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Abstract: Childhood obesity could contribute to adulthood obesity, leading to adverse health out-
comes in adults. However, the mechanisms for how obesity is developed are still unclear. To
determine the epigenome-wide and genome-wide expression changes related with childhood obesity,
we compared microRNome and transcriptome levels as well as leptin protein levels in whole bloods
of 12 obese and 24 normal children aged 6 years. miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-
6803-3p were negatively associated with all obesity indicators. The four miRNAs were also associated
with 3948 mRNAs, and separate 475 mRNAs (185 among 3948 mRNAs) were associated with all
obesity indicators. The 2533 mRNAs (64.2%) among the 3948 mRNAs and 286 mRNAs (60.2%)
among the 475 mRNAs were confirmed as targets of the four miRNAs in public databases through
miRWalk 2.0. Leptin protein was associated with miR-6803-3p negatively and all obesity indicators
positively. Using DAVID bioinformatics resources 6.8, top three pathways for obesity-related gene
set were metabolic pathways, pathways in cancer, and PI3K-Akt signaling pathway. The top three
obesity-related disease classes were metabolic, cardiovascular, and chemdependency. Our results
support that childhood obesity could be developed through miRNAs-related epigenetic mechanism
and, further, these obesity-related epigenetic changes could control the pathways related with the
development of various diseases.

Keywords: children; obesity; miRNA; mRNA; omics; pathway; disease class

1. Introduction

Childhood obesity could contribute to adulthood obesity, leading to adverse health
outcomes in adults including diabetes and hypertension [1,2]. Because childhood obesity
has been steadily growing worldwide, it has become an important health issue in childhood
worldwide, including in Korean children [3]. Although dietary intake and exercise are
known to be major factors for childhood obesity, limited evidence has been reported
for the mechanisms of how childhood obesity could be developed [4]. Recently, several
studies have suggested that epigenetic changes in early life could be important in the
development of diseases [5–7]. Therefore, exploring obesity-related epigenome-wide
expression changes in young children may be very important for the identification of
the obesity-related pathway in children, and the prevention and treatment of childhood
obesity-related diseases.
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MicroRNAs (miRNAs) are a class of small (~22 nucleotide) endogenous non-coding
RNAs [8]. Because miRNAs could regulate gene expression post-transcriptionally by
binding to mRNAs, inhibiting translation, and promoting mRNA degradation, those could
affect physiological and pathological processes in relation with a variety of diseases [9,10].
Several studies have shown that miRNAs could be up- or down-regulated in relation with
obesity [9,11]. However, miRNAs reported to be regulated in relation with childhood
obesity were inconsistent depending on the studies [12].

For a long time, the function of a gene was thought to be completed through its mRNA
and protein, based on the central dogma [13]. For this reason, many efforts to find molecular
markers based on the mRNAs and proteins have been conducted, including changes
of mRNA related with chemical exposures [14,15]. Genome-wide mRNA expressions
(transcriptome) have been also broadly used to explore fundamental mechanisms of target
chemicals [14]. In fact, several studies have shown that a variety of mRNAs could be up- or
down-regulated in relation with obesity [16]. Therefore, identification of mRNA markers
changing in relation with obesity may be important for prevention and tailored therapy of
obesity-related diseases. However, limited evidence was available for transcriptome change
related with childhood obesity [16]. Furthermore, there were no reports for transcriptome
change in relation with epigenome-wide miRNAs (microRNome).

Therefore, in the present study, we conducted a nested case-control study using the
Environment and Development of Children (EDC) cohort. To evaluate the relationship
among miRNA expressions, mRNA expressions, and childhood obesity, we conducted
microRNome and transcriptome analyses in obese children and age- and sex-matched
normal controls, and investigated how miRNAs and mRNAs could be related with child-
hood obesity. We also explored for functional pathways and disease classes related with
childhood obesity in relation with miRNAs and mRNAs.

2. Materials and Methods
2.1. Study Participants and Blood Sampling

A total of 560 children among 726 children enrolled in the EDC cohort [17] visited
health examination center in Seoul National University Hospital at 6 years old. Whole
blood samples of subjects were collected for RNA extraction in the PAXgene Blood RNA
Tube (PreAnalytiX, Hombrechtikon, Switzerland) containing a proprietary reagent for
stabilization of intracellular RNA immediately upon collection since April 2016. However,
all data including basic characteristics and biospecimens collected since January 2017 were
not be opened to be used at the time we started the present study in accordance with the
scientific research committee policy for the EDC cohort. Therefore, only 238 children at
6 years old, who visited the EDC center between April 2016 and December 2016, provided
whole blood for total RNA extraction, and did not have any chronic diseases or abnormal
values for urinary uric acid and creatinine levels were targeted in the present study. We
selected obese cases and normal controls among the 238 children based on the national
pediatric obesity criteria for Korean children at pediatric age ≥2 years old. After calculation
of z-score for body mass index (BMI, kg/m2), children with BMI z-score ≥85th percentile
and <95th percentile were diagnosed as over-weighted, children with BMI z-score ≥95th
percentile and <99th percentile as obese, and children with BMI z-score ≥99th percentile as
extremely obese [18]. Since we had small number of obese or extremely obese children, we
selected 13 children with BMI z-score ≥85th percentile as obese cases and 26 children with
BMI z-score <85th percentile as normal controls matched with the cases for sex and age
(months) (1 case vs. 2 controls). The total RNA for microRNome and transcriptome level
measurements was extracted from 39 blood samples obtained from 13 obese cases and
26 normal controls. However, since the concentration of total RNA obtained from one case
among 13 cases was too low to conduct array hybridization, total RNA samples obtained
from the case and the case-matched 2 controls were not used for array hybridization,
and finally 36 RNA samples obtained from 12 cases and their matched 24 controls were
used for microRNome and transcriptome level measurements. For all cases and controls,
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we also measured two obesity-related protein markers, adiponectin and leptin, using
serum separated from blood samples collected in a SST tube (BD Vacutainer® SST™ Blood
Collection Tube, BD, Breda, The Netherlands).

