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Fractional Transport of Photons in 
Deterministic Aperiodic Structures
Luca Dal Negro1,2,3 & Sandeep Inampudi1,4

The propagation of optical pulses through primary types of deterministic aperiodic structures is 
numerically studied in time domain using the rigorous transfer matrix method in combination with 
analytical fractional transport models. We demonstrate tunable anomalous photon transport, including 
the elusive logarithmic Sinai sub-diffusion in photonic systems for the first time. Our results are in 
excellent agreement with the scaling theory of transport in aperiodic media with fractal spectra, and 
additionally demonstrate logarithmic sub-diffusion in the presence of multifractality. Moreover, we 
establish a fruitful connection between tunable photon diffusion and fractional dynamics, which 
provides analytical insights into the asymptotic transport regime of optical media with deterministic 
aperiodic order. The demonstration of tunable sub-diffusion and logarithmic photon transport in 
deterministic aperiodic structures can open novel and fascinating scenarios for the engineering of wave 
propagation and light-matter interaction phenomena beyond the conventional diffusive regime.

In 1855, Adolf Fick proposed his laws governing mass transport through diffusive media1. In particular, Fick’s 
second law predicted how the concentration φ(x, t) of a diffusing substance changes with space and time. Fick 
showed that in one spatial dimension φ(x, t) obeys the well-known diffusion equation φ φ∂ = ∂x t D x t( , ) ( , )t xx , 
where D is the diffusion coefficient. Almost 60 years later, in his theoretical study of the Brownian motion Albert 
Einstein unveiled the microscopic origin of diffusion by introducing a memoryless (i.e., Markovian) random walk 
model2. It is now well-known that the microscopic dynamics of Markovian random walks obeys a stochastic dif-
ferential equation which, in the continuum limit of vanishingly small steps, reduces to the Fick’s diffusion equa-
tion. Conversely, the fundamental solution (i.e., the Green’s function) for the Cauchy problem of the linear 
diffusion equation can be interpreted as a Gaussian Probability Density Function (PDF) in space, which evolves 
in time. All moments of this PDF are finite and its variance, or Mean Square Displacement (MSD), is proportional 
to the first power of time, i.e., ∝x t t( )2 , which is the hallmark of a standard diffusion process.

However, after Richardson’s 1926 pioneering work on diffusion in turbulent media3, many natural phenomena 
have been discovered that exhibit anomalous transport characterized by a nonlinear scaling of the MSD according 
to the power law4: ∝ βx t t( )2 , with β a real number in the interval [0, 2]. In particular, anomalous sub-diffusion 
occurs when β < 1 and anomalous super-diffusion when β > 1. The extremal cases β = 1 and β = 2 correspond to 
standard diffusion and ballistic wave transport, respectively. At the microscopic level, anomalous diffusion pro-
cesses can be described by generalized Continuous Time Random Walks (CTRWs) that capture non-Markovian 
correlations between different steps of a walker in non-homogeneous random media5. Contrary to standard (i.e., 
uncorrelated) random walks, CTRW models allow for the possibility of incorporating separate statistical distri-
butions for the waiting times and step sizes of the random walker, including long-tailed non-Gaussian distribu-
tions with algebraic decays that yield divergent moments, as in the case of Lévy flights6.

Remarkable examples of anomalous transport have been recently discovered in various scientific domains 
such as turbulent plasmas, viscoelasticity, percolation and transport through fractals and porous media, amor-
phous solids, biological systems, and even unveiled in the internet traffic7. Super-diffusive optical transport has 
been intensively investigated and artificial media that give rise to super-diffusion of photons, called Lévy glasses, 
have been recently demonstrated8.
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In this paper, by numerically investigating optical pulse propagation through dielectric structures, we demon-
strate transport regimes that are largely tunable from sub- to super-diffusion in photonic media with long-range 
aperiodic order. Moreover we demonstrate a novel logarithmic-in-time photon transport regime in deterministic 
pseudo-random systems with multifractal energy spectra and show that the temporal scaling of the MSD follows 
the law: ∼ νx t t( ) log ( )2  with a tunable exponent. Such an intriguing phenomenon was theoretically investigated 
by Sinai in the context of random walks in non-homogeneous random media9 and is referred to as ultra-slow 
Sinai sub-diffusion, or strong diffusion anomaly. Sinai-type transport has never been reported in deterministic 
electronic or optical systems and photonic structures that exhibit such an unusual property may provide exciting 
opportunities for novel optical technologies. In particular, tunable anomalous photon diffusion and logarithmic 
optical transport in deterministic photonic structures offer novel degrees of freedom to engineer time dynamics 
and wave dispersion phenomena beyond the conventional framework of diffusion theory.

In order to systematically investigate light transport phenomena in controllable aperiodic environments we 
focus on one-dimensional (1D) dielectric multilayer structures with fractal and multifractal energy spectra. These 
structures are rigorously described by well-established transfer matrix and trace map techniques, and have been 
extensively investigated as model systems to explore the rich physics of aperiodic scattering in electronic, acous-
tic, and optical media10, 11. However, the main conclusions of this paper remain valid for more general photonic 
systems, such as coupled resonator structures or waveguide arrays, that can be exactly modeled using the transfer 
matrix technique.

