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Abstract

The present study evaluated the cytotoxicity, antioxidant potential, and antimicrobial effect

on the antibiotic activity modulation of gelatin nanoparticles containing buriti oil (OPG). The

cytotoxicity analysis was performed on Chinese Hamster Ovary Cells (CHO) using a MTT

[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. The antioxidant potential

of buriti oil and OPG was determined by total antioxidant capacity, reducing power, and the

ABTS (2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) test. The modulating antimicro-

bial activity was evaluated by determining the minimum inhibitory concentration (MIC) con-

centration against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus,

gentamicin and norflaxacillin. The nanoformulation of OPG did not show a cytotoxic effect

on CHO cells and had a higher antioxidant potential than free buriti oil (p<0.05). The combi-

nation of antibiotics with free buriti oil and OPG was more efficient in inhibiting E. coli and P.

aeruginosa than isolated norfloxacillin and gentamicin (p<0.05). Regarding the inhibition of

S. aureus, OPG in combination with norfloxacillin reduced MIC by 50%. Nanoencapsulation

was a viable alternative to enhance functionality and adding commercial value to buriti oil.

Introduction

Mauritia palm or buriti (Mauritia flexuosa L.f.) is an abundant palm tree in South America,

predominant in extensive areas of Brazil and native to areas of the Amazon Forest and Cerrado

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265649 March 18, 2022 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Morais NdS, Passos TS, Ramos GR,

Ferreira VAF, Moreira SMG, Chaves Filho GP, et al.

(2022) Nanoencapsulation of buriti oil (Mauritia

flexuosa L.f.) in porcine gelatin enhances the

antioxidant potential and improves the effect on the

antibiotic activity modulation. PLoS ONE 17(3):

e0265649. https://doi.org/10.1371/journal.

pone.0265649

Editor: Thanh-Danh Nguyen, Vietnam Academy of

Science and Technology, VIET NAM

Received: December 9, 2021

Accepted: March 5, 2022

Published: March 18, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0265649

Copyright: © 2022 Morais et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

https://orcid.org/0000-0001-6797-9119
https://orcid.org/0000-0003-1795-4620
https://orcid.org/0000-0002-9419-9027
https://orcid.org/0000-0003-2042-4348
https://orcid.org/0000-0001-7595-5395
https://doi.org/10.1371/journal.pone.0265649
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265649&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265649&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265649&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265649&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265649&domain=pdf&date_stamp=2022-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265649&domain=pdf&date_stamp=2022-03-18
https://doi.org/10.1371/journal.pone.0265649
https://doi.org/10.1371/journal.pone.0265649
https://doi.org/10.1371/journal.pone.0265649
http://creativecommons.org/licenses/by/4.0/


biome [1]. Buriti fruit is considered as a functional food due to its high levels of carotenoids.

The pulp is regarded as one of the primary sources of carotenoids found in Brazilian flora

diversity, with emphasis on β carotene, which has provitamin activity A [2]. In addition to con-

taining minerals (calcium, zinc, sodium), fibers, proteins, and unsaturated fatty acids [3].

Buriti oil can be obtained from the fruit by extracting the pulp and/or pulp and peel by con-

ventional methods (mechanical and chemical extraction) [4–6], capable of influencing the

product characteristics. It is of great interest in the cosmetic and food product industries

because it has a wide and varied application due to its chemical composition [7].

The oil contains vitamin E considered an important antioxidant capable of interrupting the

action of free radicals and protecting the cytoplasmic membranes from oxidation, reducing

pre-cancerous lesions [8–10]. In addition, it also has unsaturated fatty acids, which are associ-

ated with reduced levels of triglycerides and total cholesterol, consequently constituting a pro-

tective factor for cardiovascular diseases [11] and a protective effect on platelet activation and

thrombosis [12]. It also has ascorbic acid (vitamin C), which helps form bone and teeth and

acts on the immune system, preventing flu, diabetes, and scurvy [13].

Furthermore, vegetable oils have a potential effect against microorganisms such as bacteria

[5]. Thus, the search for new compounds with antibacterial activity has been the objective of

some research to solve the problem associated with bacterial resistance, which has become

common in recent decades, increasing the concern of health authorities [14,15]. In this con-

text, natural products have been an essential tool for being a source of new compounds with

antibacterial properties, which can modulate and increase the activity and efficiency of con-

ventional antibiotics or be resistance modifying agents [15].

Thus, it is well-known that buriti oil has numerous biological properties [16]. However,

bioactive compounds are susceptible to degradation due to sensitivity to processing and stor-

age factors such as temperature, pH, presence of light, and oxygen [17,18]. The oil’s oxidation

process causes unpleasant tastes, loses nutrients, and produces many toxic compounds (hydro-

peroxides and aldehydes) that cause mutation, aging, stroke, emphysema, heart disease, and

cancer [19]. Another technological obstacle associated with the use of buriti oil in foods is asso-

ciated with its lipophilic nature, which makes it challenging to apply in products with aqueous

matrices, limiting the development of new products [20].

In this context, nanoencapsulation is a strategy that can be used to protect substances

against environmental factors (heat, light, oxygen, humidity), improve stability, acceptability,

and handling conditions, restrict contact with other components and control the release and

delivery of bioactives to the target site. In addition, reducing the size to the nanometric scale

(< 100 nm) facilitates dispersion of lipophilic substances in an aqueous matrix due to the

increase in the contact surface. It can also preserve or enhance the biological properties of bio-

active compounds [19–22]. Thus, nanoencapsulation can increase the antioxidant and antimi-

crobial potential, among other functionalities, reducing the concentration of the bioactive of

interest necessary to achieve the desired effect [23].

Considering the properties present in vegetable oils, especially buriti oil, and the current

needs of the food and pharmaceutical industry, our research group has been developing stud-

ies with nanoencapsulated vegetable oils [20,22]. Castro et al. [20] investigated the nanoencap-

sulation of buriti oil using different encapsulating agents, namely porcine gelatin (OPG) and

the combination of sodium alginate and porcine gelatin (OAG), to evaluate the effect on water

dispersibility and antimicrobial activity. The results showed that OPG presented the smallest

particle size [51.0 (6.07) nm] and the best chemical interaction between the materials present

in the system. As a result, OPG showed greater dispersibility in water [85.62% (7.82)] and

potentiated the antimicrobial activity of buriti oil in 59%, 62%, and 43% against the bacteria

Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus, respectively.
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Therefore, due to the potential of buriti oil both from an economic and biotechnological

point of view and the results obtained by Castro et al. [20], it is of fundamental importance to

deepen the knowledge regarding the effects of nanoencapsulation on the biological properties

of buriti oil. The resistance of microorganisms to antibiotics has increased interest in research

that seeks new drugs with antimicrobial potential or that act by modulating the activity of

existing antibiotics. This study aimed to assess the cytotoxicity, antioxidant potential, and

modulating action on antibiotics of nanoparticles based on porcine gelatin containing buriti

oil.

