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The electrical signals triggering the heart’s contraction are governed by non-linear

processes that can produce complex irregular activity, especially during or preceding

the onset of cardiac arrhythmias. Forecasts of cardiac voltage time series in such

conditions could allow new opportunities for intervention and control but would require

efficient computation of highly accurate predictions. Although machine-learning (ML)

approaches hold promise for delivering such results, non-linear time-series forecasting

poses significant challenges. In this manuscript, we study the performance of two

recurrent neural network (RNN) approaches along with echo state networks (ESNs) from

the reservoir computing (RC) paradigm in predicting cardiac voltage data in terms of

accuracy, efficiency, and robustness. We show that these ML time-series prediction

methods can forecast synthetic and experimental cardiac action potentials for at least

15–20 beats with a high degree of accuracy, with ESNs typically two orders of magnitude

faster than RNN approaches for the same network size.

Keywords: reservoir computing, recurrent neural network, echo state network, time series forecasting, cardiac

action potential

1. INTRODUCTION

Cardiac electrical signals, known as action potentials, exhibit complex non-linear dynamics,
including period-doubling bifurcations in their duration (Guevara et al., 1984; Watanabe et al.,
2001) and amplitude (Chen et al., 2017), along with higher-order period-doublings (Gizzi et al.,
2013) and chaotic behavior (Chialvo et al., 1990). Potentially life-threatening states like fibrillation
often are preceded by such long-short oscillations in action potential duration or amplitude
known as alternans in the medical literature (Nolasco and Dahlen, 1968; Pastore et al., 1999;
Gizzi et al., 2013; Chen et al., 2017). A number of methods for control of cardiac alternans
have been developed (Rappel et al., 1999; Christini et al., 2006; Berger et al., 2007; Garzón et al.,
2009; Garzon et al., 2014; Kulkarni et al., 2018), and while some have been demonstrated in
cardiac experimental preparations (Christini et al., 2006; Kulkarni et al., 2018), they have not
yet found clinical application in part because of the limited length scales over which control can
be accomplished (Echebarria and Karma, 2002; Garzon et al., 2014; Otani, 2017). An alternative
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strategy focusing on preventing rather than controlling alternans
could be more attractive clinically, but such an approach would
require accurate prediction of when such dynamics would occur.

Data-driven approaches can be used to forecast systems
like cardiac action potentials by inferring the dynamics from
observed data represented as time series (Kutz, 2013). Along
with conventional techniques for time-series modeling and
forecasting like autoregression approaches (Stock and Watson,
2001; Ing, 2003) and dynamic mode decomposition (Schmid,
2010), machine-learning methods have become increasingly
used for predicting dynamical system states (Kutz, 2013;
Chattopadhyay et al., 2020; Dubois et al., 2020). Recent
years have seen significant advances in the field of machine
learning, especially deep learning techniques. Recurrent neural
networks (RNNs) have been successfully employed in dynamical
domains, as the recurrent connections in the network provide
a notion of memory and allow them to naturally embed
temporal information. However, RNNs are still trained using
the computationally expensive technique of back-propagation
through time and remain prone to vanishing and exploding
gradient problems. Gated RNNs can help overcome some of
these problems; for example, to overcome the vanishing gradient
problem, gated RNNs take advantage of memory cell architecture
and a gating mechanism allowing the network to select which
information should be kept and which forgotten (Hochreiter
and Schmidhuber, 1997). This process enables the network
to learn the long-term dependencies in sequential temporal
data. Two widely used gated RNN approaches include long
short-term memory (LSTM) networks and gated recurrent
units (GRUs).

An alternative approach for modeling and predicting
dynamical systems is reservoir computing (RC) (Lukoševičius
and Jaeger, 2009; Sun et al., 2020), where, in contrast to
other RNN architectures, the training remains limited to
the output layer and the remaining parameters are selected
randomly. Despite this simplification compared to other RNN
architectures, RC techniques, including the commonly used echo
state network (ESN) approach (Jaeger, 2002; Lukoševičius, 2012),
have been used successfully to provide accurate multi-step-ahead
predictions in non-linear and chaotic time series with very low
computational costs (Bianchi et al., 2017; Han et al., 2021).
Variations of ESNs, including clustered ESNs, where the reservoir
consists of multiple sparsely connected sub-reservoirs (Deng and
Zhang, 2006; Junior et al., 2020), and hybrid ESNs, which include
input from a mathematical model and are a type of physics-
informed machine learning technique (Oh, 2020; Willard et al.,
2020), have been shown to have good performance in some cases
(Pathak et al., 2018; Doan et al., 2019).

In this work, we show that it is possible to accurately predict
future sequences of cardiac action potentials from complex
voltage activity obtained in silico and in ex-vivo experiments. We
further compare the performance of several machine-learning
techniques for a multi-step prediction of complex cardiac action
potential time series. In particular, we consider the accuracy and
computational efficiency of LSTMs and GRUs along with ESNs,
including a clustered architecture and a physics-informed hybrid
option, for different network sizes.

2. METHODS

Below we provide a brief overview of machine-learning-based
time series forecasting methods, describe the datasets we use, and
give the details of our specific implementations.

2.1. Time Series Forecasting Methods
In this section, we provide a brief summary of the machine-
learning approaches we use to forecast cardiac action potential
time series.