Anomalous transport and fractional wave propagation in aperiodic media
Understanding the influence of positional correlations and aperiodic order on the nature of optical transport in 
electronic and photonic structures remains to date a challenging problem of fundamental as well as technological 
interest. Anomalous transport of electron wave packets through 1D quasi-periodic potentials with fractal energy 
spectra has been intensively investigated in recent years using the transfer matrix approach12, and the connection 
between the spreading of wave packets and the fractality of energy spectra has been established13, 14. In particular, 
both scaling analysis and numerical simulations have suggested that the exponent β for quantum wave packets 
diffusing through a 1D quasi-periodic sequence of scattering potentials can be written as β = µ ψD D2 /2 2 , where µD2  
and ψD2  are the fractal dimensions of the spectrum and of the wave functions, respectively14. While many fascinat-
ing results have been established in recent years by resorting to extensive numerical simulations of electronic 
transport in fractal systems, their physical interpretation remains vastly unexplored.

A comprehensive analytical framework that effectively captures the asymptotic transport properties of wave 
excitations in complex media has only recently been established based on generalized kinetic equations15. This 
powerful approach exploits the recently developed mathematical tools of fractional calculus16 that provide the 
physical underpinning for anomalous transport phenomena in the presence of memory and long-range spatial 
correlations15. In particular, it became clear only recently that at the continuum level, CTRWs produce fractional 
transport equations with space and time derivatives of fractional order17. These are integro-differential operators 
with power-law kernels that account for space correlations and time memory effects invariably established when 
wave excitations are multiply scattered in strongly non-homogeneous environments16.

Due to the well-known isomorphism between the Schrödinger and Helmholtz equations in 1D scattering 
potentials, classical wave scattering shares fundamental analogies with its electronic counterpart. Striking exam-
ples are the formation of photonic band gaps in periodic scattering media18, 19, the optical Hall effect20, optical 
negative temperature coefficient resistance21, and Anderson localization of light waves in disordered random 
media22, 23.

Building on this powerful analogy we use full-vector electromagnetic modeling to demonstrate novel trans-
port phenomena in photonic systems with deterministic aperiodic order beyond what has been established in 
their electronic counterparts. In particular, we found that the photonic transport can be switched from super- to 
sub-diffusion by modulating the refractive index contrast and Sinai-type logarithmic sub-diffusion of optical 
waves can be achieved in deterministic multifractal environments. The nature of optical transport in our paper is 
investigated by considering the time scaling of the MSD and the temporal autocorrelation function (ACF) of opti-
cal wave packets that propagate across photonic multilayers with periodic, quasi-periodic, and pseudo-random 
positional order.

Aperiodic structures can be rigorously classified according to the nature of their diffraction and energy spec-
tra, which correspond to mathematical spectral measures. According to the Lebesgue’s decomposition theorem, 
any measure μ can be uniquely decomposed in terms of three primitive spectral components (or mixtures of 
them), namely: pure-point (μP), singular continuous (μSC), and absolutely continuous spectra (μAC), such that 
μ = μP + μSC + μAC. The structures investigated in this work are the chief representatives of each spectral class. 
Fibonacci structures are quasi-periodic and their diffraction spectra are pure-point, featuring a countable set 
of δ-like Bragg peaks at incommensurate intervals. On the other hand, their energy spectra are singular con-
tinuous and converge to a Cantor-set. More complex structures exist, such as the Thue-Morse ones24, which 
display singular continuous diffraction and fractal energy spectra. The individual Bragg peaks in such systems 
are not separated by well-defined intervals and form broad bands in Fourier space. These systems are structurally 
more complex than quasi-periodic ones. Interestingly, their optical properties have been found to be closer to 
the ones of periodic structures25. Finally, Rudin-Shapiro structures10 are pseudo-random with absolutely con-
tinuous diffraction spectra and pure-point energy spectra akin to random media in the localization regime. 
However, the nature of their eigenmodes and their localization properties are not yet fully understood26. For 
instance, differently from fractal structures such as Fibonacci and Thue-Morse ones, the integrated density of 
states of Rudin-Shapiro structures was found to scale logarithmically and their energy spectra display multifractal 
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behavior for certain values of the scattering strength27. In this paper we demonstrate that such unusual spectral 
properties give rise to logarithmic transport of optical waves in such systems for the first time.