Materials and methods

Materials

Buriti oil from theMauritia flexuosa species was supplied by the Plantus1 S.A. cosmetics com-

pany (Nı́sia Floresta, in the Rio Grande do Norte, Brazil) with an IBD certificate (Agricultural

and Food Inspections and Certifications). The samples were transported under protection

from light and refrigerated to the Bromatology Laboratory of the Department of Pharmacy at

the Federal University of Rio Grande do Norte (UFRN), where they were stored at 4˚C.

Porcine gelatin (Type A), the surfactant Tween 20, 2,2’-azinobis (3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS), and resazurin obtained from Sigma-Aldrich1.

Microorganisms

Multiresistant strains of Staphylococcus aureus 10, Pseudomonas aeruginosa 24, and Escherichia
coli 06 were supplied by the Laboratory of Microbiology and Molecular Biology of the Regional

University of Cariri—URCA (Crato—CE, Brazil). The Chinese hamster ovary cell line

(CHO-K1 cells) was purchased from ATCC1 CCL-61™ (American Type Culture Collection),

and Dulbecco’s Modified Eagle Culture Medium (DMEM; Gibco, Gaithersbug, MD, USA)

was used, while 3–4,5-Dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) was

purchased from Invitrogen (MTT; Invitrogen, Oregon, USA).

Methods

Obtaining the nanoformulation containing buriti oil

The nanoformulation based on porcine gelatine containing buriti oil (OPG) was obtained

through the technique of O/W emulsification followed by dispersion of a solution containing

encapsulating agent in the obtained emulsion based on Medeiros et al. [24] with modifications

proposed by Castro et al. [20]. Porcine gelatin (Sigma1) and Tween 20 (Sigma1) were used

as encapsulating agent and surfactant, respectively. After the encapsulation process, the result-

ing emulsion was subjected to drying by lyophilization (LioTop L101) at -57˚C and pressure of

43 μHg.

Characterization of the obtained nanoparticles

The new batch of OPG obtained for this study was characterized to determine its morphology,

particle diameter, and chemical interactions by scanning electron microscopy, Dynamic Light

Scattering, and Fourier Transform Infrared Spectroscopy, respectively, according to Castro

et al. [20]. Furthermore, it was also evaluated concerning the distribution of charges on the

surface of the particles and in terms of thermal resistance by Zeta Potential, Thermogravime-

try, and Differential Thermal Analysis, respectively.
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Scanning electron microscopy (SEM)

OPG was suspended in acetone, and the dispersion was dropped onto silicon plates attached

to stubs using carbon tape. It was subsequently analyzed at different magnifications in high

vacuum at 2–3 kV and without metallization using a FEG-SEM ZEISS microscope (AURIGA).

Dynamic light scattering (DLS)

The nanoformulation was subjected to crosslinking with glutaraldehyde to measure the diame-

ter of the particles, according to Castro et al. [20], to promote particle deagglomeration. It was

subsequently dispersed using an ultrasonic bath in DMSO (dimethylsulfoxide). Measurements

were performed in triplicate (60 s each) using only 2 mL of suspension. Data were analyzed

using the NANO-flex Control 0.9.7 software program. The entire experiment was carried out

in triplicate. The data obtained referring to the mean and standard deviation were plotted in

the Origin1 8 program to obtain the histogram with the particle size distribution.

Fourier transform infrared spectroscopy (FTIR)

Buriti oil, porcine gelatin, Tween 20, and OPG were homogenized separately with potassium

bromide (KBr). Then they were macerated and pressed to obtain pellets. The spectra were

recorded in transmittance with the mid-infrared region (400 to 4000 cm-1). A Shimadzu spec-

trometer (FTIR-8400S, IRAFFINITY-1 series, IR SOLUTION version 1.60 software) was used

with a scan number of 32 and resolution of 4 cm-1.

Zeta potential

The Zeta Potential measurements of the OPG nanoformulation were determined using a STA-

BINO II Particle charge Titration device (Colloid Metrix). First, 10 mg of the sample was

diluted in 10 mL of ultrapure water (� 18 MO cm-1) and then transferred to the cylindrical

Teflon cell. The zeta potential measurement with pH variation (similar to a titration) consisted

of individually adding aliquots (10 μL) of a strong acid (HCl—0.1 M) or a strong base (NaOH–

0.025 M).

Thermogravimetry (tg) and differential thermal analysis (DTA)

We employed thermoanalytical analyzes to evaluate the buriti oil, Tween 20, porcine gelatin,

and OPG nanoformulation. Thus, from 6 to 7 mg of each material were evaluated in a Shi-

madzu1DTG-60 thermal analyzer with a heating rate of 10˚C.min-1 in the temperature range

of 30˚C to 800˚C in a nitrogen atmosphere with a flow of 50 mL.min-1.

It is noteworthy that the variations in the residual mass of the materials concerning the vari-

ation in time and temperature were provided by the equipment. The Origin Pro Graphing &

Analysis version 9.8.0.200 software program from OriginLab1 was used to build the TG and

DTA graphs.

Incorporation efficiency (%)

The incorporation efficiency was determined based on El-Messery et al. [25] with modifica-

tions. 15 mL of hexane in 1.5 g of the nanoformulation were added under agitation in a TE-

421 rotary incubator (Tecnal1) for 2 min, and then the mixture was filtered on Whatman

No.1 filter paper.

Next, the content retained on the filter paper was washed twice with 20 mL of hexane. The

liquid phase was collected, and the hexane was removed in an incubator at 60˚C for 48 h. The

remaining extract represents the unencapsulated oil present on the surface of the encapsulates.
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The amount of nanoencapsulated oil was obtained through the difference between the initial

amount of oil used to promote the nanoencapsulation process and the free oil present on the

surface of the nanoparticles after the hexane evaporates, as described below (Eq 1). The average

amount of OPG obtained from the triplicate produced and measured with the aid of an analyt-

ical balance was considered (Edutec, EEQ9003F-B).

EO ðgÞ ¼ OUE � RO Eq ð1Þ

EO: Quantity of encapsulated oil; OUE: Weight of oil used in encapsulation; RO: Weight of

remaining oil.