2.2. Total RNA Extraction and Quality Assurance

Total RNA was extracted from blood samples collected from children using the Blood
miRNA Kit (PreAnalytiX, Hombrechtikon, Switzerland). The purity and quantity of total
RNA were evaluated using the ND-1000 Spectrophotometer (NanoDrop, Wilmington, NC,
USA). Absorbance measurements at 260 nm are commonly used to quantify RNA. The
RNA sample was considered to be relatively pure if the ratio of absorbance at 260 nm to
absorbance at 280 nm or 230 nm was ranged from 1.7 to 2.0. RNA integrity was evaluated
based on an RNA Integrity Number (RIN) value greater than or equal to 8 using the Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).

2.3. MicroRNome Level Measurements and Data Filtering

MicroRNome levels were measured using the Affymetrix GeneChip® miRNA 4.0
array (Santa Clara, CA, USA) according to the manufacturer’s protocol. Briefly, 130 ng
of total RNA were labeled with the FlashTag™ Biotin HSR RNA Labeling Kit (Life Tech-
nologies, Carlsbad, CA, USA). The labeled RNA was heated to 99 ◦C for 5 min and then
to 45 ◦C for 5 min. All hybridization, washing, staining, and scanning were conducted
following the protocol produced with the GeneChip™ Expression Wash, Stain and Scan
(Affymetrix, Santa Clara, CA, USA). Shortly, RNA-array hybridization was performed for
16 h at 48 ◦C with agitation at 60 rotations per minute on an GeneChip® Hybridizaiton
oven (Affymetrix, Santa Clara, CA, USA). The chips were washed and stained using a
GeneChip® Fluidics Station 450 (Affymetrix, Santa Clara, CA, USA) and then scanned
with an GeneChip® GCS 3000 scanner (Affymetrix, Santa Clara, CA, USA) to detect the
miRNA levels. Signal values were computed using the Affymetrix® GeneChip™ Com-
mand Console (AGCC) software (Santa Clara, CA, USA) for raw data extraction of miR-
NAs according to the Affymetrix data extraction protocol (https://tools.thermofisher.
com/content/sfs/manuals/agcc_command_console_user_guide.pdf accessed on 1 July
2020). Descriptive summarization for miRNA levels including normalization was con-
ducted using Affymetrix® Power Tools (APT) software apt-2.10.2.2 (Santa Clara, CA, USA)
(affymetrix-power-tools.html accessed on 1 Jul, 2020) and all array data were filtered based
on Homo sapiens. Only miRNAs that passed for all samples based on the default values
were used in the statistical analyses.

2.4. Transcriptome Level Measurements and Data Filtering

Transcriptome levels were measured using the Affymetrix GeneChip® Human Gene
2.0 ST Array (Santa Clara, CA, USA) according to the manufacturer’s protocol. Briefly,
100 ng of total RNA was used for cDNA synthesis using the GeneChip Whole Transcript
(WT) Amplification kit (GeneChip Whole Transcript PLUS reagent Kit, Santa Clara, CA,
USA). The sense cDNA was then fragmented and biotin-labeled with terminal deoxynu-
cleotidyl transferase (TdT) using the GeneChip WT Terminal labeling kit (GeneChip Whole
Transcript PLUS reagent Kit, Santa Clara, CA, USA). Approximately 5.5 µg of labeled DNA
was hybridized to the Affymetrix GeneChip® Human Gene 2.0 ST Array at 45 ◦C for 16 h
and then washed and stained using a GeneChip® Fluidics Station 450, then scanned with a
GeneChip® GCS 3000 scanner to detect the mRNA levels. Signal values were computed
using the Affymetrix® GeneChip™ Command Console (AGCC) software (Santa Clara,
CA, USA) for raw data extraction of mRNAs according to the Affymetrix data extraction
protocol (https://tools.thermofisher.com/content/sfs/manuals/agcc_command_console_
user_guide.pdf accessed on 1 July 2020). Descriptive summarization for mRNA levels
including normalization was conducted using Affymetrix® Power Tools (APT) software
apt-2.10.0 (Santa Clara, CA, USA) (affymetrix-power-tools.html accessed on 22 June 2020)
and all array data were filtered based on Homo sapiens.

https://tools.thermofisher.com/content/sfs/manuals/agcc_command_console_user_guide.pdf
https://tools.thermofisher.com/content/sfs/manuals/agcc_command_console_user_guide.pdf
https://tools.thermofisher.com/content/sfs/manuals/agcc_command_console_user_guide.pdf
https://tools.thermofisher.com/content/sfs/manuals/agcc_command_console_user_guide.pdf
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2.5. Measurement of Adiponectin and Leptin Levels in Blood

Because our target disease was obesity, we measured blood levels of two obesity-
related proteins, adiponectin and leptin.

Adiponectin level in serum was measured using BioVendor’s Human Adiponectin
ELISA system (BioVendor, Modrice, Czech Republic) by manufacturer’s recommenda-
tion. In brief, 50 µL of diluted sample was incubated in wells coated with recombinant
adiponectin together with 50 µL of horse radish peroxidase-labelled anti-adiponectin
antibody solution for 2 h with shaking. After a thorough wash, 200 µL of hydrogen per-
oxide/TMB substrate solution was added and incubated at room temperature for 10 min.
After the reaction is stopped by addition of sulfuric acid solution, absorbance of the result-
ing yellow-colored product is measured spectrophotometrically at 450 nm. The absorbance
is inversely proportional to the adiponectin concentration.

Leptin level in serum was also measured using a Human Leptin RIA Kit (Millipore,
Saint Louis, MO, USA) with radioimmunoassay system by manufacturer’s recommen-
dation. In brief, 100 µL of sample was vigorously mixed with 100 µL of Assay Buffer,
100 µL of 125I-Human Leptin, and 100 µL of Human Leptin antibody and incubated for
20 h at 4 ◦C. After mixture was vigorously mixed with 1 mL of cold Precipitating Reagent
and incubated at 4 ◦C for 20 min, the mixture was centrifuged at 4 ◦C and supernate was
drained. Leptin protein level was counted with pellets using an automated gamma counter
possessing data reduction capabilities.