The device structures considered in this work are all generated by binary inflation rules that act on two con-
stituent layers (say A and B) with refractive indices n1 and n2, respectively, as schematically represented in Fig. 1. 
With no loss of generality the optical thickness of each layer is set to be λ0/4, and we chose λ0 = 1550 nm. The 
spatio-temporal electric field distribution of propagating pulses and the optical transmission spectra are calcu-
lated using the rigorous transfer matrix method over a wide frequency range centered at ω π λ= c2 /0 0. Additional 
details on this well-established technique can be found in our methods section. In analogy with the electronic 
case, we define the MSD of optical wave packets as14, 28:

∫ ∫ ∫ ω ψ ω ω= − = − ω∞ −x t
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where L represents the total length of the sample, E x t( , ) is the electric field inside the sample as a function of 
space and time (methods section), ωE (0, )i  is the frequency spectrum of incident field, and ψ(x, ω) is the scatter-
ing map of the system (methods section). Moreover, we study the temporal ACF of optical wave packets defined 
as13:

∫= ′ ′C t
t

E x t E x dt( ) 1 ( , ) ( , 0) (2)
t

0

2

where <, > indicates the inner product = ∑E x t E x E x t E x( , ) ( , 0) ( , ) ( , 0)i i i .
The temporal scaling of the above quantities fully reveals the anomalous nature of diffusive transport in arbi-

trary 1D scattering systems. In particular, it is well-known that the transport of electronic excitations across 
quasi-periodic structures with fractal energy spectra displays an asymptotic scaling of C(t) that decays algebrai-
cally as ~t−δ, where the exponent δ is equal to the fractal dimension of the spectrum13, 14. Interestingly, this behav-
ior has not been reported for optical wave excitations, motivating our study.

Transport across localized photon states in periodic structures
In order to validate our computational method we first considered as a reference case the optical pulse transport 
through localized states in photonic coupled micro-cavities with structural defects distributed periodically along 
an otherwise regular photonic crystal structure. The defects consisted in additional layers of type A positioned 
along the periodic AB layer sequence. The investigated system can be symbolically represented as 

AB A BA[( ) ] ( )M N M, where M and N indicates the number of repeated units inside the parenthesis. This photonic 
system supports a number of resonant defect modes forming a comb-like structure within its fundamental Bragg 
gap. The number of localized states in the gap equals the number N of cavity defects introduced in the system, 
which are regularly spaced with respect to the central frequency ω0 as shown by the calculated transmission spec-
trum in Fig. 2(a), overlapped with the spectrum of the incident pulse. The transmission spectrum contains a large 
number of regularly separated resonant states with very close spacings. However, even for large systems with 
several hundred defect layers, the resonant states always overlap resulting in coherent photon tunneling (i.e., 
resonant tunneling) across the entire structure. This phenomenon is analogous to the well-known formation of 
transmission mini bands for the electron transport in semiconductor superlattices. Moreover, despite the large 
number of resonant modes, this spectrum does not support a fractal structure or fractal eigenstates, and therefore 

=µ ψD D/ 12 2 . According to the scaling theory of electron transport in 1D, no anomalous diffusion is expected to 
take place under such condition and in fact we show that wave transport occurs ballistically. This qualitative pic-
ture is confirmed by our numerical simulations obtained by computing the spatial-temporal evolution of a 

Figure 1.  Schematic of a set of scattering layers with representative fractal pulse shapes displayed at different 
times.
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Gaussian optical pulse transported across the structure (details in methods section). In Fig. 2(b) we show few 
representative snapshots of the pulse intensity that propagates inside the structure.

The normally incident input pulse tunnels into the system and propagates ballistically while spreading in time 
until it reaches the output face of the structure. At any spatial position in the sample, the envelope of the pulse 
remains Gaussian with a high-frequency spatial modulation that results from the interference inside the struc-
ture29. Calculated MSD for pulses transported across coupled cavities with different numbers of defect states are 
displayed in Fig. 2(c). The MSD time traces feature a power-law scaling with a constant slope for systems with up 
to 100 coupled cavities, irrespective of the refractive index contrast in the structure. This behavior demonstrates 
coherent transport of the wave packet with an asymptotic scaling exponent β = 2, which indeed corresponds to 
the ballistic regime. The inset in Fig. 2(c) summarizes the results obtained for different numbers N of cavity 
(defect) states. Notice that the values of the transport exponent converge to the ballistic value β = 2 when the 
structures are large enough to avoid spurious reflections from their end facets, which cause an artificial drop in 
the MSD curves. In all our simulations we exercised particular care to verify that the coupling of the pulse to the 
end facet of the structures is negligible, so that the values of the transport exponents (obtained by power-law fit-
ting) do not depend on the launching conditions of the pulses or on the total length of the system. The ballistic 
nature of pulse transport in periodic coupled cavity systems is further confirmed by the study of the correspond-
ing ACF time decay, which was found to follow the power law ∼ δ−C t t( )  with δ = 1, irrespective of the index 
contrast.

Tunable anomalous photon transport in Fibonacci and Thue-Morse structures
We can now address the optical pulse transport in quasi-periodic Fibonacci and in deterministic aperiodic 
Thue-Morse and Rudin-Shapiro photonic media. In contrast to periodic structures, these photonic systems 
exhibit largely tunable anomalous transport as a function of the refractive index contrast between the constituent 
layers A and B.