2.1.1. Gated Recurrent Neural Networks
Recurrent neural networks (RNN) were introduced as a special
class of neural networks in which the recurrent connections
allow information to persist in the network. However, they
suffer from vanishing and exploding gradient problems, which
limit their ability to learn long-term dependencies in temporal
sequences. Gated RNNs like long short-term memory networks
(LSTMs) were developed to remedy such problems. These
networks employ memory cells and a gating mechanism to
address exactly these issues. Supplementary Figure 1A illustrates
the information flow in an LSTM cell. In an LSTM network, a
hidden state ht is calculated using a map formalism:

it = σ (Wixt + Uiht−1 + bi),

ft = σ (Wf xt + Uf ht−1 + bf ),

ot = σ (Woxt + Uoht−1 + bo),

c̃t = tanh(Wcxt + Ucht−1 + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t ,

ht = tanh(ct)⊙ ot ,

(1)

where it , ft , and ot denote the input, forget, and output gates,
at time t, respectively; xt is the input vector; W and U are the
weight matrices that along with biases b are adjusted during the
learning process, ct is the cell state (the internal memory of the
LSTM unit), and c̃t is the cell input activation vector. In these
equations, each σ function is sigmoidal and⊙ denotes Hadamard
element-wise multiplication.

Gated recurrent units (GRUs) also were introduced to
avoid vanishing and exploding gradient problems and share
many similarities in architecture and performance with LSTM
networks. The GRU memory cell can be considered as a
simplification of an LSTM cell (see Supplementary Figure 1B).
Compared to an LSTM memory cell, in a GRU unit, the input
and forget gates are combined into a single update gate. This
simplification considerably reduces the number of trainable
weights and makes GRUs more computationally efficient; at the
same time, the prediction does not experience a considerable
deterioration in most cases and in some applications may even
improve (Bianchi et al., 2017). The GRU equations are given by

zt = σ (Wzxt + Uzht−1 + bz),

rt = σ (Wrxt + Urht−1 + br),

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1)+ bh),

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t ,

(2)
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where zt and rt are update and reset gates, respectively, and h̃t
is the candidate state. During the training process, the weight
matrices W and U and the bias vector b are adjusted, thereby
enabling the update and reset gates to select which information
should be kept through time and which information is irrelevant
for the problem and can be forgotten.

2.1.2. Echo State Networks
ESNs are a simple yet successful RNN architecture in which most
of the network parameters are initialized randomly and remain
untrained. Supplementary Figures 2A,B demonstrates the main
components of an ESN. The hidden layer in an ESN is called the
reservoir, which is a randomly initialized RNN.

The reservoir state ht is updated according to

ht = (1− α)ht−1 + α tanh (Winxt +Wht−1), (3)

where Win and W are the input weight and reservoir
weight matrices, respectively; both are initialized randomly and
remained untrained. We utilize an extension of the standard ESN
formalism that includes a “leaky” update model, which explicitly
includes a linear history term. The input signal is denoted by
xt and the constant parameter α ∈ [0, 1] is known as the
leaking rate. The output of the network is calculated by the
following equation:

yt = f out
(

Wout
[

xt; ht
])

, (4)

where f out is the output layer activation function, which is
chosen here as a unity function. The output weights Wout

are obtained here by regularized least-square regression with
Tikhonov regularization to avoid overfitting.

Since the initial success of reservoir computing techniques
and ESNs, a variety of network topologies have been proposed
in the literature, including clustered reservoirs and deep ESNs.
The main components of the network are similar to the
baseline ESN architecture except for the reservoir topology;
for clustered ESNs, the randomized connections between
neurons form a set of sub-reservoirs sparsely connected to
each other. The network topology is schematically illustrated
in Supplementary Figures 2C,D and the update and training
equations are the same as those for the baseline ESN (Equations
3 and 4).

We also consider a hybrid ESN approach, which is a
physics-informed machine learning approach in which a
knowledge-based model is integrated into an ESN; the model
and ESN operate simultaneously during the training and
prediction. The architecture of this approach is presented in
Supplementary Figure 2E. For our application, the network
in this design is driven with three input signals: u1(t), the
pacing stimulus exciting the network at prescribed intervals;
u2(t) = VKB(t), the knowledge-based model providing the
voltage dynamics of a cardiac cell; and u3(t) = V(t), the synthetic
or experimental voltage measurements. The knowledge-based
model can be a much simpler (typically imperfect) model
that provides an approximation of the dynamical behavior
of the system, such as the two-variable Mitchell-Schaeffer

(Mitchell and Schaeffer, 2003) or three-variable Fenton-Karma
(Fenton and Karma, 1998) model, to increase the predictive
ability of the network. Consequently, the time evolution of the
reservoir state ht is given by the same Equation 3, where the input
signal vector is formed as follow,

xt =
[

(u1(t); u2(t); u3(t)
]

. (5)

Here we use the Corrado-Niederer update of the Mitchell-
Schaeffer model (Corrado and Niederer, 2016) with τin = 0.3 ms,
τout = 6 ms, τopen = 120 ms, τclose = 150 ms, and vgate = 0.13.