2.6. Statistical Analyses

Basic characteristics were compared between cases and controls using χ2-test for fre-
quency comparison and using t-test for mean comparison. Only for miRNAs passed for all
subjects, the relationships among miRNAs, mRNAs, obesity-related proteins, and three obe-
sity indicators were evaluated. Relations among miRNAs, mRNAs, obesity-related proteins,
and two obesity indicators (BMI and BMI z-score) were evaluated using linear regression, and
the relations of miRNAs, mRNAs, and obesity-related proteins with obesity development
were evaluated using logistic regression. In all models, we adjusted for sex, age (months),
calorie intake, and current diseases. All statistical analyses for differential expressions and
visualizations were conducted using SAS Enterprise 7.1 (SAS Institute Inc., Cary, NC, USA)
and R statistical language 3.6.3 (https://www.r-project.org/ accessed on 1 July 2020).

2.7. Target Gene Prediction of Obesity-Associated miRNAs and Comparison with
Obesity-Related mRNAs

For miRNAs statistically associated with all three obesity indicators (BMI, BMI z-score,
and obesity development) (named as obesity-associated miRNAs), we predicted target
genes of obesity-associated miRNAs using publicly used target prediction programs. The
set of obesity-associated miRNAs was uploaded on miRWalk 2.0, a comprehensive atlas of
predicted and validated miRNA-target interactions (http://zmf.umm.uni-heidelberg.de/
apps/zmf/mirwalk2/custom.html accessed on 1 March 2021), and then mRNA targets
were selected if those were significantly predicted or validated in at least one of 12 programs
on miRWalk 2.0, including miRWalk, MicroT4, miRanda, miRBridge, miRDB, miRMap,
miRNAMap, PICTAR2, PITA, RNA22, RNAhybird, and Targetscan based on p < 0.05.
The predicted target genes were also compared with mRNAs which were significantly
associated with obesity-associated miRNAs (named as miRNAs-associated mRNAs) and
obesity-associated mRNAs.

2.8. Exploring Networking among miRNAs, mRNAs, Obesity-Related Proteins, and Obesity
using Cytoscape

Networking among miRNAs, mRNAs, obesity-related proteins, and obesity was
explored using the Cytoscape version 3.8.0 (U.S. National Institute of General Medical
Sciences (NIGMS), Bethesda, MD, USA). We assigned miRNAs, mRNAs, obesity-related
proteins, and obesity indicators as nodes, and directions for statistical associations among

https://www.r-project.org/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/custom.html
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/custom.html
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the nodes as edges. Because our outcome was obesity, we assigned obesity node as a value
1 with full red color and then calculated values for miRNA (or mRNA) nodes as 1 divided
by β values representing sizes of statistical associations between miRNAs (or mRNAs)
and BMI (or BMI z-score). If there were absolute values for miRNA (or mRNA) nodes
over 1, we divided the values for each miRNA (or mRNA) node by maximum absolute
value for miRNA (or mRNA) nodes to make the miRNA (or mRNA) nodes ranged from
−1 to 1. Because odds ratio (OR) > 1 and OR < 1, respectively, mean increase and decrease
for risk of obesity development, we calculated miRNA (or mRNA) node values as log10
OR divided by maximum absolute level of log10 OR to make obesity node as a value 1.
Node values for proteins were fixed as 1. The color for all nodes was represented as red if
it increased on obesity and blue if it decreased on obesity, while the color for edges was
represented as red for positive association and blue for negative association. In addition,
considering the coinstantaneous association of each mRNA with multiple miRNAs, we
grouped mRNAs which were associated with specific miRNAs.

We also validated the networking based on STRING, protein-protein interaction
networks, providing information of interactions among proteins (https://string-db.org/
accessed on 1 March 2021).

2.9. Exploring Functional Pathways and Diseases Classes

We explored functional pathways and diseases classes related with obesity using the
Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.8 Beta Knowl-
edgebase (https://david-d.ncifcrf.gov/ accessed on 1 March 2021). After uploading the
gene sets on DAVID, we explored the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and Genetic Association Database (GAD) disease classes related with obesity.

3. Results
3.1. Study Population

Our participants were composed of 18 boys and 18 girls (Table 1). Because obese cases
were matched with normal controls for sex and age (months), mean age was 70.1 months
in both cases and controls (Table 1). Children’ BMI (as well as weight) was significantly
different between obese cases and normal controls (p < 0.0001), but parental BMIs were not
different between cases and controls (Table 1). Because physical activity and calorie intake
could affect obesity in children, we compared physical activity and calorie intake between
obese cases and normal controls as well. Although we found no significant differences,
a little less physical activity and a little higher calorie intake per day in obese cases were
found compared with those of normal controls (Table 1). We also compared blood levels
of adiponectin and leptin as obesity-related proteins between obese cases and normal
controls. Leptin level was significantly different between cases and controls (p = 0.0373),
but adiponectin was not different between them (Table 1).

Table 1. Characteristics of the participants.

Characteristic, Mean ± SE (Range) or no. (%) Obese Children (n = 12) Normal Children (n = 24) p-Value 1

Child
Age, months 70.1 ± 0.4 (69–73) 70.1 ± 0.3 (69–73) 1.0

Sex, no. of boys (%) 6 (50.0) 12 (50.0) 1.0
Weight, kg 25.6 ± 0.8 (21.5–30.5) 20.4 ± 0.4 (17.5–25.8) <0.0001
Height, cm 118.5 ± 1.2 (112.3–125.1) 115.9 ± 0.6 (111.1–124.6) 0.0475

BMI, kg/m2 18.2 ± 0.3 (17.0–21.1) 15.1 ± 0.2 (13.7–17.0) <0.0001
Vigorous physical activity, mins/day 32.5 ± 9.9 (0–120) 41.5 ± 6.1 (0–120) 0.4245

Calorie intake, kcal/day 1671.8 ± 129.5
(939.2–2646.4) 1462.4 ± 66.4 (853.9–2099.9) 0.1184

Current drug use, no. (%)
No 12 (100) 22 (91.6) 0.5890
Flu 0 (0) 1 (4.2)

Rhinitis 0 (0) 1 (4.2)
Adiponectin, µg/mL 10.2 ± 0.7 (6.0–13.2) 9.0 ± 0.5 (5.5–17.6) 0.1744

Leptin, ng/mL 9.2 ± 1.5 (4.0–21.8) 5.7 ± 0.6 (3.0–15.6) 0.0373
Parent

Mother BMI (before pregnancy), kg/m2 21.3 ± 0.7 (16.6–25.6) 21.1 ± 0.4 (18.1–25.4) 0.8159
Father BMI, kg/m2 25.3 ± 0.9 (19.6–29.8) 25.5 ± 0.6 (21.0–31.7) 0.8178