As a first case we consider a quasi-periodic Fibonacci photonic system where the scattering layers are arranged 
according to the well-known Fibonacci inflation rule10, 11: A → AB and B → A starting with A. The optical trans-
mission spectrum of this structure is truncated at N = 2048 layers, and it is shown in Fig. 3(a) overlapped with the 
spectrum of the input pulse. It is known that in the limit of N → ∞ (where N is the number of layers) the highly 
fragmented spectrum of the Fibonacci multilayer converges to a self-similar Cantor set with zero Lebesgue meas-
ure and with fractal dimension df = ln2/ln3, irrespective of the refractive index contrast30. Moreover, differently 
from periodic systems, Fibonacci multilayers support distinctive modes, known as critical states, with an envelope 

Figure 2.  (a) Transmission spectrum of N = 40 cavities of λ n/20 1 thickness each λ0 = 1550 nm. Cavities are 
separated from each other by periodic Bragg reflectors made of 20 alternating layers of refractive indices 
n1 = 1.5, n2 = 1.75 and thickness λ0/4n1 and λ0/4n2, respectively. Dashed line represents the frequency spectrum 
of the incident optical pulse. (b) Intensity distribution E( )2  of an optical pulse propagating through the layers at 
different times normalized to the incident pulse. (c) Calculated MSD of the pulse in coupled cavity systems with 
varying cavities ranging from N = 10 to N = 100 (in steps of 10). (Inset) Calculated scaling exponent of the MSD 
as a function of N. ‘ct’ in (b) and (c) is the time equivalent length where c represents the velocity of light and t 
represents time.
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that decays according to a power law and with a highly fluctuating character described by a distribution of fractal 
exponents (multifractal states) that vary with frequency and with the strength of the scattering potential30. As we 
will demonstrate in this paper, these distinctive spectral and mode properties provide vastly unexplored oppor-
tunities to tailor the optical transport in aperiodic systems.

We first note that exact fractality of the spectrum (at all frequencies) only occurs in the limit of infinite layers. 
However, almost perfect self-similarity across broad spectral regions can be obtained even for relatively short 
Fibonacci structures with only few hundred layers. For our study we selected a number of layers that gives rise 
to a constant fractal dimension across the part of the frequency spectrum that overlaps with the envelope of the 
propagating pulse. Under these conditions, we show that due to the fractality of the Fibonacci spectrum and the 
broad distribution of fractal dimensions of the critical eigenmodes31 it is possible to achieve anomalous transport 
with the exponent β controlled by the refractive index contrast. To demonstrate this behavior we perform numer-
ical simulations of the MSD scaling, shown in Fig. 3(b) for different values of the refractive index contrast. We 
found that the slopes of the MSD curves, plotted on a double logarithmic scale, strongly depend on the choice of 
the refractive index contrast. The strong dependence of the transport exponents β on the values of the refractive 
index contrast is summarized in the inset of Fig. 3(b). Our data clearly demonstrate that the transport properties 
of optical Fibonacci systems can be tailored from super-diffusion (β > 1) to sub-diffusion (β < 1) depending on 
the strength of the scattering potential (i.e., refractive index contrast), in close analogy with the tunable quantum 
dynamics of quasi-periodic electronic systems qualitatively explained by renormalization group arguments12. It 
should be emphasized that the observed tunability of photon transport is not associated with the excitation of a 
single critical mode but rather with a distribution of multifractal states that overlap the spectrum of the incident 
pulse.

Moreover, we discovered a very similar behavior also in Thue-Morse structures10, 11, 25 which are gen-
erated by the inflation rule: A → AB and B → BA. Similarly to the Fibonacci case, these structures support a 
singular-continuous energy spectrum with self-similar fractal properties24, 25, 32. Earlier work has compared 
the transport properties of Fibonacci and Thue-Morse structures within the tight-binding model and reported 
anomalous super-diffusion for electrons33. Moreover, it was shown that, for a given scattering strength, elec-
trons in Thue-Morse structures are less localized compared to Fibonacci ones and the degree of aperiodicity of 

Figure 3.  (a) Representative transmission spectrum of a Fibonacci multilayer with refractive indices n1 = 1.5 
and n2 = 1.9 with layer thickness λ0/4n1 and λ0/4n2 respectively. Dashed line represents the frequency spectrum 
of the incident optical pulse with central wavelength at 1550 nm. (b) Computed MSD values as a function of 
time and refractive index contrast between the constituent layers (n1 = 1.5 in all cases), Inset shows the scaling 
exponent of the MSD obtained using numerical fitting of the data to power law. The quality of the fitting is 
demonstrated with representative dashed lines overlapping the data in main panel. (c) Computed ACF as 
function of time. Solid lines represent the numerical data and dashed lines are theoretical prediction (Lines are 
scaled vertically for better visualization). The inset shows a magnified portion of the initial-time ACF decay 
curve that support fractal log-periodic oscillations. ‘ct’ in (b) and (c) is the time equivalent length where c 
represents the velocity of light in vacuum and t represents time.
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Thue-Morse structures is intermediate between periodic and quasi-periodic systems. Our results on the pho-
ton transport across Thue-Morse structures with varying refractive index contrast are summarized in Fig. 4. 
Similarly to the Fibonacci case, we observe widely tunable anomalous transport behavior across the self-similar 
Thue-Morse structure and clearly demonstrate both super-diffusion and sub-diffusion depending on the refrac-
tive index contrast. Moreover, by comparing the decay of the transport exponents shown in the insets of Figs 3(b) 
and 4(b) we realize that the transition into the localization regime (β = 0) occurs more gradually in Thue-Morse 
compared to Fibonacci structures. Similarly to the case of electronic transport, this behavior is consistent with 
the more extended character of the optical modes in Thue-Morse structures. The inset in Fig. 4(c) displays the 
scaling exponents δ of the ACF of the Thue-Morse structure for different values of the refractive index contrast.