The encapsulation incorporation was calculated using Eq 2, described below according to

El-Messery et al. [25], considering the average amount of OPG obtained from the triplicate

produced and measured using an analytical scale (Edutec, EEQ9003F-B).

EI %ð Þ ¼
EO
IO

� �

x100 Eq ð2Þ

EI: Encapsulation incorporation; EO: Amount of encapsulated oil; IO: Initial oil quantity.

Cytotoxicity evaluation

MTT assay. Chinese hamster ovary (CHO) cells were seeded in 96-well plates at a density

of 2x103 cells.mL-1 and cultured in α-MEM medium supplemented with 10% FCS (fetal bovine

serum), 1% antibiotic and antimycotic solution, and 1% glutamine (basal medium).

At the end of 24 hours, the medium was changed with the medium containing the buriti oil

and OPG samples at concentrations 50, 100, and 500 μg.mL-1, and cytotoxicity was evaluated

after 24, 48, and 72 hours. Cells maintained in the basal medium were used as a negative con-

trol. At the end of each time, 1 mg.mL-1 of MTT solubilized in PBS buffer was added, the

supernatant was aspirated after incubation at 37˚C for 4 hours, and the formazan crystals solu-

bilized with 200 μl of DMSO. Absorbance was measured at 570 nm in a plate reader (BioTek,

μQuant model), and cell viability was calculated according to Eq 3 described below.

MTT reduction %ð Þ ¼
Abs treatment

Abs negative control
x 100 Eq ð3Þ

Antioxidant activity

Total antioxidant capacity (TAC). The method proposed by Prieto et al [26]. was used to

determine TAC (Total antioxidant capacity). In each test tube, 100 μL of 40 mM sulfuric acid-

ammonium molybdate, 280 mM sodium phosphate, and 100 μL of the sample solutions were

added at a concentration of 2 mg.mL-1 and then 700 μL of distilled water in the test tubes.

Then, the tubes were shaken and incubated in a water bath (QUIMIS, Mod. Q334M-28) at

90˚C for 90 minutes to subsequently take the absorbance reading by spectrophotometry (Bios-

pectrum, Mod. SP-220) at 695 nm. The experiment was carried out in triplicate using solutions

containing the encapsulating agents as a control. Antioxidant activity was expressed in milli-

grams of ascorbic acid per gram of sample (mg AA.g of sample-1). The standard curve was con-

structed using different ascorbic acid concentrations (25–250 mg.g-1).

Reducing power test. The reducing power of the samples was quantified as described by

Wang et al. [27]. First, 4 mL of a reaction mixture containing different buriti oil sample (1–50

mg.mL-1) and OPG (3–20 mg.mL-1) concentrations in phosphate buffer (0.2 M, pH 6.6) were

incubated with potassium ferrocyanide (1% m/v) at 50˚C for 20 minutes. The reaction was ter-

minated by a TCA solution (10% m/v). The solution was then mixed with distilled water and

iron chloride (0.1% m/v), and the absorbance was measured at 700 nm. The control was

PLOS ONE Nanoencapsulation of buriti oil in porcine gelatin

PLOS ONE | https://doi.org/10.1371/journal.pone.0265649 March 18, 2022 5 / 24

https://doi.org/10.1371/journal.pone.0265649


carried out with the encapsulating agent. The result was expressed in the reduction of Fe+3 to

Fe+2 (%).

Antioxidant activity by 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•).

The ability to scavenge the 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•) radi-

cal cation was determined by adapting the methodology described by Rufino et al. [28]. The

ABTS• solution was prepared by adding ABTS• (7 mM) and potassium persulfate (2.45 mM)

and incubated at room temperature in the dark for 16 h. Next, the ABTS solution (1 mL) was

diluted in DMSO to obtain an absorbance of 0.8, at a wavelength of 734 nm [29,30]. Finally,

200 μL of this ABTS• radical solution was carefully added to the microplate well together with

40 μL of the evaluated samples.

The control was prepared to contain 200 μL of ABTS and 40 μL of DMSO. The absorbance

reading at 734 nm was performed in a microplate reader (Loccus–Model LMR FLEX). After

reading the absorbances, the antioxidant activity (AA) percentage was estimated using Eq 4

described below.

ABTS radical inhibition ¼ 100 X
Abs control � Abs sample

Abs control
Eq ð4Þ

The linear regression curve was determined to calculate the concentration required for the

samples (crude oil and OPG) to inhibit 50% of the ABTS radical (IC 50).

Determination of the modulating antimicrobial activity of antibiotics

The antimicrobial activity test was performed by determining the Minimum Inhibitory Con-

centration (MIC) of antibiotics (norfloxacin and gentamycin) and modulating activity using

buriti oil and OPG (dilution of in DMSO, in the concentration of 1024 μg.mL-1).

The bacteria used were multiresistant Pseudomonas auriginosa 24, Staphylococcus aureus
10, and Escherichia coli 06 strains collected in exams provided by the Regional University of

Cariri (Juazeiro do Norte/CE). The origin and resistance profile of these strains were described

by Bezerra et al. [31].

Bacteria cultures of 107 CFU.mL-1 kept in agar were subcultured in brain-heart broth

(Brain Heart Infusion—BHI) at 37˚C for 24 hours. Then, the distribution medium was

serially prepared at 1:10, and 100 μL were added into Eppendorfs of BHI medium in 900 μL of

inoculum. This distribution medium was transferred to the microplate, 100 μL in each well.

Norfloxacin and gentamycin antibiotics were added to the test, and their inhibitory effects

were investigated in their combinations with buriti oil and OPG. Both concentrations of anti-

biotics, crude buriti oil and OPG, were fixed at 1024 μg.mL-1 with a dilution of 100 μL in octu-

plicate. Controls were included in the trials, namely the medium and the inoculum, the

porcine gelatin, and the Triton X-100. The filled plates were incubated at 35 (±2)˚C for 24

hours [32].

Next, an indicator solution of sodium resazurin was prepared in sterile distilled water at a

concentration of 0.01% (m/v) to evidence the MIC of the samples. After incubation, 20 μL of

the indicator solution was added to each well and the plates underwent an incubation period

of 1 hour at room temperature. A change from blue to pink color due to the reduction of resa-

zurin indicated bacterial growth at 37˚C [32]. MIC was defined as the lowest concentration

capable of inhibiting microbial growth, as evidenced by the unaltered blue color.

According to the Eqs 5, 6 and 7 below, the fractional inhibitory concentration index (FICi)

measurement was determined to demonstrate the synergistic effect. The FICi index was inter-

preted according to the European Committee for Antimicrobial Susceptibility Testing (30),
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considering the synergistic effect FICi� 0.5 [33].