1 Student’s t-test for mean comparison and χ2 test for frequency comparison. BMI, body mass index; SE, standard error.

https://string-db.org/
https://david-d.ncifcrf.gov/
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3.2. Relations among miRNAs, mRNAs, and Obesity Indicators

The miRNAs statistically associated with three obesity indicators are listed in Table 2.
Four miRNAs, miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-6803-3p, showed statisti-
cally negative associations with all three obesity indicators, BMI, BMI z-score, and obesity
development (p < 0.05 for all relations) (Table 2). The four obesity-associated miRNAs
(miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-6803-3p) were also found to be statisti-
cally associated with 3948 mRNAs (p < 0.05 for all relations) (Table S1). Further, a separate
475 mRNAs were statistically associated with all three obesity indicators (p < 0.05 for all
relations) (Table S2). Therefore, we compared 3948 mRNAs in Table S1 with 475 mRNAs
in Table S2 (Figure 1). Among 3948 four miRNAs-associated mRNAs, only 185 mRNAs
were found to be statistically associated with all three obesity indicators (Figure 1). In
more detail, miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-6803-3p, respectively, were
consistently associated with 121 mRNAs, 47 mRNAs, 89 mRNAs, and 66 mRNAs among
the 475 obesity-associated mRNAs (Figure 1).

Table 2. Associations between four miRNAs levels and three obesity indicators.

95% CI

miRNA Obesity Indicator β or OR Lower CI Upper CI p-Value

miR-328-3p BMI −1.83 −3.14 −0.52 0.0079
miR-1301-3p BMI −1.79 −3.51 −0.08 0.0412
miR-4685-3p BMI −1.49 −2.63 −0.35 0.0121
miR-6803-3p BMI −1.30 −2.25 −0.35 0.0091

miR-328-3p BMI z-score −1.04 −1.85 −0.22 0.0143
miR-1301-3p BMI z-score −1.08 −2.13 −0.03 0.0444
miR-4685-3p BMI z-score −0.89 −1.59 −0.19 0.0142
miR-6803-3p BMI z-score −0.78 −1.37 −0.20 0.0103

miR-328-3p Obesity
development 0.04 0.003 0.59 0.0192

miR-1301-3p Obesity
development 0.06 0.004 0.97 0.0475

miR-4685-3p Obesity
development 0.07 0.01 0.62 0.0178

miR-6803-3p Obesity
development 0.07 0.01 0.75 0.0289

β values for BMI and BMI z-score and OR for obesity development were evaluated after adjusted for sex, age
(month), calorie intake, and current disease. BMI, body mass index; OR, odds ratio; CI, confidence interval.

3.3. Prediction for Target Genes of the Four Obesity-Associated miRNAs and Comparison with
Four miRNAs-Associated mRNAs or Obesity-Associated mRNAs

In the prediction on target genes of four miRNAs, the number of target genes of
miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-6803-3p were found to be 14,647, 15,970,
13,347, and 18,002, respectively (Figure 1 and Table S3). Totally, 2533 mRNAs among the
3948 four miRNAs-associated mRNAs and 286 mRNAs among the 475 obesity-associated
mRNAs were confirmed as predicted target genes (Figure 1). The gene sets for each mRNAs
group in Figure 1 were listed in Table S4.
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Figure 1. Venn diagrams comparing counts of associations among 3948 mRNAs statistically associated with four obesity-
associated miRNAs, 19,382 genes predicted as targets of the four obesity-associated miRNAs, and 475 mRNAs statistically
associated with three obesity indicators. (a) miR-328-3p (b) miR-1301-3p (c) miR-4685-3p (d) miR-6803-3p (e) Total
four miRNAs.

3.4. Relations among miRNAs, mRNAs, and Obesity with Leptin

Because we found differentially expressed leptin levels between obese cases and
normal controls, we evaluated the relations among the four obesity-associated miRNAs,
obesity-associated mRNAs, and obesity indicators with leptin protein. Only one miRNA,
miR-6803-3p, showed a statistically negative association with leptin, while leptin was
associated with all three obesity indicators (p < 0.05 for all relations) (Table 3). On the
other hand, 1085 mRNAs were statistically associated with leptin with 588 positive and
497 negative associations (Figure 2 and Tables S5 and S6) (p < 0.05 for all).
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Table 3. Relations of leptin protein with four miRNAs and three obesity indicators.

95% CI

Independent Variable Dependent Variable β or OR Lower CI Upper CI p-Value

miR-328-3p Leptin −1.65 −4.80 1.50 0.2936
miR-1301-3p Leptin −0.88 −4.88 3.11 0.6540
miR-4685-3p Leptin −2.01 −4.65 0.64 0.1310
miR-6803-3p Leptin −2.26 −4.42 −0.10 0.0413

Leptin BMI 0.28 0.15 0.42 0.0002
Leptin BMI z-score 0.15 0.06 0.24 0.0020
Leptin Obesity development 1.66 1.09 2.54 0.0180

β values for relations among miRNAs, leptin, and BMI or BMI z-score and OR for leptin and obesity development
were evaluated after adjusted for sex, age (month), calorie intake, and current disease. BMI, body mass index; OR,
odds ratio; CI, confidence interval.
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Only 33 mRNAs among 185 mRNAs overlapped between the 3945 four miRNAs-
associated mRNAs and the 475 obesity-associated mRNAs were statistically associated
with leptin with 21 positive and 11 negative associations (p < 0.05 for all). Particularly
for miR-6803-3p, 18 mRNAs were associated with leptin with 9 positive and 9 negative
associations (Figure 2). Only 12 mRNAs among the 18 mRNAs were confirmed in both
statistical analyses and target prediction and those genes were as follows; CDC-like kinase 2
(CLK2), DEAD-box helicase 41 (DDX41), glutamate rich 6 (ERICH6), leucine rich repeats and
calponin homology domain containing 2 (LRCH2), progestin and adipoQ receptor family member 7
(PAQR7), pyruvate dehydrogenase complex component X (PDHX), piwi-like RNA-mediated gene
silencing 1 (PIWIL1), RAB3C, member RAS oncogene family (RAB3C), SSX family member 5
(SSX5), transcription factor 15 (TCF15), tetratricopeptide repeat domain 32 (TTC32), and zinc
finger protein 362 (ZNF362).