2.2. Datasets
To evaluate and compare the performance of these approaches in
forecasting cardiac action potential time series, the methods are
applied to two synthetic datasets derived from cardiac cell models
and to an experimental dataset. We describe the three datasets
used below.

2.2.1. Fenton-Karma Model-Derived Dataset
As one dataset, we use a time series of randomly timed
action potentials generated using the Fenton-Karma (FK) model
(Fenton and Karma, 1998), which includes a voltage variable and
two gating variables. The model uses the Beeler-Reuter fitting of
the FKmodel (parameter set 3 in Fenton et al., 2002) and is paced
with cycle lengths drawn from a normal distribution using a 2-
ms square stimulus current with magnitude 0.4 for 100 beats. To
ensure a wide range of action potential durations, the cycle length
distribution is centered at 320 ms with a standard deviation of
50 ms. The differential equations of the model are solved using
the forward Euler method with a fixed time step of 0.1 ms; this
time series is coarsened to obtain the synthetic voltage dataset
(see section 2.3.4). The voltage data is then coupled with the
stimulus timing so that amultivariate dataset is used, as explained
in section 2.3.5.

Figure 1A shows the voltage trace that together with the
corresponding stimulus input form the FK dataset; Figure 1B
shows the corresponding action potential duration (APD) values.
Data selected for training are shown in blue and testing data
are shown in black. Just over 80 action potentials are used for
training and about 20 for testing. Because the cycle lengths used
include values both above and below the bifurcation to alternans,
the resulting APDs included in the dataset span a range of about
200 ms. Figure 1C shows a blowup of the shaded regions in
Figures 1A,B to illustrate the irregular timing of stimuli and
variation in voltage responses within the training data.

2.2.2. Noble Model-Derived Dataset
As a different type of model-derived dataset, we use the four-
variable Noble model (Noble, 1962) for a Purkinje cell in
the absence of external pacing. To provide variation in action
potential timing and duration, the Noble model is coupled to
the three-variable Lorenz model (Lorenz, 1963) in the chaotic
regime (ρ = 28, b = 8/3, and σ = 10). Time is effectively
rescaled in the Lorenz system by multiplying each of the three
differential equations by a factor of 0.001. The anionic current
conductance in the Noble model was set to be proportional to
the z variable of the Lorenz model, thereby driving oscillations
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A

B

FIGURE 1 | Synthetic action potential time series generated by the Fenton-Karma (FK) model with randomly distributed cycle lengths. (A) Voltage time series

including unused pre-training data (gray), training data (blue), and testing (prediction) data (black). (B) Corresponding APDs, following the same color scheme as (A).

(C) Zoomed in voltage trace corresponding to the shaded region in (A,B) showing the irregular action potential shapes and durations.

in the anionic current magnitude in concert with the Lorenz
oscillations. Specifically, the conductance was set to 0 for z = 0
and to 0.2 for z = 60. This extension provides two important
features of this dataset: first, the variation in cycle lengths is
driven by a chaotic, rather than a random process, and second,
there is no need for application of an external stimulus, as action
potentials occur when the cell is quiescent and the Lorenz-driven
current brings the voltage above the threshold for excitation.
Therefore, in this case, only a univariate time series of voltage
data is provided, with no external stimulus data. All other model
parameters remain as specified in Noble (1962).

The Noble dataset voltage trace and action potentials are
shown in Figure 2, with the training portion (around 65 action
potentials) shown in blue and the testing portion (14 action
potentials) in black. Because of the inclusion of the chaotic
Lorenz model as a driving force, the Noble model-derived dataset
demonstrates considerable variation in action potentials, with no
consistent pattern. APDs vary between about 310 and 345 ms.

2.2.3. Experimental Dataset
The third dataset consists of irregular activity recorded from
zebrafish hearts subjected to constant diastolic interval (DI)
pacing (Cherry, 2017; Zlochiver et al., 2017); see Figure 3.

All experimental procedures were approved by the office of
Research Integrity Assurance of Georgia Tech under IACUC
A100416. Zebrafish (Danio rerio) of either sex were anesthetized
via cold water bath. Following anesthesia, hearts were quickly
excised and immersed in Tyrode’s solution (in mM: NaCl
124, KCl 4, NaHCO3 24, NaH2PO4·H2O 0.9, MgCl2·6H2O 2,
dextrose 5.5). Blebbistatin, used to stop contraction without
major effects on electrophysiology (Fenton et al., 2008; Kappadan
et al., 2020), was added to Tyrode’s solution 20–30 min
prior to data acquisition to help suppress heart motion. The
heart was held in place by insect pins which attached the
bulbus arteriosus to the bottom of a Sylgard-lined Petri dish.
Stimulation was applied through AgCl bipolar electrodes placed
on opposite sides of the heart close by to stimulate via
electric field.