Connection with fractional transport
The anomalous transport behavior discovered in the Fibonacci and Thue-Morse structures can be regarded as an 
instance of fractional photon transport. The large tunability of photon transport in deterministic aperiodic sys-
tems is effectively described by the asymptotic solutions of the fractional diffusion-wave equation (FDWE): 

φ φ= ∂β
⁎D x t D x t( , ) ( , )xx  with β< ≤0 2. In this equation D stands for a generalized diffusion coefficient while 
β
⁎D  is the Caputo-type fractional time-derivative of (real) order β, which is defined as34:
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and Γ is the Euler’s gamma function. When β is an integer (β = 1, 2) the right-hand-side in the above definition 
reduces to the corresponding partial derivative of integer order and we recover either the standard diffusion equa-
tion for β = 1 or the wave equation for β = 2. When 1 < β < 2 the fractional equation is expected to interpolate 
continuously between a diffusion and wave propagation. The large tunability of wave transport associated to the 
fractional order β manifests the microscopic non-Markovian nature of photon transport in complex aperiodic 

Figure 4.  (a) Representative transmission spectrum of a Thue-Morse multilayer with refractive indices n1 = 1.5 
and n2 = 1.9 with layer thickness λ0/4n1 and λ0/4n2 respectively. Dashed line represents the frequency spectrum 
of the incident optical pulse with central wavelength at 1550 nm. (b) Computed MSD values as a function of 
time and refractive index contrast between the constituent layers (n1 = 1.5 in all cases), Inset shows the scaling 
exponent of the MSD obtained using numerical fitting of the data to power law. The quality of the fitting is 
demonstrated with representative dashed lines overlapping the data in main panel. (c) Computed ACF as 
function of time. Inset shows the scaling exponent of the ACF obtained using numerical fitting of the data to 
power law. ‘ct’ in (b) and (c) is the time equivalent length where c represents the velocity of light in vacuum and 
t represents time.
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systems. In fact, the FDWE kinetics provides an effective model to account for the complex photon correlations 
and memory effects established by the phases of multiply scattered waves in strongly inhomogeneous aperiodic 
media. The connection between field propagation through multilayered structures with fractal spectra and frac-
tional transport is established based on the scattering matrix approach35 in our methods section. In particular, it is 
possible to show based on simple scaling arguments that the time-dynamics of optical pulses in fractal scattering 
systems is determined by a non-local fractal operator in time-domain15, 36 that depends, yet in a complex and 
non-analytical fashion, on the aperiodic refractive index modulation.

The fundamental solution of the FDWE can be obtained in closed-form using Fourier-Laplace integral inver-
sion methods (i.e., Mellin-Barnes integrals) and it can be expressed analytically in terms of the transcendental 
Wright functions or using the Fox H-functions34, 37. The reduced Green’s function (see methods section), can be 
interpreted as a symmetric spatial PDF evolving in time with a stretched exponential relaxation, which provides 
the following expression for the MSD37:

σ
β

=
Γ +

βt2
( 1) (4)

2

It is essential to notice here that the transport process predicted by the FDWE model is widely tunable and can be 
switched from anomalous sub-diffusion (0 < β < 1) to anomalous super-diffusion (1 < β < 2).

As we appreciate in Figs 3 and 4, our numerical results on the MSD scaling can be accurately described by 
considering the asymptotic solutions of the FDWE model, which are shown by the dashed lines. A similar FDWE 
approach has been recently proposed to model the multiple scattering of acoustic waves in one-dimensional 
multiscale media with long-range spatial correlations38. In this context, the FDWE is associated to lossless inho-
mogeneous random media and describes an effective medium with power-law frequency dependent attenuation 
coefficient38. The fractional wave transport approach is well-established in fields such as viscoelasticity and seis-
mic wave propagation39, but it has yet to receive proper consideration in optics. However, from a physical stand-
point fractional transport naturally follows from the fractal memory kernel in the field equation governing the 
dynamics of optical waves in aperiodic media with self-similar spectra. A heuristic scaling analysis of the MSD 
and ACF scaling of photonic systems with fractal spectra is described in our methods section.

The fractal nature of the Fibonacci and Thue-Morse transport is directly revealed by the ACF decay, displayed 
in Figs 3(c) and 4(c) for varying refractive index contrast. All the ACF curves exhibit an inverse power law scaling 
with constant slope. The decay exponent δ is found to be independent on the refractive index contrast, in agree-
ment with the analytical scaling law ∼ δ−C t t( )  previously introduced for electronic systems. We further validated 
our numerical results by computing the fractal dimension of the Fibonacci transmission spectrum using the 
accurate Wavelet Transform Modulus Maxima (WTMM) technique40–42 as summarized in the methods section. 
This analysis confirms that the calculated fractal dimension (df = ln2/ln3) of the Fibonacci spectrum equals the 
exponent δ independently estimated from the power-law fitting of the ACF decay. Finally we show in the inset of 
Fig. 3(c) a magnified portion of a typical ACF decay curve to emphasize the presence of initial-time log-periodic 
oscillations that develop in close analogy to the case of electronic systems12. Such oscillations have been recently 
addressed using the analytical theory of spectral zeta functions on fractals43, 44. Physically, they manifest resonant 
scattering phenomena between neighboring lattice clusters that share similar local geometrical structures in frac-
tal environments. This intriguing phenomenon was also discussed in the context of the electron transport across 
Fibonacci chains using the renormalization group approach45. Interestingly, we report similar oscillations in 
Thue-Morse structures for the first time.