3.5. Networking among miRNAs, mRNAs, and Obesity with Leptin

We mapped networking among the four obesity-associated miRNAs, 185 mRNAs
which were statistically associated with all four miRNAs and three obesity indicators,
and obesity representing BMI z-score with leptin using Cytoscape (Figure 3). We found
complicated, but consistent networking each other statistically. The trend of relations
among those was replicated for obesity representing BMI or obesity development as well
(Figures S1 and S2).
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We validated functional networking found in our study based on STRING provid-
ing information of interactions among proteins. We confirmed six interactions among
proteins, which were statistically associated with each other at mRNA levels (β = −0.39
and p = 0.0013 for MAP kinase activating death domain (MADD) and RAB3C, β = 0.60
and p = 0.0009 for ubiquitin conjugating enzyme E2 Q1 (UBE2Q1) and kelch-like family
member 20 (KLHL20), β = 0.39 and p = 0.0327 for kinesin family member 2A (KIF2A) and
major histocompatibility complex, class II, DO alpha (HLA-DOA), β = 0.57 and p < 0.0001
for DNA polymerase alpha 1, catalytic subunit (POLA1) and KIF2A, β = 0.40 and p = 0.0056
for RNA polymerase II subunit J (POLR2J) and peptidylprolyl isomerase E (PPIE), and
β = 0.29 and p = 0.0292 for cation channel sperm associated 4 (CATSPER4) and catsper
channel auxiliary subunit zeta (CATSPERZ, also called TEX40).

3.6. KEGG Pathways and GAD Disease Classes Related with Obesity

We pooled the 3948 four miRNAs-associated mRNAs, the 19,382 predicted four
miRNAs-related mRNAs, and the 475 obesity-associated mRNAs in Figure 1 and then
explored functional pathways and disease classes for the full genes set (n = 20,914) using
DAVID 6.8 system.

Totally, top five obesity-related KEGG pathways were metabolic pathways (hsa01100),
pathways in cancer (hsa05200), PI3K-Akt signaling pathway (hsa04151), neuroactive ligand-
receptor interaction (hsa04080), and MAPK signaling pathway (hsa04010) in order of prece-
dence (Table 4), while top five obesity-related GAD disease classes were metabolic, cardio-
vascular, chemdependency, immune, and neurological in order of precedence (Table 5).
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Table 4. Top ten KEGG pathways related with obesity.

miRNA Name KEGG Pathways No. of
Database-Matched Genes

No. of Pathway-Related
Targets (%) p-Value

miR-328-3p hsa01100:Metabolic pathways 15,209 921 (6.1) 0.0030
hsa05200:Pathways in cancer 15,209 348 (2.3) <0.0001
hsa04151:PI3K-Akt signaling pathway 15,209 281 (1.8) 0.0001
hsa04010:MAPK signaling pathway 15,209 224 (1.5) <0.0001
hsa04080:Neuroactive ligand-receptor interaction 15,209 216 (1.4) 0.0231
hsa04144:Endocytosis 15,209 213 (1.4) <0.0001
hsa05166:HTLV-I infection 15,209 211 (1.4) 0.0001
hsa04014:Ras signaling pathway 15,209 199 (1.3) <0.0001
hsa04015:Rap1 signaling pathway 15,209 180 (1.2) <0.0001
hsa05205:Proteoglycans in cancer 15,209 179 (1.2) <0.0001

miR-1301-3p hsa01100:Metabolic pathways 16,121 980 (6.1) 0.0074
hsa05200:Pathways in cancer 16,121 356 (2.2) <0.0001
hsa04151:PI3K-Akt signaling pathway 16,121 303 (1.9) <0.0001
hsa04010:MAPK signaling pathway 16,121 230 (1.4) <0.0001
hsa04080:Neuroactive ligand-receptor interaction 16,121 229 (1.4) 0.0316
hsa04144:Endocytosis 16,121 222 (1.4) <0.0001
hsa05166:HTLV-I infection 16,121 220 (1.4) 0.0003
hsa04014:Ras signaling pathway 16,121 205 (1.3) <0.0001
hsa04060:Cytokine-cytokine receptor interaction 16,121 201 (1.2) 0.0426
hsa04510:Focal adhesion 16,121 192 (1.2) <0.0001

miR-4685-3p hsa05200:Pathways in cancer 13,811 320 (2.3) <0.0001
hsa04151:PI3K-Akt signaling pathway 13,811 260 (1.9) 0.0001
hsa04010:MAPK signaling pathway 13,811 208 (1.5) <0.0001
hsa05166:HTLV-I infection 13,811 199 (1.4) <0.0001
hsa04144:Endocytosis 13,811 196 (1.4) <0.0001
hsa04014:Ras signaling pathway 13,811 186 (1.3) <0.0001
hsa04015:Rap1 signaling pathway 13,811 170 (1.2) <0.0001
hsa05205:Proteoglycans in cancer 13,811 169 (1.2) <0.0001
hsa04510:Focal adhesion 13,811 168 (1.2) <0.0001
hsa04024:cAMP signaling pathway 13,811 165 (1.2) <0.0001

miR-6803-3p hsa01100:Metabolic pathways 17,852 1076 (6.0) 0.0086
hsa05200:Pathways in cancer 17,852 379 (2.1) <0.0001
hsa04151:PI3K-Akt signaling pathway 17,852 318 (1.8) 0.0004
hsa04080:Neuroactive ligand-receptor interaction 17,852 256 (1.4) 0.0012
hsa04010:MAPK signaling pathway 17,852 251 (1.4) <0.0001
hsa05166:HTLV-I infection 17,852 237 (1.3) 0.0004
hsa04144:Endocytosis 17,852 228 (1.3) <0.0001
hsa04014:Ras signaling pathway 17,852 215 (1.2) <0.0001
hsa04015:Rap1 signaling pathway 17,852 204 (1.1) <0.0001
hsa04810:Regulation of actin cytoskeleton 17,852 202 (1.1) <0.0001