Intra- and extracellular voltages were acquired by two
glass micropipettes containing 2.5 M KCl solution fastened
into microelectrode holders (MEH3SFW, World Precision
Instruments). Ag/AgCl half cells within the microelectrode
holders sent signals to be buffered by pair of DC-powered
preamplifiers (Electro 705, World Precision Instruments), which
were connected together to output a differential measurement
of transmembrane voltage. This transmembrane voltage was
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A

B C

FIGURE 2 | Synthetic action potential time series generated by the Noble model driven by the chaotic Lorenz model. (A) Voltage time series including unused

pre-training data (gray), training data (blue), and testing (prediction) data (black). (B) Corresponding APDs, following the same color scheme as (A). (C) Zoomed in

voltage trace corresponding to the shaded region in (A,B) showing the irregular action potential shapes and durations.

then split into two paths. One path led through a BNC
breakout board (BNC-2110, National Instruments) to be read
by a DAQ (PCIe-6341, National Instruments) and written to
a file at 10,000 samples/s by a computer running a custom-
built MATLAB script. Transmembrane voltage was also sent
through a custom-built circuit that applied a gain and offset
to the signals before being read by an Arduino Due. The
Arduino Due then interpreted signals on-the-fly and determined
when the heart should be stimulated to enforce a user-set DI,
which was communicated to a current source stimulus isolator
(Isostim A320, World Precision Instruments) that stimulated
the heart.

Although constant-DI pacing can lead to stable and
predictable APDs (Kulkarni et al., 2018), in our recordings
APDs were highly variable despite the constant DI maintained.
This high variability may result from the much smaller
DIs used compared to the values used by Kulkarni et al.
(2018), which were very close to the alternans bifurcation
period. Figure 3 shows the experimental dataset voltage
trace and APDs, including over 100 training (blue)
and over 20 testing (black) action potentials. Stimulus
artifacts were removed using spline interpolation in a
pre-processing step.

2.3. Implementation Details
All methods were implemented in MATLAB (R2020b) and were
run on the same computer equipped with a 1.4 GHz Quad-Core
Intel Core i5 processor and 8 GB of RAM, operating with macOS
Big Sur (Version 11.4).

2.3.1. Hyperparameter Selection
The optimum values of various hyperparameters required for
each method were tuned through an extensive grid search, the
set of values for which are given in Supplementary Table 1.
The ranges of the hyperparameter values used for the grid
search and the number of values tested were chosen according
to the results of initial experiments to generate reasonable
results and also factor in the observed level of sensitivity of
the employed approaches to each hyperparameter. Optimal
hyperparameter values were obtained for each network size and
dataset; see Supplementary Tables 2–6. Therefore, the results
presented reflect the best attainable performance of each method
for a given network size for each dataset.

2.3.2. Gated RNN Implementations
The LSTM and GRU networks are constructed using the
MATLAB Deep Learning toolbox, where the network topologies
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A

B C

FIGURE 3 | Experimental zebrafish action potential time series featuring irregular alternans characterized by action potentials with irregular cycle lengths and

durations. (A) Voltage time series including unused pre-training data (gray), training data (blue), and testing (prediction) data (black). (B) Corresponding APDs, following

the same color scheme as (A). (C) Zoomed in voltage trace corresponding to the shaded region in (A,B) showing the irregular action potential shapes and durations.

are specified by a graph of layers. To predict the action potential
time series multiple steps into the future, a sequence-to-sequence
regression LSTM architecture is employed that entails several
main components. First, a sequential input layer is required to
feed the input time series into the network. Then, an LSTM layer
is used to learn the long-term dependencies between the time
steps of the input sequential data. Finally, a fully connected layer
connects the LSTM layer to a regression output layer to complete
the design. The architecture of the GRU networks is the same as
for the LSTM network except for employing a GRU layer instead
of an LSTM layer. In addition to the single-layer architectures,
multi-layer networks with multiple stacked gated layers are also
tested in this work.

The main hyperparameters to configure in gated RNNs
include the number of hidden layers and hidden units, the
optimizer for the training network, and the hyperparameters
related to the optimization solver, such as the maximum
number of epochs, learning rate, learning rate drop factor,
and regularization factor. Due to the high computational costs
of gated RNNs, running an exhaustive grid search on all
hyperparameters is not pragmatically feasible. Therefore, based
on our initial experiments, some of these hyperparameters are
set while the grid search determines the optimum values of those

demonstrating a more significant role in the performance of the
network. Accordingly, the Adam optimizer (Kingma and Ba,
2014) is employed for training the network with the MATLAB
default training configurations and the maximum number of
30 epochs. Then, the grid search is employed to determine the
optimum number of hidden layers and the initial learning rate
(Supplementary Tables 2, 3).

The trained network then can be used to predict the response
of the system for the next time step. To forecast voltage values
multiple steps ahead, a recursive approach is adopted in which
at each time step, the response is predicted using the trained
network and the network state is updated correspondingly. This
predicted value is featured as the input for the next time step
prediction. This procedure is repeated to predict the voltage
response for the entire prediction horizon.

2.3.3. Echo State Network Implementations
The baseline ESN technique is implemented based on the
original tutorial presented by Jaeger (2002) and the practical
guide presented by Lukoševičius (2012). The reservoir graph
is generated using the Erdős–Rényi algorithm (Bollobás, 2001),
after which it is rescaled and updated to satisfy the echo state
property of the network (Yildiz et al., 2012) ensuring that the
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effect of initial conditions should vanish progressively and the
reservoir state should asymptotically depend only on the input
signals. The same procedure is conducted to construct the
reservoirs in the clustered and hybrid ESNs. More specifically,
in the hybrid ESN, the reservoir graph is generated with the
same randomized approach, while in the clustered ESN, the sub-
reservoir clusters are generated first, then connected to each
other randomly, where an additional hyperparameter specifies
the probability of the inter-cluster connections.