FIC buriti oil or OPG ¼
MIC of buriti oil or OPG in combination

MIC of buriti oil
Eq ð5Þ

FIC antibiotic ¼
MIC of antibiotic in combination

MIC of antibiotic
Eq ð6Þ

FIC index ðFICiÞ ¼ ðFIC oil buriti or OPGþ FIC antibioticÞ Eq ð7Þ

Statistical analysis

Statistical analysis was performed using Graph Pad Prism version 5.0 software. Results were

expressed as mean and standard deviation. First, the data obtained for the analyzes related to

antioxidant potential and antimicrobial activity and modulation of antibiotic action were eval-

uated for normality using the Shapiro-Wilk test. Data were evaluated using the Student’s t-test

to determine the antioxidant potential through CAT and ABTS tests and assess antimicrobial

activity and cytotoxicity. An analysis of variance and Tukey’s post-test were used for the reduc-

ing power. A value of p<0.05 was considered statistically significant in all cases.

Results and discussion

Characterization of porcine gelatin-based nanoparticles containing buriti

oil (OPG)

The micrographs obtained through Scanning Electron Microscopy (SEM) analysis (Fig 1A)

showed particles with a spherical shape, smooth surface without cracks and physical size at the

nanometer scale (<100 nm), demonstrating good protection of the core through the encapsu-

lation. The results obtained by Castro et al. [20] for buriti oil nanoencapsulated in porcine gel-

atin (OPG) were similar. Lira et al. [22] showed the same characteristics observed for shape

and surface in all formulations containing quinoa oil.

The data obtained for particle diameter using DLS (Fig 1B) showed mean diameter and

polydispersion index for OPG equal 72.0(0.68) and 0.371(0.0251), respectively. Thus, it is pos-

sible to state that OPG presented unimodal size distribution and reinforced the physical diam-

eter observed by SEM, confirming that it is a nanoparticle. The nanometric particle size

enables the food industry to improve the bioavailability of poorly soluble substances, such as

lipids and natural antioxidants [34].

Castro et al. [20] found values of 51.00 (6.07) nm and 0.40 (0.05) for particle size and poly-

dispersion index for OPG, respectively, constituting values close to those found in this work.

Particles with a large diameter and size distribution can affect the texture and compromise the

incorporated bioactive compounds, which did not occur in this study. The polydispersion

index of less than 1 indicates homogeneity in the analyzed particle [20,35]. Thus, a particle that

presents itself more homogeneously is inserted in a product more efficiently, not affecting the

texture, therefore being positive for consumer use [35,36].

Fig 1C shows the FTIR spectra obtained for nanoencapsulated buriti oil, buriti oil, Tween

20, porcine gelatin. Hydrocarbon groups were detected in the buriti oil spectrum (Fig 1C, line

b) by vibrational bands in the range of 2924–2852 cm-1 (C-H), in addition to bands in the

region of 3007 cm-1 and 1462 cm-1, which respectively characterize the–OH and–CH3 groups,

meaning that they reflect the strong constitution of this oil described in the literature as a

source ingredient of carotenoids [16]. The stretching of the vibrational band at 1743 cm-1
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indicates the presence of double bonds in the oil chain (C = C; C = O), which shows the con-

tent of unsaturated fatty acids [37].

The vibrational band at 1651 cm-1 in the porcine gelatin spectrum (Fig 1C, line d) reflects

the presence of the C = O bond (amide I), according to Silverstein & Webster [37]. Another

band is observed at 1529 cm-1, indicating amide (N-H) [38].

The spectrum of the Tween 20 surfactant (Fig 1C, line c) presented vibrations at 2920 cm-1

and 2864 cm-1 referring to stretching of the asymmetric and symmetrical methylene vibra-

tions; at 1735 cm-1, referring to the C = O connection; and at 1095 cm-1, referring to the vibra-

tion stretching of–CH2-O-CH2-[37].

When observing the spectrum obtained for OPG (Fig 1C, line a), it can be seen that there

was an interaction between porcine gelatin, buriti oil, and Tween 20 surfactant due to the attenu-

ation and/or displacement of the vibrational bands that characterize the presence of the buriti oil

(3007, 2924, 2852 and 1743 cm-1), indicating protection of the oil in the obtained particles. The

formation of new bands was also observed, which were not observed in the spectra of the raw

materials (1556, 1348, and 1097 cm-1), which may indicate hydrophobic interactions between

buriti oil and the non-polar amino acids of porcine gelatin. Castro et al. [20] also observed chem-

ical interactions between OPG constituents, meaning buriti oil with porcine gelatin.

The encapsulation efficiency determines the oil content (%) that was successfully encapsu-

lated inside the particles, also being an indicator of free oil present on the surface of the parti-

cles [39]. The nanoformulation yield was 13.65g (1.14), and the result of the encapsulation

efficiency was 89.56% (1.14). According to the literature is considered high efficiency, or

when� 80% [40,41].

Thus, this analysis confirmed the results obtained through the FTIR, which indicated a

chemical interaction between gelatin, buriti oil, and Tween 20, which managed to provide

greater oil retention. This result can be explained by the fact that proteins have physicochemi-

cal properties which favor forming and stabilizing emulsions than carbohydrates, thus allow-

ing greater oil retention in the particles [20,42].

It was necessary to ensure that the new batch of synthesized nanoformulation had the same

physical and chemical characteristics observed in Castro. et al. (2020). Therefore, it was neces-

sary to carry out the characterization to confirm that the diameter, morphology, chemical

interactions, and incorporation efficiency were similar to the batch obtained by Castro et al.

(2020), ensuring that the material’s functionality would be preserved and possible to continue

the study. This step is of fundamental importance to guarantee the standardization of each

batch of nanoformulation obtained.

Fig 1. Characterization of buriti oil nanoencapsulated in porcine gelatin. A. Micrograph obtained by Scanning Electron Microscopy. B. Dynamic light

scattering. C. Fourier Transform Infrared Spectroscopy of nanoencapsulated buriti oil (a), buriti oil (b), Tween 20 (c), porcine gelatin (d).

https://doi.org/10.1371/journal.pone.0265649.g001
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Because of these characterization results, it can be stated that the process for obtaining

nanoparticles used in this study is standardized and reproducible, which is essential to main-

tain the OPG nanoformulation properties even when obtaining new batches. Thus, it is possi-

ble to affirm that the nanoparticles developed have the same physical and chemical

characteristics as those obtained by Castro et al. [20] as desired, being possible to proceed with

the study for further investigation of physical and chemical characterization, safety, antioxi-

dant potential, and antimicrobial activity.