Total hsa01100:Metabolic pathways 19,922 1173 (5.9) <0.0001
hsa05200:Pathways in cancer 19,922 390 (2.0) <0.0001
hsa04151:PI3K-Akt signaling pathway 19,922 334 (1.7) 0.0016
hsa04080:Neuroactive ligand-receptor interaction 19,922 272 (1.4) 0.0001
hsa04010:MAPK signaling pathway 19,922 253 (1.3) <0.0001
hsa05166:HTLV-I infection 19,922 249 (1.2) 0.0004
hsa04144:Endocytosis 19,922 237 (1.2) 0.0002
hsa04014:Ras signaling pathway 19,922 221 (1.1) 0.0019
hsa04810:Regulation of actin cytoskeleton 19,922 208 (1.0) 0.0001
hsa04015:Rap1 signaling pathway 19,922 207 (1.0) 0.0004
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Table 5. Top ten GAD disease classes related with obesity.

miRNA Name GAD Disease Classes No. of
Database-Matched Genes

No. of Disease
Class-Related Targets (%) p-Value

miR-328-3p METABOLIC 15,209 4014 (26.4) <0.0001
CARDIOVASCULAR 15,209 3286 (21.6) <0.0001
CHEMDEPENDENCY 15,209 2919 (19.2) <0.0001
NEUROLOGICAL 15,209 2218 (14.6) 0.0003
PHARMACOGENOMIC 15,209 2178 (14.3) <0.0001
PSYCH 15,209 1573 (10.3) <0.0001
UNKNOWN 15,209 1253 (8.2) 0.0004
OTHER 15,209 1242 (8.2) 0.0002
DEVELOPMENTAL 15,209 1172 (7.7) 0.0002
HEMATOLOGICAL 15,209 1169 (7.7) 0.0191

miR-1301-3p METABOLIC 16,121 4422 (27.4) <0.0001
CARDIOVASCULAR 16,121 3565 (22.1) <0.0001
CHEMDEPENDENCY 16,121 3208 (19.9) <0.0001
NEUROLOGICAL 16,121 2396 (14.9) <0.0001
PHARMACOGENOMIC 16,121 2318 (14.4) <0.0001
INFECTION 16,121 1762 (10.9) 0.0304
PSYCH 16,121 1703 (10.6) <0.0001
UNKNOWN 16,121 1356 (8.4) <0.0001
OTHER 16,121 1332 (8.3) 0.0003
DEVELOPMENTAL 16,121 1290 (8.0) <0.0001

miR-4685-3p METABOLIC 13,811 3686 (26.7) 0.0001
CARDIOVASCULAR 13,811 3017 (21.8) <0.0001
CHEMDEPENDENCY 13,811 2752 (19.9) <0.0001
NEUROLOGICAL 13,811 2051 (14.9) 0.0002
PHARMACOGENOMIC 13,811 2006 (14.5) <0.0001
PSYCH 13,811 1448 (10.5) <0.0001
UNKNOWN 13,811 1145 (8.3) 0.0065
OTHER 13,811 1129 (8.2) 0.0113
DEVELOPMENTAL 13,811 1099 (8.0) <0.0001
HEMATOLOGICAL 13,811 1088 (7.9) 0.0046

miR-6803-3p METABOLIC 17,852 4678 (26.2) <0.0001
CARDIOVASCULAR 17,852 3773 (21.1) <0.0001
CHEMDEPENDENCY 17,852 3340 (18.7) <0.0001
NEUROLOGICAL 17,852 2546 (14.3) 0.0069
PHARMACOGENOMIC 17,852 2493 (14.0) <0.0001
PSYCH 17,852 1790 (10.0) <0.0001
UNKNOWN 17,852 1452 (8.1) <0.0001
DEVELOPMENTAL 17,852 1356 (7.6) <0.0001
HEMATOLOGICAL 17,852 1356 (7.6) 0.0074
RENAL 17,852 1288 (7.2) <0.0001

Total METABOLIC 19,922 4959 (24.9) <0.0001
CARDIOVASCULAR 19,922 4003 (20.1) <0.0001
CHEMDEPENDENCY 19,922 3524 (17.7) <0.0001
IMMUNE 19,922 2786 (14.0) 0.0408
NEUROLOGICAL 19,922 2701 (13.6) 0.0189
PHARMACOGENOMIC 19,922 2650 (13.3) <0.0001
INFECTION 19,922 2057 (10.3) <0.0001
PSYCH 19,922 1880 (9.4) <0.0001
UNKNOWN 19,922 1556 (7.8) <0.0001
OTHER 19,922 1508 (7.6) 0.0006

4. Discussion

In the present study, we explored microRNome and transcriptome changes related
with childhood obesity. Four miRNAs, miR-328-3p, miR-1301-3p, miR-4685-3p, and miR-
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6803-3p, were negatively associated with three obesity indicators. The four miRNAs were
associated with 3948 mRNAs and separate 475 mRNAs were associated with three obesity
indicators. The 2533 mRNAs (64.2%) among 3948 mRNAs and 286 mRNAs (60.2%) among
475 mRNAs were confirmed in public databases through the target prediction programs.
The 185 mRNAs that overlapped between the 3948 mRNAs and the 475 mRNAs showed
consistently significant associations with three obesity indicators. Furthermore, leptin
protein was associated with obesity indicators positively and with miR-6803-3p negatively.
We also explored KEGG pathways and GAD disease classes related with childhood obesity,
and found that metabolic and cancer pathways and metabolic and cardiovascular disease
classes were found to be strongly related with childhood obesity.

In the present study, we measured miRNA and mRNA levels using an array system
and evaluated the relations among miRNAs, mRNAs, and obesity indicators. Even though
the arrays used in our study contained almost of miRNAs and mRNAs, we tried to
confirm obesity-related genes determined in our statistical analyses in public databases
as well. In total, 2706 mRNAs (63.9%) among 4238 mRNAs (combined from the 3948
four miRNAs-associated mRNAs and the 475 obesity-associated mRNAs) identified in
our statistical analyses were confirmed in public databases, indicating that our results
may be very reliable. Moreover, the remaining 1532 mRNAs were newly identified in our
study. We also checked how much proportion among 19,382 mRNAs predicted as targets
in our study were contained in our array system and found that 15,304 mRNAs (91.8%)
among 16,676 mRNAs which were only predicted as targets, were contained in our array
system, while 1372 mRNAs (8.2%) were not contained in our array system. Therefore, the
1372 mRNAs which were not contained in our array system need to be examined in the
future as well.

