plays a protective role in the development of CRC (99).
Furthermore, the effectiveness of immunotherapy seems to be
strongly influenced by the composition of the gut microbiota. Oral
administration of probiotics, such as Bifidobacterium (100) and
Akkermansia muciniphila (101), or FMT (102) from treatment-
responsive patients greatly enhanced PD1-based immunotherapy
and eliminated tumor growth through enhancing dendritic cell
and T-cell responses. At present, there are several ongoing
international clinical trials to validate the effect of gut
microbiota on CRC chemotherapy (NCT04021589,
NCT04131803, NCT01579591).

Currently, cholecystectomy is still the preferred treatment
option for gallbladder stones, gallbladder polyps, and
cholecystitis. Cholecystectomy is a very routine procedure and
more and more patients are undergoing cholecystectomy.
However, the possible induction of colorectal after
cholecystectomy is getting attention, and its specific mechanism
has not been elucidated yet. To clarify the specific mechanism of
CRC induced after cholecystectomy can interrupt the
development of CRC in a targeted way. The change of gut
microbiota after cholecystectomy is an important cause of CRC,
and further research on specific species of bacteria and their
mechanisms will provide important methods to prevent CRC in
the future. As research progresses, dietary intervention with
Frontiers in Endocrinology | www.frontiersin.org 8
probiotics or prebiotics, or changes in diet could potentially be
an effective way to prevent CRC in patients with cholecystectomy
history in the future.
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