Zeta potential

Fig 2 shows OPG Zeta Potential values with the pH variation that resulted in a change in

charge density around the nanoparticle. Low zeta potential values show a tendency to settle in

an aqueous medium. Still, this low charge indicates steric stability of OPG as they are values

with charges close to zero, so they can aggregate more quickly, but they also have eased to dis-

perse [43].

As the nanoparticle is composed of porcine gelatin and has an amphoteric character,

changes in pH alter the OPG surface charge between positive and negative values [21]. It is

noteworthy that this change in surface charge influenced by the pH of the medium is an inter-

esting feature when working with the application of nanoparticles in biofilms [44,45].

Thermogravimetry (TG) and differential thermal analysis (DTA). The TG/DTA curves

of crude buriti oil, OPG, porcine gelatin, and Tween 20 are shown in Fig 3.

Buriti oil presents TG mass loss onset at approximately 365˚C associated with three endo-

thermic events in the DTA between 239 and 446˚C, which may be related to the complete

Fig 2. Zeta Potential of buriti oil nanoencapsulated in porcine gelatin under different pH conditions.

https://doi.org/10.1371/journal.pone.0265649.g002

PLOS ONE Nanoencapsulation of buriti oil in porcine gelatin

PLOS ONE | https://doi.org/10.1371/journal.pone.0265649 March 18, 2022 9 / 24

https://doi.org/10.1371/journal.pone.0265649.g002
https://doi.org/10.1371/journal.pone.0265649


breakdown of fatty acids [46]. The total degradation of buriti oil ends at 596˚C and thus pres-

ents two stages of mass loss, with a total loss of 98.87%. The thermal stability of buriti oil is

high when compared to other vegetable oils such as coconut oil (257˚C) and sesame oil

(282˚C) [46,47].

The OPG TG curve in Fig 3B shows an initial and progressive mass loss up to approxi-

mately 100˚C, corresponding to the endothermic peak in the DTA, which may indicate water

evaporation in the sample [48]. Then, the decomposition of the nanoparticle starts before the

buriti oil at a temperature onset of 248˚C. After this event, mass loss occurs during the endo-

thermic decomposition peak in both free buriti oil and nanoformulation. The mass loss is 95%

and 83%, respectively, which may be related to the decomposition of the material wall [49].

The OPG DTA curve presents an exothermic peak characteristic of the sample crystallization,

as the XRD indicates that the sample is partially amorphous, confirming this event.

The TG curve of porcine gelatin in Fig 3C had an initial thermal degradation between 35

and 160˚C, which may be related to the loss of adsorbed and bound water commonly seen

with air-dried gelatin [45], confirmed by the endothermic peak in the DTA in the same tem-

perature range. It still has the beginning of its degradation between 250˚C and 656˚C, with

two stages of very evident mass loss and with a total loss of 98%. In the DTA curve, it is possi-

ble to confirm the degradation with two endothermic peaks and one exothermic peak in this

same interval.

The Tween 20 TG curve in Fig 3D showed four decomposition stages. The first stage corre-

sponds to water loss (32-196˚C) and the DTA curve presenting an endothermic peak in this

temperature range, which corresponds to dehydration or desolvation. The beginning of

Tween 20 degradation can be seen in the TG curve at 198˚C with the end of degradation at

654˚C, with total mass loss in the TG curve of 100%.

In evaluating the TG curves, it was possible to note that buriti oil is more stable than the

other samples. However, although OPG has a lower initial degradation temperature than pure

Fig 3. Thermogravimetry graphs and differential thermal analysis. a) Porcine gelatin b) Tween 20 c) Buriti oil d)

OPG.

https://doi.org/10.1371/journal.pone.0265649.g003
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buriti oil, it is still a very high temperature for a product with a greater possibility of handling

and, consequently, application than pure oil. Tween 20 and porcine gelatin may have contributed

to maintaining buriti oil’s stability in the form of a nanoparticle and the same amount of degra-

dation steps. Escobar-Garcı́a et al. [50] performed a thermal analysis of oil rich in free eicosapen-

taenoic acid (EPA) and microencapsulated in concentrated whey protein and observed that the

encapsulated sample had a delay in the degradation curve than the unencapsulated sample, with

this result being attributed to the protection of the encapsulating agent [51].

Table 1 shows the steps of oil decomposition, encapsulating agent, Tween 20, and nanoen-

capsulated. Buriti oil has two degradation stages, with the first stage between 239.09˚C to

446.21˚C with a significant mass loss of 87.45%. The initial degradation temperature is similar

to the data found for buriti oil in the study of Lima et al. (231.9˚C), but it differs concerning

the mass loss, which was 59.6%. The results of the studies are often contradictory, as vegetable

oils are very complex because they have a complex chemical composition, including lipid oxi-

dation products, free fatty acids, phenolic compounds, glycerides, and non-glycerides that are

present in oils in different proportions [52].

The physicochemical characteristics of buriti oils are different due to their location and

other factors [53]. There are disagreements among authors regarding these degradation steps.

Garcia et al. [51] found only two steps for the degradation of buriti oil since the mass loss was

initially high. There are some hypotheses for these differences in vegetable oils, mainly regard-

ing their fatty acid composition. Lima et al. [54] associated the mass losses in two stages: the

triglycerides’ evaporation and/or pyrolysis. Garcia et al. [51] reported the first and second

weight loss as the oxidation of unsaturated and saturated fatty acids, respectively. The third

step was reported as the decomposition of the polymer formed during the oxidation process.

OPG showed four degradation stages, and in the first stage, there was a mass loss of 4.35%

at an initial temperature of 36.62˚C to 107.08˚C. Porcine gelatin and Tween 20 present an ini-

tial degradation temperature between 38.10˚C and 32.84˚C, respectively. This data suggests

that the initial degradation observed in OPG may come from the degradation of gelatin and

Tween 20. The second stage of nanoformulation degradation occurs at 218 to 388.47˚C, with a

mass loss of less than 50%, partially corresponding to buriti oil. This data shows the OPG mass

loss anticipation compared to free buriti oil, and however, the oil has a loss greater than 87%.

According to the data, it is observed that the stability of the free oil was higher in terms of

initial decomposition temperature. Still, its degradation is very drastic, while the

Table 1. The stages (TG) and mass loss of buriti oil, porcine gelatin, Tween 20 and OPG.