Leptin is a hormone that restrains hunger and thus regulates energy balance [19].
Because we found significantly higher leptin protein levels in obese cases compared with
normal controls, we also tried to evaluate the relations among the four miRNAs, mR-
NAs, and obesity with leptin. We found a negative association between miR-6803-3p and
leptin levels and positive association between leptin and obesity indicators. Thus, we
further evaluated mRNAs overlapped among miR-6803-3p-associated mRNAs, predicted
miR-6803-3p-related mRNAs, leptin-associated mRNAs, and obesity-associated mRNAs.
Particularly, based on 185 mRNAs which were consistently confirmed in statistical analyses
as the four miRNAs- and obesity-associated mRNAs, we summarized networking among
the four miRNAs, the 185 mRNAs, and obesity with leptin. We found complicated but
consistent networking among those with statistically significant relationships. In particular,
we found twelve genes related with leptin, which were confirmed in both statistical analy-
ses and target prediction. All twelve genes participate in cell cycling or splicing; CLK2 gene
encodes a protein kinase that phosphorylates threonine/serine- or tyrosine-containing
substrates and it regulates arginine- and serine-rich proteins of the spliceosome complex re-
lated with alternative splicing [20]. CLK2 promotes energy expenditure during intermittent
fasting in mice on a high-fat diet [21]. Because this protein is necessary to maintain energy
balance, chronic CLK2 inhibition in the hypothalamus was associated with an increase in
the fasting blood glucose levels, while overexpressing CLK2 reversed the obese pheno-
type [22]. DDX41, DEAD-box protein with the conserved motif Asp-Glu-Ala-Asp (DEAD),
is a putative RNA helicase involving alteration of RNA secondary structure related with
translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosomal
assembly [23]. Down-regulation of this protein could result in tumor cell growth [23].
LRCH2 gene encodes a calponin homology domain-containing protein with leucine-rich
repeat [24]. LRCH2 functions as a cytoskeletal scaffolding protein using its C-terminal
calponin homology domain interacting with actin filaments [24]. LRCH2 expression was
related with tumorigenesis, and over-expression of the gene involved in several carcino-
genesis, including low grade of melanomas and gliomas, while LRCH2 gene expression
was decreased in late stage breast cancer patients with metastasis [24]. PDHX protein
is the component X of pyruvate dehydrogenase complex and it plays a role in energy
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production process because of its function converting pyruvate to acetyl coenzyme A in the
mitochondrial matrix [25]. Because of its function on energy production, down-regulation
of PDHX could result in low energy efficiency. In fact, defects on PDHX caused pyruvate
dehydrogenase deficiency, resulting in lactic acidosis and neurological dysfunction in
infancy and early childhood [26]. PIWIL1 gene encodes a member of the PIWI subfamily
of Argonaute proteins with conserved regions such as PAZ and Piwi motifs functioning
in translational regulation including RNA silencing and self-renewal of germline and
hematopoietic stem cells in human [27]. For these reasons, down-regulation of PIWIL1
could affect our body to have a variety of problems including abnormal production of many
blood cells. In fact, PIWIL1 was detected as a biomarker for a pre-metabolic syndrome
state in a mouse model [28]. RAB3C gene encodes a small GTPase recycling phagocytosed
major histocompatibility complex (MHC) class I to the cell surface [29]. Insulin-dependent
co-localization of RAB3C and insulin-sensitive glucose transporter GLUT4 (Solute carrier
family 2 member 4 (SLC2A4) named in human) in cardiac muscle of lean Zucker rats
disappeared in obese Zucker rats [29], indicating a possible involvement of RAB3C in the
pathogenesis of insulin resistance in obese animals. This abnormal localization could result
in an abnormally increased expression of RAB3C to respond to insulin. SSX5 belongs to the
synovial sarcoma X breakpoint proteins family and functions as transcriptional repressors
eliciting spontaneous cellular and humoral immune responses in cancer patients, and thus
it is potentially useful target in cancer vaccine-based immunotherapy [30]. TCF15 is a
transcription factor and its dimerization with mesenchyme homeobox 2 induces fatty acid
uptake in cardiac endothelial cells which are involved in various physiological processes
including angiogenesis and the control of vasomotor tone related with blood flow [31].
However, the heterodimer also directly regulates the expression of CD36 molecule, which
plays a role in atherosclerosis development [31–33]. However, the information for the other
four out of twelve genes, ERICH6, PAQR7, TTC32, and ZNF362, was limited, although
ERICH6 expression was restricted to testis, while PAQR7, TTC32, and ZNF362 are ex-
pressed in several tissues including kidney and testis (PAQR7), bone marrow and prostate
(TTC32), and spleen and kidney (ZNF362) [34].

We also evaluated the relations among the four miRNAs, mRNA for leptin, and obesity
indicators and found statistically significant and positive associations between mRNA
for leptin and two obesity indicators, BMI and BMI z-score, with a marginal significance
between mRNA for leptin and obesity development (data not shown here). However, we
did not find any statistical association between miR-6803-3p and mRNA for leptin, with
rather little increase of mRNA for leptin by up-regulation of miR-6803-3p (data not shown
here). It could be plausible that, even though the level of mRNA for leptin did not change,
protein leptin could be up-regulated by down-regulation of miR-6803-3p, if miR-6803-3p
directly targets mRNA for leptin and thus inhibits translation of mRNA to leptin protein.