During the training of an ESN, the first initial steps of the
network states are discarded to wash out the initial states and
ensure the network dynamics are fully developed. Here, the
first ten beats are considered as the transient phase and their
corresponding state values are not used for training the networks.

Compared to the gated RNNs, the number of hyperparameters
that play a more significant role in network performance in
RC techniques is considerably higher, and the performance
of the network highly depends on finding a good set of
hyperparameters, including the number of neurons in the
reservoir, connection probability used in the Erdős–Rényi
graph generation step, reservoir spectral radius, input weight
scale, leaking rate, and ridge regression regularization factor.
Additionally, the number of clusters and the knowledge-
based model are additional parameters to consider in clustered
and hybrid ESNs, respectively. Although the size of the
hyperparameter grid search space grows exponentially in RC
techniques and is much higher compared to that of gated RNNs,
because of the lower computational efforts required in ESN
approaches, we obtained grid search results two times faster than
for the gated RNNs.

Note that due to the random nature of ESNs and the intrinsic
sensitivity of the network to the initial values of the parameters,
the results for each network size are averaged over 10 experiments
with different seed values for the random number generator.

2.3.4. Data Resampling
Although it is common to obtain data at a particular fixed time
resolution, such a resolution often is not optimal; for example, it
may contain so many points that it is difficult to obtain a good
fit. More generally, an imbalanced distribution of data points
in a time series can significantly deteriorate the performance of
time-series prediction techniques. In such situations, a certain
range of values are overrepresented compared to the rest of the
time series, giving rise to a bias toward the values or behaviors
that occur more frequently in the sequence. For example, in
the case of an action potential time series, sampling that is
uniform in time causes the upstroke phase, associated with
the rapid depolarization of the cell membrane potential, to
be underrepresented compared to the rest of the time series.
Therefore, it is expected that prediction techniques may fail to
correctly capture the upstroke phase in such cases and thus
may produce a poor forecast overall. A common approach for
tackling such issues is the use of resampling strategies (Moniz
et al., 2017), which operate on the training dataset to make the
distribution of the data points more balanced in terms of their
information content.

In this work, we implement an under-sampling technique in
which each data point is only included in the dataset if its voltage
is sufficiently distinct from the last included data point, thereby
ensuring more data points where the voltage changes rapidly. In
this approach, two consecutive data points are considered distinct
if the difference between the voltage values is greater than or
equal to a threshold. If the threshold is set to zero, the dataset
remains the same. In contrast, a very large threshold will result
in great information loss and important features will be removed
from the action potential time series. Therefore, the resampling
threshold is also treated as a hyperparameter so that its optimum
value is determined along with the other hyperparameters by the
grid search. We also include a data point if the time since the last
included data point exceeds a separate threshold, which is also
treated as a hyperparameter, to ensure there is a sufficient density
of points in portions of the action potential where the voltage
changes slowly. Supplementary Table 1 illustrates the possible
values of the resampling thresholds used in the grid search. We
found a significant increase in the predictive accuracy when using
this resampling strategy and it is used for all results shown here.

2.3.5. Univariate vs. Multivariate Time Series

Prediction
In practice, the action potential forecasting task entails predicting
one variable (voltage) over time, resulting in a univariate time
series. However, the input time series can be either a univariate
or multivariate time series. The former occurs when the input
data is assumed to be endogenous and is not driven by an
external stimulus. The latter portrays cases in which cardiac cells
are stimulated exogenously; in such a case, the pacing stimulus
can also be introduced to the network along with the cardiac
voltage signal. In this work, both scenarios are considered.
Accordingly, the univariate input models are employed for
forecasting the Noble dataset, where the auto-oscillatory nature
of this model eliminates the requirements of applying an external
stimulus. In contrast, both the FK dataset, which uses random
stimulus timings, and the experimental dataset, which uses
varying stimulus timings owing to the constant DIs but variable
APDs, are used with multivariate time series prediction, which
incorporates the pacing stimulus signal. In the case of the
experimental data, the timing of applied stimuli is not directly
available; thus, a pre-processing step is applied to detect the
starting point of each beat in time and then a 2-ms stimulus
current with a relative magnitude of 0.2 is used to generate the
pacing stimulus signal. This process generates a stimulus current
that is then resampled so that stimulus values are available
for each resampled voltage data point. Our initial experiments
demonstrate that the magnitude of the stimulus does not affect
the quality of the predictions in this setup, but introducing the
stimulus signal considerably improves the predictive ability in the
first place.

Supplementary Figures 2A,C illustrate the architectures of
the baseline and clustered ESNs, respectively, that are used
for the univariate input case. To accommodate the pacing
stimulus signal in multivariate input settings, these architectures
are updated to include one more feature in the input
layer (Supplementary Figures 2B,D). Introducing the stimulus
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FIGURE 4 | FK dataset action potential prediction results obtained for the five methods using a fixed network size of 100 neurons. Test data are shown in black for

reference and the predictions in color. (Left) All predicted APs. (Right) Zoomed view of the first three predicted APs.

information into the hybrid ESN approach is inevitable
because in this architecture, the knowledge-based model
should be synchronized with the input action potential
time series to operate simultaneously. Therefore, the hybrid
ESN is essentially developed for a multivariate input case
(Supplementary Figure 2E). Accordingly, the pre-processing
described step can be employed to extract the timing of the
stimulus current. Similarly, in gated RNNs, themultivariate input
case can be handled by adjusting the number of inputs in the
sequential input layer.