Sample Number of decomposition steps Start decomposition temperature/ ˚C End decomposition temperature /˚C Mass loss (%)

Buriti oil 1 239.09 446.21 87.45

2 446.00 596.00 11.42

Porcine gelatin 1 38.10 166.71 10.07

2 252.69 380.57 38.66

3 380.57 648.62 47.20

Tween 20 1 32.84 196.17 3.80

2 198.34 313.14 20.35

3 313.14 432.29 71.42

4 432.29 654.29 4.70

OPG 1 36.62 107.08 4.35

2 218.00 388.47 44.32

3 388.47 463.93 32.93

4 463.93 672.59 15.93

https://doi.org/10.1371/journal.pone.0265649.t001
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nanoformulation loses mass more slowly. It is important to emphasize that OPG is more stable

than porcine gelatin and Tween 2 0 and that it has stability approaching that of pure buriti oil.

In a way, OPG has significant advantages as it is a product with better handling, is more inno-

vative, and maintains high oil stability. These data are important for the food area since

nanoencapsulation exerts the possibility of using the product at different temperatures.

Table 2 presents the data of the DTA curves for buriti oil, encapsulating agent, Tween 20,

and nanoencapsulated. It is possible to observe that all samples showed four endothermic or

exothermic events characteristic of the analyzed samples. DTA can accurately measure the

enthalpic transition temperatures of energy absorption and release. In this case, it is observed

that the buriti oil and the nanoencapsulated present four characteristic endothermic events of

their decomposition. The first endothermic decomposition event in buriti oil occurs at

259.03˚C with a maximum peak of 282.98˚C (ΔH = 115.86). In comparison, this event seems

to happen at a lower temperature of 214.05˚C in OPG, with a maximum peak at 245.47˚C

(ΔH = 286.40), corroborating the data obtained in the TG. It is also possible to visualize the

endothermic peak in the nanoformulation characteristic of the dehydration of the encapsulat-

ing agent and Tween 20 around 31 and 78˚C.

Cytotoxicity—MTT assay

The toxicity investigation of nanoparticles from essential oils, vegetables, and algae is

necessary due to the unpredictable behavior that nanoscale materials have demonstrated

[55]. The International Organization for Standardization (ISO 10993) compiles several tests

on biomaterial/biological tissue interaction and determines that biocompatibility starts with

evaluating material from cytotoxicity [56]. Part 5 of ISO 10993 is responsible for suggesting

the tests and conditions necessary for evaluating the cytotoxicity test [56]. According to the

standard, a reduction greater than 30% in cell viability in the tests is indicative of the material’s

cytotoxicity.

Table 2. The stages DTA of buriti oil, porcine gelatin, Tween 20, and OPG.

Sample Stage Tonset/ ˚C Tpeak/ ˚C ΔH (J/g)

Buriti oil 1 259.03 # 282.98 115.86

2 350.09 # 381.57 2.85x106�

3 400.41 # 432.56 964.53

4 476.98 # 480.94 98.64

Porcine Gelatin 1 37.69 # 84.81 509.39

2 215.42 # 227.48 12.87

3 399.46 # 409.59 370.38

4 633.63 " 641.97 114.80

Tween 20 1 31.77 # 78.14 592.78

2 281.13 # 305.44 1.90x106�

3 397.64 " 402.05 6.03

4 500.21# 523.07 354.57

OPG 1 31.78 # 58.95 219.36

2 214.05 # 245.47 286.40

3 387.36 # 431.87 6.18x106�

4 583.34 # 601.43 154.45

�J/Kg; # Endothermic " Exothermic.

https://doi.org/10.1371/journal.pone.0265649.t002
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Fig 4 shows the MTT assay result. According to the data at the tested concentrations (0.5,

2.5, and 5 μg.mL-1), crude buriti oil and OPG were not cytotoxic to CHO cells. There is no sig-

nificant difference between buriti oil and OPG. Zanatta et al. [57] evaluated the cytotoxic effect

of an emulsion containing buriti oil on 3T3 cells (1000 mg.mL-1) and found no toxic effect,

corroborating the results found in this work.

When reduced to< 70%, the viability has cytotoxic potential, which was not seen in this

study [56]. Therefore, the buriti oil and the nanoformulation results are favorable because it

does not present toxicity to the cells, assuming that their use is safe.

Total antioxidant capacity (TAC)

TAC is determined using the phosphomolybdenum blue complex to reduce Mo+6 to Mo+5 by

antioxidant compounds and the formation of green Mo+5 complexes [58]. The results obtained

(Table 3) showed that the nanoencapsulation process increased the antioxidant capacity of buriti

oil threefold. This result can be explained by the greater dispersibility in water observed for the

Fig 4. Cell viability (%) through the MTT assay in CHO-KI cells evaluated at different times (A– 24h, B– 48h, and C–

72h) and concentrations of buriti oil and OPG.

https://doi.org/10.1371/journal.pone.0265649.g004

Table 3. Total antioxidant capacity of buriti oil and OPG.

Samples mg AA. g-1

Buriti oil 14.60 (1.63)a

OPG 48.34 (3.71)b

OPG: Buriti oil nanoencapsulated in a porcine gelatin.

AA: Ascorbic acid.

Mean and standard deviation (SD), n = 3. The different lowercase letters indicate a statistical difference.

https://doi.org/10.1371/journal.pone.0265649.t003
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OPG due to the obtained particle size, suggesting an increase in the contact surface for chemical

interaction with water. Besides, chemical interactions between the materials of the system, as evi-

denced in the FTIR, consequently increased the antioxidant activity of the encapsulate [20,22].

TAC analyses for crude and encapsulated buriti oil were not found in the literature. Ribeiro

et al. [59] evaluated the total antioxidant capacity of oil from faveleira seeds. The value found

was 0.04 (0.00) mg AA. g-1, constituting a lower result than its methanolic fraction [0.08 (0.00)

mg AA. g-1] and higher than its non-polar fraction [0.02 (0.00) mg AA. g-1].

Silva et al. [60] extracted astaxanthin from shrimp of the Litopenaeus vannamei species

using soybean oil and evaluated the antioxidant potential. The TAC results showed that the

astaxanthin-pigmented soybean oil had higher antioxidant activity than soybean oil (control).

Zhong and Shahidi [61] compared the antioxidant activities of polar and non-polar com-

pounds. They observed that a higher concentration of non-polar samples is needed to achieve

the optimal antioxidant activity. These data corroborate this study since the buriti oil concen-

tration required to present antioxidant activity was higher than that of OPG, which has a solu-

bility in water.