Sinai logarithmic photon transport in Rudin-Shapiro structures
We now address Sinai logarithmic sub-diffusion of optical wave packets in Rudin-Shapiro (RS) photonic struc-
tures. RS structures features unique spatial correlations associated to an unusual scaling of the density of states 
that can be described by multifractal analysis26. Indeed, in our method section we utilize the WTMM analy-
sis to compute the multifractal spectrum of the RS optical transmission. RS multilayers are generated from a 
two-letter alphabet subject to the simple inflation rule: AA → AAAB, BB → BBBA, AB → AABA, BA → BBAB, 
starting from the initial seed AA11. The transmission spectrum of the RS photonic structure (N = 2048 layers) 
shown in Fig. 5(a) is characterized by a singular distribution of narrow resonant peaks. Figure 5(b) summarizes 
our results for the MSD of optical wave packets propagating through the systems. The data are plotted in a double 
logarithmic scale and demonstrate a clear logarithmic scaling behavior, in stark contrast to the case of Fibonacci 
and Thue-Morse systems. To the best of our knowledge this behavior is not displayed by other deterministic opti-
cal systems and provides exciting opportunities to engineer ultra-slow diffusion phenomena using conventional 
dielectric structures.

Logarithmic sub-diffusion also falls within the very general umbrella of fractional kinetics. In fact, at 
the continuum level, Sinai logarithmic sub-diffusion is described by a fractional diffusion equations of 
distributed-order46, 47. The distributed-order time fractional diffusion equation can be obtained from the FDWE 
by integrating with respect to the order β the fractional time derivative as follows:

∫ β φ β φ= ∂β
⁎p D x t d D x t( ) ( , ) ( , ) (5)xx

0

1

where βp( ) is a non-negative dimensionless weight function subject to the normalization condition 
∫ β β =p d( ) 1

0

1 . Clearly when the weight is a delta function the distributed-order time fractional diffusion equa-
tion reduces to the FDWE as a special case. Ultra-slow kinetic processes with tunable logarithmic MSD scaling 

∼ νx tlog ( )2  manifest the asymptotic solution of the distributed-order diffusion equation with a power-law 
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weight function β νβ= ν−p( ) 1 (v > 0) that is associated to a very broad distribution of localization traps (i.e., 
localized modes). Therefore, distributed-order diffusion equations result from microscopic CTRWs processes 
with extremely broad waiting time PDFs, characteristic of strongly non-homogeneous environments. The case 
v = 4 corresponds to the original Sinai model46.

The dashed lines in Fig. 5(b) are best fits obtained according to the general Sinai model ∼ νx tlog ( )2 46. 
Notice that also in the case of the RS structure distinctive oscillations develop in the MSD curves, reflecting the 
correlated nature of the aperiodic order. In addition, our results show that the Sinai transport exponent v can be 
largely controlled by the refractive index contrast. According to the microscopic Sinai transport theory the 
parameter v describes the degree of spatial non-homogeneity of transition rates (or scattering potentials) in the 
system. Our data demonstrates that this exponent can be tailored over a large range in the case of photon scatter-
ing, as shown in Fig. 5(c). In the inset of Fig. 5(c) we also display the calculated ACF decay curves for different 
values of refractive index contrast, vertically translated for better visualization. Notice that for structures with 
multifractal spectra it is not possible to associate a unique scaling exponent to the ACF decay. However, our data 
demonstrate an approximate inverse power-law scaling of the ACF of the RS structure. This behavior can be 
attributed to the contribution of the leading dimension in the multifractal spectrum, shown in the methods sec-
tion. However, it is presently not possible to establish a simple relation between the ACS decay and the multifrac-
tal transmission spectrum. We also observe that, differently from Fibonacci and Thue-Morse structures, the ACF 
decay curves of RS structures present a weaker oscillatory behavior. This is consistent with the more inhomoge-
neous character of multifractal systems26 with a very broad singularity spectrum (shown in the methods section). 
However, to what extent Sinai logarithmic sub-diffusion of light is a generic attribute of wave propagation in 
multifractal aperiodic media remains to be investigated in the future.