2.3.6. Evaluation Metrics
To assess prediction accuracy, we use the root mean square error
(RMSE) metric:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

V̂i − Vi

)2
. (6)

whereVi and V̂i are the target and predicted outputs, respectively,
and n denotes the length of the test dataset. Note that the voltage
values of the Noble and experimental datasets have been linearly
rescaled to be between zero and one. The FK model is already
scaled so that its upstroke reaches a maximum of one; no further
rescaling is performed. As discussed in section 2.3.4, in all cases,
the dataset values used here are not uniformly spaced in time.

We also assess error by comparing action potential durations
(APDs). We define an APD as the time interval over which the
voltage during an action potential is continuously larger than the
threshold value, which is selected as 0.3 for the synthetic datasets
(FK and noble) and 0.35 for the experimental dataset.

3. RESULTS

3.1. FK Model-Derived Dataset
The FK model-derived dataset (hereafter referred to as the FK
dataset), shown previously in Figure 1, includes irregularity in
action potential shapes and durations through the use of cycle
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FIGURE 5 | FK dataset APD prediction results obtained for the five methods using a fixed network size of 100 neurons. APDs from data used for testing are shown in

black for reference and predicted APDs are shown in color. Absolute error in APD prediction is shown in the bottom subplot, with color corresponding to prediction

method.

lengths drawn from a normal distribution. Figure 4 shows the
19 action potentials predicted by the five methods (LSTM, GRU,
ESN, clustered ESN, and hybrid ESN) for a fixed network size
of 100 hidden units. All five methods match the action potential
upstrokes and downstrokes well. As a result, the predictions for
APD by all methods have very low error (below 10 ms) across all
19 beats with no growth over time, as shown in detail in Figure 5,
despite the irregular alternans present in the dataset. However,
different methods exhibit different prediction accuracies for the
plateau and rest phases of the action potentials. Specifically,

the hybrid ESN does the best job of matching voltage values
during these phases; the ESN approaches produce good results
during the plateau but show depolarization preceding each
action potential rather than remaining at a stable rest potential.
The LSTM and GRU methods show the largest discrepancies,
including plateau height mismatches and significant slowing in
repolarization leading to elevated resting potentials.

Network size has a limited effect on overall accuracy as
measured by RMSE. Figure 6 shows that there is no clear trend
in error as the network size is increased, except that the hybrid
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FIGURE 6 | Comparison of RMSE (A) and computational time (B) for each method and network size tested for the FK dataset.

ESN error is much lower for networks with at least 100 neurons.
The hybrid ESN also has the lowest or near lowest error for all
cases with at least 100 neurons, while the ESN and clustered ESN
methods generally achieve slightly lower error than the LSTM
and GRU methods.

The lower plot in Figure 6 demonstrates that for a fixed
network size the ESN and clustered ESNs accomplish the
combination of training and prediction tasks much faster—by
roughly two orders of magnitude—than the LSTM and GRU
methods, with the hybrid ESN placing in between. These timing
differences across the methods are maintained across all network
sizes. However, within each individual method, the time for
training and prediction increases with the number of neurons,
except for the hybrid ESN method, for which such a trend is
less clear.

3.2. Noble Model-Derived Dataset
The results of using the five methods to predict action potentials
in the Noble dataset (shown in Figure 2) using a fixed network
size of 100 can be seen in Figure 7, which shows the voltage
traces, and in Figure 8, which shows the predicted APDs
and absolute error in APD. The LSTM predictions generally
achieve good agreement throughout the testing phase, with some
discrepancies during the plateau and an overestimation of phase
4 depolarization. The GRU predictions are similar except that
they repolarize less completely and consistently underestimate
the peak upstroke voltage. The ESN and clustered ESN methods
show improved accuracy with relatively minor discrepancies. In
contrast, the hybrid ESN exhibits a very different action potential
shape more in line with the capabilities of the knowledge-based
model and consistently overestimates APD.

Figure 9 shows that the ESN and clustered ESNs achieve the
lowest RMSE across different network sizes. The hybrid ESN
and LSTM methods perform relatively well across most network
sizes but produce larger RMSE values for some network sizes.
GRUs have the highest error for most network sizes for this
dataset. It is difficult to discern a clear trend in accuracy with
increased network size; prediction method differences appear to
have stronger effects.

As with the FK model, the RNN approaches consistently
take longer than the ESN and clustered ESN approaches,
with the hybrid ESN in between. For network sizes of
at least 100 hidden units, the ESN and clustered ESN
methods require about two orders of magnitude less
computational time than the RNN methods. For all
approaches, there is a modest increase in computational
time for 100 or more hidden units as the network size
increases, with the exception of the hybrid ESN, for which the
computational time is approximately constant across all network
sizes tested.