Reducing power

The reducing power assesses the ability of a sample to donate electrons in the presence of ferric

chloride under acidic conditions and thus reduce Fe+3 to Fe+2 [62]. The results (Fig 5) showed

that a lower OPG concentration than crude buriti oil was necessary to present similar antioxi-

dant activity. Therefore, it is noteworthy that there is 0.98 mg of buriti oil in 2 mg.mL-1 of

OPG according to the encapsulation efficiency and considering the amount and proportion of

the encapsulating agents. It is possible to note that this concentration was sufficient to promote

a reduction from Fe+3 to Fe+2 in 100%.

On the other hand, 1 mg. mL-1 of crude buriti oil promoted a reduction from Fe+3 to Fe+2

by only 0.74%. The encapsulate concentration must take into account that there are also

encapsulating agents in addition to the oil (swine gelatin and Tween 20 in a ratio of 1:2.15). In

addition, encapsulation efficiency must also be considered, as not all of the oil placed in the

system was encapsulated.

Based on this, the result obtained demonstrates that the nanoencapsulation process

enhanced the reducing power of buriti oil, with the reduction being greater as the concentra-

tion used in the test increases. No reduction power studies were found for crude or encapsu-

lated buriti oil. In analyzing turmeric essential oil, Mau et al. [63] observed that the reducing

power increases as the concentration of oil increases, corroborating the data found in this

work.

Antioxidant activity by 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic

acid (ABTS•)

Nanoencapsulation is known to increase the antioxidant potential of natural molecules [64–

66]. ABTS radical scavenging was evaluated using buriti oil and OPG (Table 4).

The results obtained demonstrate that the technological process of nanoencapsulation

favored the antioxidant activity since the amount of OPG used was about four times smaller

than that of buriti oil to reach the IC50.

Lira et al. [22] performed an analysis for crude quinoa oil and its three nanoencapsulated

formulations (encapsulated with porcine gelatin, encapsulated with whey protein, and porcine

gelatin in aqueous phase 1, and encapsulated with whey protein in aqueous phase 1 and gelatin

in aqueous phase 2). The IC 50 of the formulations was lower than that of the oil, corroborat-

ing the data found in this study.
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Eugenol essential oil (EO) was nanoencapsulated by the O/W emulsification method with

sodium caseinate, maltodextrin and Tween 80 [67]. The results showed that the nanoencapsu-

lated eugenol EO had a lower IC50 for the ABTS radical assay than crude eugenol [67].

This analysis showed that the OPG nanoparticle has greater antioxidant activity than its

unencapsulated form. Thus, nanoscale diameter allows for increased contact surface for

Fig 5. Reducing power test of crude buriti oil (A) and OPG nanoformulation. The data obtained presented parametric

distribution. Therefore, the ANOVA test with Tukey’s post-test was used to determine the significant differences.
�Equal letters indicate that the values do not differ statistically (p> 0.05).

https://doi.org/10.1371/journal.pone.0265649.g005
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chemical interactions, increased water dispersibility, bioaccessibility, and bioavailability com-

pared to micro or macro scale size (12). Therefore, nanoencapsulated oils are protected against

oxidation of their bioactive constituents and have a higher solubility in water [20,22,68]. This

difference is relevant for its applications in food matrices to prolong the biological action and

provide health benefits [65,69].

Determination of the modulating activity of antibiotics

Due to the emergence of multidrug-resistant strains to antibiotics, combined drugs are used

against these resistance mechanisms [70]. Antimicrobial resistance, in general, alters antibiotic

action through the following mechanisms: modification of the antimicrobial target (decreased

drug affinity), decreased drug absorption, activation of efflux mechanisms to expel the harmful

compound (overexpression efflux pumps), or global changes in critical metabolic pathways

through the modulation of regulatory networks [71]. One example is plant extracts that exhibit

synergistic activity against microorganisms, as they present a complex mixture of natural prod-

ucts and present a low risk in the development of bacterial resistance [72]. Some natural prod-

ucts such as plant extracts, essential oils [73], and fixed oils [74] have modified the activity of

antibiotics. Fig 6 shows the result of the MIC of buriti oil and OPG combined with norfloxacil-

lin and gentamycin antibiotics.

Gentamycin is a drug used to treat infections, especially by Gram-negative bacteria, such as

E. coli and P. aeruginosa, and it can also be used in combination [75]. Its MIC for E. coli and P.

aeruginosa is 1 μg.mL-1 and 2 μg.mL-1, respectively [76,77]. Norfloxacin is a broad-spectrum

antibiotic used for Gram-positive and Gram-negative bacteria [78]; it has a MIC of 25 μg.mL-1

for E. coli, 2 μg.mL-1 for P. aeruginosa, and 128 μg.mL-1 for S. aureus [79–81]. Fixed buriti oil

has a MIC >1024 for several strains, including E. coli, P. aeruginosa, and S. aureus [82].

Modulation with vegetable oils promotes better action on bacteria when there is a syner-

gism of this combination, reducing the amount or increasing the medication used [82]. The

mechanisms of action between antibiotic and oil [83,84] may be related to the interaction with

the lipid bilayer and cell membrane, affecting the respiratory chain and energy production by

the bacteria [85], or even interference with bacterial enzymatic systems that may enhance the

mechanism of action of antibiotics in combination with oils [86].

The combination of antibiotics with crude buriti oil (Fig 5A) and OPG (Fig 6B) showed

greater efficiency in inhibiting the action of the E. coli bacteria when compared to isolated anti-

biotics. The combination of norfloxacillin and gentamycin antibiotics with the crude buriti oil

reduced the MIC by 93.75% and 75%, respectively. Combining the same antibiotics with OPG

reduced the MIC of norfloxacillin by 98% and gentamycin by 75% in E. coli. For gentamycin,

the nanoencapsulated oil maintained the modulating activity of the crude oil in 75%.

Leão et al. [87] observed that a nanoemulsion containing buriti oil inhibited the microbial

growth of E. coli by 61% at a concentration of 3.14 μg.mL-1, demonstrating a bacteriostatic

effect. With this, the researchers observed that the physicochemical characteristics of the

nanoemulsion contribute to its biological activity. The particle size can directly affect the

Table 4. Antioxidant activity (IC 50) buriti oil and OPG.

Samples IC50 (mg. mL-1)

Buriti oil 4.18 (0.05)a

OPG 0.94 (0.02)b

OPG: Buriti oil nanoencapsulated in a porcine gelatin.