Figure 5.  (a) Representative transmission spectrum of an RS multilayer with n1 = 1.5 and n2 = 1.75. The 
dashed line represents the frequency spectrum of the incident optical pulse at 1550 nm. (b) Calculated 
MSD scaling curves for different values of the refractive index contrast between the constituent layers. MSD 
scaling is observed to have logarithmic behavior in a double-log plot representing ultra-slow Sinai diffusion. 
The deviation from logarithmic behavior at higher time scales is due to the finite size of the system of layers 
(reflections from the other end of the layers). (c) Calculated scaling exponent of the MSD curves shown in panel 
(b) using the logarithmic Sinai model. The quality of the fitting is demonstrated with representative dashed lines 
overlapping the data in panel (b). Inset in (c) is calculated ACF for few representative refractive index contrasts. 
The lines are scaled vertically for better visualization. ‘ct’ in (b) and (c) is the time equivalent length where c 
represents the velocity of light in vacuum and t represents time.
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Finally it is interesting to realize that in anomalous sub-diffusive processes the diffusion constant vanishes 
asymptotically, i.e., = →∞D limt

x t
t
( )2

. Therefore, photon sub-diffusion provides a mechanism to inhibit diffusive 
transport that fundamentally differs from traditional Anderson localization in random media. Moreover, it is 
important to notice that Sinai-type sub-diffusion occurs under conditions such that the localization length of the 
modes in the RS structure is larger than the system size, implying that interference effects are very weak. This 
situation is in stark contrast with Anderson localization in random media that requires strong wave interference 
effects. In order to demonstrate this important feature of Sinai sub-diffusion we performed analytical and numer-
ical calculations of the localization length and the scattering mean free path in the RS structure as a function of 
refractive index contrast (see methods section). The results clearly show that Sinai sub-diffusion occurs for values 
of the refractive index contrast such that the localization length exceeds the size of the RS system, i.e., outside the 
wave localization range. Therefore, the demonstration of logarithmic sub-diffusion in RS multifractal systems 
provides novel opportunities to inhibit the diffusion of optical waves in deterministic dielectric environments at 
relatively small values of the refractive index contrast. In the emerging technological opportunities offered by 
aperiodic structures in photonic metamaterials11, 48, 49, the engineering of deterministic systems with 
logarithmic-in-time processes can directly impact optical devices due to the enhancement of the photon resi-
dence time (or dwelling time) intrinsically associated to sub-diffusion processes. By increasing light-matter cou-
pling in a scattering medium over what is possible using classical transport mechanisms, logarithmic 
sub-diffusion paves the way to broadband photonic trapping and localization effects even in the weak scattering 
regime, where a modified (fractional) diffusion picture can be applied. Since such mechanisms fundamentally do 
not rely on strong wave interference effects the resulting photon transport is broadband, naturally stimulating 
novel applications to active photonic devices such as light sources, absorbers, and optical sensors.

Conclusions
In conclusion, we systematically investigated the propagation of optical wave packets through primary examples 
of periodic, quasi-periodic and pseudo-random photonic multilayer structures and we demonstrated largely tun-
able anomalous photon transport, including logarithmic Sinai sub-diffusion of photons for the first time. In par-
ticular, while optical pulses in self-similar Fibonacci and Thue-Morse systems with monofractal energy spectra 
obey power-law anomalous scaling, in pseudo-random RS structures with multifractal energy spectra they are 
transported logarithmically, in agreement with the analytical predictions of a distributed-order fractional diffu-
sion model. The fruitful connection between fractional transport equations and photon transport in deterministic 
aperiodic media has been established providing novel insights into the complex behavior of multiple light scat-
tering in non-homogeneous environments with tunable spatial correlations. The demonstration of novel photon 
transport regimes including logarithmic sub-diffusion in deterministic optical media provides novel degrees of 
freedom to tailor light-matter interactions and to engineer unusual pulse propagation and wave dispersion phe-
nomena in optical devices. This is in stark contrast with the traditional vision that predicts the vanishing of the 
diffusion constant only in the strong scattering regime due to the interplay of multiple interference and disor-
der effects. In our paper we demonstrated an alternative path to localization that relies on a different transport 
mechanism other than strong scattering. This feature can be very advantageous in many device contexts where 
strongly scattering (i.e., high refractive index) materials are not readily available or where broad band frequency 
responses are desirable. Moreover, since materials with large refractive index and with minimal absorption across 
broad frequency spectra are not readily available, the engineered photon sub-diffusion approach may provide 
a different route to wave localization that relaxes such stringent materials requirements. We envision that our 
demonstration of tunable sub-diffusion of optical waves in deterministic media will enable the development of 
novel thin-film light trapping devices such as solar cells and photodetectors where light absorption efficiency 
can be significantly enhanced by slowing down the photon transport in weakly absorbing optical media. Finally, 
engineered sub-diffusion of photons may lead to a fundamentally novel strategy to boost light-matter interaction 
in low-index, structurally complex aperiodic laser structures where, similarly to the case of random lasers, the 
lasing threshold relates directly to the photon diffusion constant.