3.3. Experimental Dataset
For the experimental dataset, obtained from zebrafish paced
using a constant-DI protocol and shown in Figure 3, all five
methods are able to reconstruct most of the action potential
features, as demonstrated in Figure 10 with 100 hidden units.
With each method, the discrepancies in predicted voltage values
occur mostly during the portions of the action potentials with
smaller voltage derivatives, the plateau and the rest phase. All
methods underestimate the plateau height and fall short of
repolarizing fully, with the hybrid ESN continuing to repolarize
slowly throughout what should be the rest phase while the
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FIGURE 7 | Noble dataset action potential prediction results obtained for the five methods using a fixed network size of 100 neurons. Test data are shown in black for

reference and the predictions in color. (Left) All predicted APs. (Right) Zoomed view of the first three predicted APs.

other methods produce depolarization during this phase. The
performance does not vary significantly over the full prediction
series, although some individual action potentials are not fit well.
As shown in Figure 11, the largest APD differences from the true
values occur for the hybrid ESN, with the clustered ESN yielding
especially good results. The ESN and hybrid ESN consistently
underestimate APD values, and the APD values predicted by the
LSTM and GRUmethods are generally less extreme than the true
APDs (that is, the long APDs are predicted to be shorter and the
short APDs are predicted to be longer).

As the number of neurons is changed, there is no clear
effect on accuracy, except possibly for the hybrid ESN, which
appears to have a slight trend toward lower RMSE with
more neurons; see Figure 12. In contrast, the time required
for training and prediction shows the same trend as for the
other data sets, with the LSTM and GRU approaches requiring
about two orders of magnitude more time for the same
network size than the ESN and clustered ESN approaches, and
the hybrid ESN in between. All the methods show a trend
toward increasing time with increasing network size, except

for the hybrid ESN, which as before appears insensitive to
network size.

4. DISCUSSION

In this paper, we tested five different ML time series prediction
methods, two based on RNNs and three based on a type
of reservoir computing, to predict irregular voltage dynamics
arising from random or chaotic effects for three cardiac datasets.
We found that for clinically relevant intervals (1–3 s, or 6–
19 beats at 160 ms) for the detection of cardiac arrhythmia in
embedded devices (Madhavan and Friedman, 2013), we were able
to predict voltage traces that closely match the true dynamics.
We showed that for all datasets considered, all five prediction
methods could produce accurate forecasts of both voltage and
APD for around 15–20 action potentials (as long as was tested).
With the exception of GRU predictions for the Noble dataset,
RMSE values on the order of 0.1 normalized voltage units or
lower could be attained for every combination of dataset and
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FIGURE 8 | Noble dataset APD prediction results obtained for the five methods using a fixed network size of 100 neurons. APDs from data used for testing are shown

in black for reference and predicted APDs are shown in color. Absolute error in APD prediction is shown in the bottom subplot, with color corresponding to prediction

method.

prediction method. APD errors were typically less than 5 ms
for both the FK and experimental datasets, with larger typical
errors of around 20 ms (sometimes more) for the Noble dataset.
Over the measured interval, none of the methods exhibited any
long-term trend in the APD error, indicating that the methods
have seen sufficient training data to accurately model the real
action potential response to stimulation and the associated
APD distribution.

In addition, we demonstrated that the ESN approaches
achieved lower error than the RNN approaches for the synthetic

datasets and that the hybrid ESN achieved the best accuracy for
the experimental dataset. Furthermore, the accuracy obtained,
as measured by RMSE, was largely independent of network
size. The time required for training and prediction typically was
about two orders of magnitude lower for the ESN and clustered
ESN architectures compared to the LSTM and GRU approaches,
with the hybrid ESN timing in between. Computation time also
generally grew with the network size, with the exception of the
hybrid ESN, where computational time was essentially constant
across all network sizes considered. We expect this insensitivity
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FIGURE 9 | Comparison of RMSE (A) and computational time (B) for each method and network size tested for the Noble dataset.

occurred because the time associated with solving the knowledge-
based model (essentially a set of differential equations describing
a cardiac cell), which is independent of network size, was more
expensive than the cost of the ESN itself and thus dominated the
total training and prediction time.

We investigated different types of dynamics, including those
influenced by underlying randomness and chaos. We found the
lowest RMSE values for the FK and experimental datasets and
the highest RMSE values for the chaotically-driven Noble dataset.
For the FK dataset, the hybrid ESN typically achieved the lowest
error for all but the smallest network size, with the other ESN
approaches achieving slightly less error than the LSTM and
GRU methods. The Noble dataset elicited a particularly poor
performance for the GRU method, with RMSE values typically
three or four times larger than for the other methods; also,
the hybrid ESN did not perform as well as the other ESNs.
However, it is possible that use of a univariate time series in
this case contributed to lower accuracy, rather than just the
chaotic dynamics alone. For the experimental dataset, which
likely has elements of both randomness and chaos, the hybrid
ESN generally achieved the lowest error, with the other methods
producing similar RMSE values. Overall, our results indicate that
the ESN architecture provides better performance than LSTM
and GRU approaches for the voltage forecasting task.