Mean and standard deviation (SD), n = 3. The different lowercase letters indicate a statistical difference.

https://doi.org/10.1371/journal.pone.0265649.t004
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antimicrobial activity of the emulsion based on essential oils, meaning a smaller size (nano-

metric scale) induces a greater inactivation of E. coli when compared to conventional emul-

sions [87].

Norfloxacillin alone, when compared with norfloxacillin combined with crude buriti oil

(Fig 6A), did not present modulating activity for S. aureus with a statistically significant differ-

ence (p>0.05). However, the antibiotic activity combined with OPG decreased the MIC by

50% (Fig 6B). For gentamycin combined with crude oil such as OPG, there was an antagonism

characterized by an increase in MIC by 100% in both demonstrated cases. Gentamycin does

not act on Gram-positive bacteria, as S. aureus [75], showing that the nanoformulation main-

tained the crude buriti oil activity. Two main mechanisms are involved in antagonistic effects

Fig 6. MIC values (μg.mL-1) of antibiotics in a bacterial growth assay in the presence of buriti oil (A) and buriti oil

nanoencapsulated in porcine gelatin (OPG) (B). The tests were performed under the following conditions:

Norfloxacillin (white bar), norfloxacillin + crude buriti oil/OPG (light gray bar), gentamicin (dark gray bar), and

gentamicin + crude buriti oil/OPG (black bar). ���p<0.0001.

https://doi.org/10.1371/journal.pone.0265649.g006
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associated with natural products and antibiotics: chelation of antibiotic constituents by the

natural product and competition of substances for the same binding site [88].

Norfloxacillin combined with buriti oil and OPG had greater inhibition for P. aeruginosa
bacteria than norfloxacillin alone, with a statistical difference between them (p<0.05) and a

99% reduction in MIC with OPG and 97% with crude buriti oil. Gentamycin showed a signifi-

cant difference in the two combinations (with free oil and OPG), in which there was a 50%

reduction in MIC. In this case, both the free oil and OPG had a synergistic effect with the

antibiotics.

Oils modify the antimicrobial effect depending on the antibiotic, oil tested and the bacterial

species analyzed [14], which can be attributed to an interaction of the oil with the plasma

membrane of the bacteria, increasing the permeability of the plasma membrane to the antibi-

otic [14,89,90].

Pereira et al. [82] used two antibiotics (gentamycin and amikacin) and two bacterial strains

(S. aureus and E. coli) to verify the modulating activity of fixed buriti oil. The synergistic effect

was observed in both antibiotics for S. aureus, with no MIC changes in E. coli.
The combination of buriti oil and OPG associated with norfloxacillin presenting FICi

values� 0.5 shows the synergistic effect for E. coli e P. aeruginosa (Table 5).
Combinations of natural products and antibiotics [91] can affect more than one target for

bacterial growth inhibition. This strategy is known as “herbal shotgun” or “synergistic multi-

effect targeting,” in which different therapeutic components collaborate in a synergistic-ago-

nistic way [88].

It is believed that both the antibacterial potential and the modulating activity of antibiotics

attributed to vegetable oils are, at least in part, associated with the fatty acids present in the

composition of the product since some fatty acids have already been shown to be able to

improve the antimicrobial activity. And inhibit bacterial growth [15,92]. It is reported that the

potential of vegetable oils to act as antibacterial modulators is in part associated with the deter-

gent property of fatty acids against the amphipathic structure of bacterial cell membranes [15].

In this context, the synergistic effect observed against E.coli and P. aeroginosamay be associ-

ated with the detergent properties of fatty acids.

The literature points out that long-chain unsaturated fatty acids, such as oleic and palmitic,

demonstrate antibacterial activity. In addition, the conjugated use of fatty acids and peptides

or antibiotics can potentiate antimicrobial activity due to increased membrane permeability

[93,94]. This ability to solubilize membrane components (lipids and proteins) creates gaps in

this structure that will affect metabolic processes essential for acquiring energy for the bacterial

cell, such as the electron transport chain and oxidative phosphorylation. Membrane damage

can also inhibit enzyme activity and toxic peroxidation [95]. In addition, the presence of

hydrophobic compounds in vegetable oils can increase the cell’s permeability to antibiotics,

Table 5. Fractional inhibitory concentration (FIC) and fractional inhibitory concentration indices (FICi) of Buriti oil, OPG, norfloxacillin, and gentamycin.

Microorganism MIC buriti oil (μg.mL-1) MIC Norfloxacillin (μg.mL-1) MIC Norfloxacillin+Buriti oil (μg.mL-1) FICi

E. coli 64 128 8 0.2

P. aeruginosa 128 512 16 0.1

MIC OPG

(μg.mL-1)

MIC Norfloxacillin (μg.mL-1) MIC Norfloxacillin+OPG (μg.mL-1) FICi

E. coli 16 128 2 0.1

P. aeruginosa 32 512 4 0.1

MIC: Minimum inhibitory concentration, FIC: Fractional inhibitory concentration, FICi: Fractional inhibitory concentration index, OPG: Buriti oil nanoencapsulated

in porcine gelatin.

https://doi.org/10.1371/journal.pone.0265649.t005
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resulting in greater efficiency and reducing the minimum concentration necessary for the anti-

biotic to act against the bacteria [15,96].

The present study is innovative and unprecedented in the literature because it manages to

evaluate the effect of the nanoformulation in the modulation of the antibiotic activity of

known drugs, and not only of the non-encapsulated vegetable oil as presented in other studies.

Thus, this study showed promising results for using free buriti oil and OPG in association with

modifying antibiotic resistance against multiresistant strains such as E. coli and P. aeroginosa.

OPG is synthesized using low-cost materials. In addition, obtaining it is scalable, and drying by

lyophilization is already used in the food industry. Thus, the nanoformulation has the potential to

be incorporated into foods to add nutritional value due to the presence of buriti oil and its bioac-

tive compounds, and also potential use in food packaging to act in the inhibition of pathogenic

bacteria. Thus, OPG presents itself as a viable alternative to promote the preservation and/or

enhancement of the oil’s bioactive properties, which favors its use by the food and pharmaceutical

industry, in addition to generating benefits to consumers’ health. The application of nanotechnol-

ogy in materials of plant origin promotes the valorization of this resource. It can contribute to the

local development of the buriti-producing region within the perspective of circular economy and

sustainable production. The present study shows, through FICi, the synergistic effect between the

antibiotics gentamicin and norfloxacillin and the OPG against E.coli and P. aeroginosa.
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Ânderson Dantas da Silva, Sara Sayonara da Cruz Nascimento, Francisco Canindé de Sousa
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