We validated functional networking found in our study based on STRING providing
information of interactions among proteins. We confirmed 6 interactions among proteins,
which were statistically associated with each other at mRNA levels, with a negative as-
sociation between MADD and RAB3C and positive associations between UBE2Q1 and
KLHL20, among KIF2A, HLA-DOA, and POLA1 (between KIF2A and HLA-DOA and
between KIF2A and POLA1), between POLR2J and PPIE, and between CATSPER4 and
TEX40. The statistical associations among those were supported by STRING, showing same
directions consistent with associations obtained from our statistical analyses; Both MADD
and RAB3C are related with proliferation. MADD interacts with TNF-alpha receptor 1 to
activate mitogen-activated protein kinase (MAPK) and generate the apoptotic signal [35].
On the other hand, RAB3C is a member of the RAS oncogene family functioning as a small
GTPase [36]. Down-regulation of MAPK and up-regulation of RAB3C in obese children
could increase proliferation of cell by inhibiting apoptosis. UBE2Q1 and KLHL20 could be
simultaneously regulated. Both proteins are involved in protein-protein interaction such as
a function conjugating target proteins for degradation and cell signaling throughout the
cell and extracellularly [37,38]. In particular, impairment of KLHL20-mediated autophagy
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regulation potentiates starvation-induced cell death and aggravates diabetes-associated
myoatrophy [37]. Because these proteins are ubiquitously expressed in normal condition,
down-regulation of these two proteins in obese children could induce abnormal condi-
tion in the body [37–39]. KIF2A plays for normal mitotic progression such as normal
spindle activity during mitosis [40]. POLA1 is a catalytic subunit of DNA polymerase
with an essential role in DNA replication which is necessary for mitosis like KIF2A [41].
HLA-DOA belongs to the HLA class II alpha chain paralogues and it participates in the
regulation of HLA-DM-mediated peptide loading on MHC class II molecules [42]. It was
recently reported to collaborate with kinesin family members including KIF2A for antigen
cross-presentation in dendritic cells, specialized immune cells of lymph node [43]. For
these reasons, loss of functions by down-regulation of KIF2A, POLA1, and HLA-DOA
could result in unbalances of mitosis and immune system, which are playing roles as
main systems recovering or protecting the body [41,43,44]. POLR2J is a subunit of RNA
polymerase II, which is responsible for synthesizing mRNA in eukaryotes, and it was
reported to interact with translation initiation factor eIF3 in addition of its involvement in
RNA transcription [45]. PPIE is a member of the peptidyl-prolyl cis-trans isomerase family,
which catalyze the cis-trans isomerization of proline imidic peptide bonds in oligopeptides
and accelerate the folding of proteins [46]. Based on the functions of POLR2J and PPIE
related with RNA transcription and protein folding, and even intervening steps between
RNA transcription and protein translation, down-regulation of POLR2J and PPIE in our
obese children could induce general problems related with functional protein deficiency
in our body. Both CATSPER4 and TEX40 were up-regulated in obese children of our
study. Both proteins were known to have restricted expression toward testis and involve in
reproduction process by forming the voltage-gated calcium channel complex [47,48]. Thus,
the barely restrained expression of the two proteins in other specimen, not in testis, in our
children could induce additional problems. However, there was no functional evidences.

In the present study, we tried to find functional pathways and disease classes related
with obesity for each genes set overlapped among the 3948 four miRNAs-associated mR-
NAs, the 19,382 predicted four miRNAs-related mRNAs, and the 475 obesity-associated
mRNAs. However, we could not find specific trends for functional pathways and disease
classes related with obesity in each set, because the number of genes overlapped was too
small to find any statistical relation. Finally, we pooled the 3948 four miRNAs-associated
mRNAs, the 19,382 predicted four miRNAs-related mRNAs, and the 475 obesity-associated
mRNAs, and then explored functional pathways and disease classes for the full genes
set. In this functional analyses, we found consistent KEGG pathways and GAD disease
classes related with obesity, such as metabolic-related pathways or disease classes. Because
our target disease was obesity, metabolic-related pathways or disease classes could be
reasonable. In addition, we found that cancer-related pathways and cardiovascular or
immune disease classes were related with childhood obesity. These pathways and disease
classes could be plausible as well, with much evidence previously published [1,2,49–52].
miR-328-3p inhibits cell proliferation and carcinogenesis or metastasis in colon by inacti-
vating cancer-related signaling pathways such as PI3K-Akt pathway [49], while PI3K/AKT
pathway damaged in various tissues of the body leads to obesity [50], indicating that
down-regulation of miR-328-3p found in obese cases could lead to cell proliferation and
carcinogenesis. In addition, upregulation of insulin-like growth factor 1 receptor by degra-
dation of miR-328-3p were observed in patients with idiopathic pulmonary arterial hy-
pertension, which is a kind of cardiovascular disease [51]. The previous reports support
our results that cardiovascular diseases class could be plausible as well because childhood
obesity resulted in adult obesity, which is a main cause of cardiovascular diseases [1,2].
In other hands, ABHD11-AS1 upregulates STAT3 by sponging miR-1301-3p, resulting
in promoted cell proliferation and metastasis similarly with miR-328-3p [52]. However,
there was no evidence for miR-4685-3p and miR-6803-3p. Therefore, studies for the four
obesity-associated miRNAs found in our study need to be further activated.
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We also compared functional pathways and disease classes explored with the 19,382
predicted four miRNA-related mRNAs with those explored with another gene set (a
newly identified genes set, n = 1532) excluding predicted four miRNA-related mRNAs
from full genes set. When we used predicted four miRNA-related mRNAs set, we found
the functional pathways and disease classes same with those of full genes set, while
only two KEGG pathways, olfactory transduction (hsa04740) and microRNAs in cancer
(hsa05206), were statistically significant for a newly identified genes set (data not shown
here). Therefore, the 1532 mRNAs newly identified in our study need to be further studied.

In the present study, EDC cohort targeted young children at community level with
blood collection from those young children, even though those children don’t have any
specific disease. It makes very hard for us to recruit young participants at community
level. Furthermore, we selected only children with high BMI z-score as obese cases in the
cohort. For these reasons, we had a small sample size for our study and thus false positive
error needs to be considered. However, we obtained consistent results in the present study,
although we did not define cases and controls as children with more extreme BMI z-scores,
e.g., children with BMI z-score ≥95th percentile as obese cases and children with BMI
z-score <5th percentile as normal controls, and it could make a random error leading to a
null hypothesis.

5. Conclusions

Childhood obesity could contribute to adulthood obesity, leading to adverse health
outcomes in adults. However, the mechanisms for how childhood obesity is developed are
still unclear. To efficiently halt this developing obesity-related diseases, it is important to
understand the pathological process and offer early interventions. Our results suggest that
childhood obesity could be developed through miRNAs-related epigenetic mechanisms
and further the miRNAs-related epigenetic changes related with childhood obesity could
also affect the development of various diseases other than obesity, including cardiovascular
diseases and cancer. However, we should fill in the mechanistic gap focused on knowledge
base from biological to medical transition in the future.
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