4.1. Effects of Algorithmic Choices
The action potential time series used in this work were highly
imbalanced. In this study, although we found the need to
downsample the original data for use with testing and training,
we did not perform systematic studies regarding how to optimize

this task. As a general observation, starting from the initial
highly imbalanced time series, by increasing the sampling spacing
and reducing the number of data points, the training and
testing errors were reduced. However, the information loss
caused by removing data points is the obvious side effect
if the spacing becomes too large. Our choice of tying the
time spacing to changes in voltage ensured good resolution
during rapidly changing parts of action potentials, including
the upstroke, but led to a lack of points during the rest and
plateau phases, contributing to apparent errors during these
times of slow changes in voltage. Further studies are required to
investigate various spacing and resampling strategies to propose
an optimal approach.

Although our results illustrate that ESNs provide the best
prediction accuracy together with the lowest computational times
in most cases for the methods and datasets considered, the ESN
approach shows the most sensitivity to the hyperparameter and
network parameter values. Our grid search results demonstrated
a wide variability in the prediction performance obtained by
various ESNs with very similar configurations. This motivates
more study to improve the robustness of this approach. Among
the three RC techniques used in this work, the hybrid ESN
showed the least sensitivity to the hyperparameter values. We
expect that the knowledge-based model promotes the predictive
ability of the network by generating an approximate action
potential, which the network perturbs to resolve the precise
AP shape.

Incorporating the pacing stimulus into a multivariate input
setup considerably improved the prediction performance of the
network over using a univariate voltage input and extended the
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FIGURE 10 | Experimental dataset action potential prediction results obtained for the five methods using a fixed network size of 100 neurons. Test data are shown in

black for reference and the predictions in color. (Left) All predicted APs. (Right) Zoomed view of the first two predicted APs.

forecasting horizon to a higher number of beats. In the absence
of the stimulus information, depending on the dynamics of the
system, the predictions remain accurate only for the first few
beats after the training.

4.2. Limitations and Future Work
Our study contains a number of limitations. First, we studied
a limited number of datasets. It is possible that different types
of dynamics (e.g., more strongly chaotic) could lead to different
results, and in particular experimental data from other sources
could prove more difficult to predict. In addition, we did not
study how much training data was needed to obtain good results.
Furthermore, it remains an important open question how long
the action potential predictions will remain accurate without
deteriorating, although in this case we have found lower bounds.

We also considered a small number of time series prediction
methods. There are many variations on these methods (Chandra
et al., 2021; Han et al., 2021) and it is possible that performance
improvements could be achieved. Even choosing different

settings for the methods considered, such as a different number
of clusters for the clustered ESNs, potentially could affect
performance. There are also different types of predictionmethods
that we did not consider. For example, ESNs have been connected
to vector autoregression (VAR) (Bollt, 2021), thereby motivating
additional studies of VAR for prediction. It also would be
interesting to study the accuracy of predictions of APD obtained
by training on APD values only.

For the hybrid ESN, we only considered the use of one
knowledge-based model, the Corrado-Niederer update of the
Mitchell-Schaeffer model. It is possible that different model
choices could affect the accuracy or computational time of
the hybrid method; for example, an even simpler two-variable
model like the FitzHugh-Nagumo model could potentially make
the hybrid ESN approach more competitive with the other
ESNs considered here, while a knowledge-based model that is
matched to the data-generating model might present a near-
trivial prediction task. Additionally, more complex cardiac cell
models with detailed calcium dynamics may have an impact on
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FIGURE 11 | Experimental dataset APD prediction results obtained for the five methods using a fixed network size of 100 neurons. APDs from data used for testing

are shown in black for reference and predicted APDs are shown in color. Absolute error in APD prediction is shown in the bottom subplot, with color corresponding to

prediction method.

long-term tissue memory. In practice, this long-term change in
the cardiac cell may lessen the predictive power of the presented
ML models over long time intervals.

We also note that there is a close connection between ML-
based methods and data assimilation. In the cardiac case, Kalman
filter-based methods including data assimilation have been used
thus far for reconstruction (Muñoz and Otani, 2010, 2013;
Hoffman et al., 2016; Hoffman and Cherry, 2020; Marcotte et al.,
2021), but they also can be used for forecasting, as is more typical
in data assimilation’s original weather forecasting context (Hunt
et al., 2007). It may be beneficial to pursue approaches that seek

to merge data assimilation and machine learning for this task
(Albers et al., 2018; Brajard et al., 2020; Gottwald and Reich,
2021).

Along with extensions of our present work to address the
issues discussed above, in the future we intend to consider
predicting cardiac voltage dynamics during the development
of arrhythmias. We expect this goal may necessitate the
use of spatially extended models of cardiac tissue as part
of the prediction process, although handling the information
from spatial neighbors requires very large networks that
will pose new computational challenges. The combination
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FIGURE 12 | Comparison of RMSE (A) and computational time (B) for each method and network size tested for the experimental dataset.

of ESNs and local states (Pathak et al., 2018; Zimmermann
and Parlitz, 2018) or specialized deep-learning architectures
(Herzog et al., 2018) may be useful in tackling such problems,
but these methods remain computationally demanding and
may require new approaches. In addition, we may need to
carefully consider the types of dynamics included in the
training data in order to accurately predict transitions between
different types of dynamics, such as the transition from normal
rhythm to tachycardia or the transition from tachycardia to
fibrillation. Accurate prediction of such transitions may lead to
advances in control designed to prevent the development of
fatal arrhythmias.
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