Methods
Electromagnetic calculations.  The calculation of the electromagnetic fields through multilayer structures 
has been performed using the scattering matrix method and the electromagnetic pulse transport in time-domain 
obtained by Fourier synthesis. The central frequency of the pulse is ω π λ= c2 /0 0, where λ0=1550 nm. The inci-
dent field Ei(x = 0) is described by a Gaussian spectral profile as: ω ω ω= = − −E x E exp a( 0, ) ( ( ) )i 0

2
0

2 , with 
E0 = 1 and a = 33 fs. The propagation of waves occurs normally to the layers (i.e., along x axis) and the layers are 
homogeneous in the yz-plane. The electric field is polarized along y axis. Under these conditions, the electric field 
at a given position x within the sample can be expressed as:

∫ ω ψ ω ω= ω∞ −E x t E e x d( , ) (0, ) ( , ) (6)i
i t

0

where ψ ωx( , ) is the so-called scattering map35.
For an arbitrary layered structure, ψ(x, ω) can be expressed in closed form as:

∏ψ ω ω ω ω χ ω=














+ 
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= Φ
=

−
− − −−x t e r e x x( , ) ( ) ( ) ( , ) ( , )

(7)m

j

m
ikn x x

j
ikn x x

1

1
( ) ( )j j j j1
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where < <−x x xj j1  are inside the jth layer in the structure, k is the free space wavenumber and nj represents the 
refractive index of jth layer. The reflection and transmission functions rj(ω) and tj(ω) are obtained iteratively for 
each layer using the recursive relations:

ω
φ φ ω ω

=
− +

+
+ + + +

+
r

n n n r t
n n

( )
( ) 2 ( ) ( )

(8)
j

j j j j j j j

j j

1 1 1 1

1

ω
φ

φ ω
=

+ + −
−

− −
t

n
n n n n r

( )
2

( ) ( ) ( ) (9)
j

j j

j j j j j j

1

1 1

assuming rN = 0 and tN = 1, where N represents the total number of layers and φ = − −exp ikn x x( ( ))j j j j 1  is the 
propagation phase inside each layer. Equations (8) and (9) represent a compact form of scattering matrix equa-
tions for waves propagating at normal incidence to the layers50.

Heuristic scaling analysis.  The scattering map ψ(x, ω) of aperiodic structures with fractal spectra is a 
self-affine two-dimensional function of space and frequency in the limit of large sample size L. A self-affine func-
tion describes fractality with different scale-invariant symmetries along the x- and ω-directions. Indeed we show 
in Fig. (6) that, for a large sample length L, ψ(x, ω) approaches the fractal transmission spectrum of the corre-
sponding aperiodic structure. More precisely, it has been shown that the counting function, or the integrated 
density of states, of a fractal spectrum centered around the central frequency ω0 follows the power-law scaling 
relation: ω ω ω ω ω γΓ = − −ω

β G( ) (ln / )0 00
 where G is a log-periodic function, β and γ are scaling constants 

that depend on the choice of the central frequency51. In addition, both the rj(ω) and the product of the tj(ω) are 
self-similar functions, as illustrated in Fig. (6). For a fixed value of ω, the function ψ(x, ω) provides the spatial 
profile of the corresponding critical mode. In general, critical modes are non-uniform fractals, or multifractal 
signals, characterized by a distribution of scaling exponents that depends on the choice of the optical frequency 
ω. Therefore, in the large L-value limit the ψ(x, ω) is asymptotically self-affine with local scale-invariance symme-
try: ψ ω ψ ω= α βax b a b x( , ) ( , ) for α and β positive real numbers that depend in general on the local position in 
space and frequency.

In order to justify the anomalous scaling of the transport in the considered aperiodic structures we need to 
address the time evolution of the optical pulses. This can be done by considering the the scattering map in the 
space-time domain ψ(x, t), which is obtained by inverse Fourier transforming Equation (7):

ψ χ= Φ ⊗˜ ˜x t x t x t( , ) ( , ) ( , ) (10)

where Φ̃ x t( , ) and χ̃ x t( , ) are the inverse Fourier transforms of the functions ωΦ x( , ) and χ ωx( , ) defined in (7).
Despite the non-analytic and complex character of the functions involved, Equation (10) defines a non-local 

convolution that reveals the long-range correlated nature of the wave scattering in layered systems. Assuming a 
local scaling relation ψ ω ω∼ α βx Cx( , )  and remembering that power law functions are invariant under both 
Fourier transformation and convolution operations, it follows immediately that ψ(x, t) is asymptotically self-affine 
as well. The computed scattering maps ψ(x, ω) and ψ(x, t) for the investigated aperiodic photonic structures are 
shown in Figs (7) and (8) along with the electric field distributions of few representative critical modes.

Connection with anomalous transport.  The above scaling analysis allows us to establish that both the 
ACF and the MSD of photonic structures characterized by self-affine scattering maps exhibit anomalous 

Figure 6.  Net transmission (a–c) and reflection (d–f) spectrum defined using equations (8) and (9) respectively 
in the middle layer of the samples investigated in the main text. Each structure has 2048 layers and the panels 
display the net reflection and transmission values at the 1024th layer. (a,d) Correspond to Fibonacci multilayers 
with n1 = 1.5 and n2 = 1.9. (b,e) Correspond to Rudin-Shapiro multilayers with n1 = 1.5 and n2 = 1.75 and (c), (f) 
correspond to the Thue-Morse multilayers with n1 = 1.5 and n2 = 1.75.
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Figure 7.  Scattering Map of fields in different sequence of layers. (a) Periodic micro cavities (n1=1.5 and 
n2 = 1.65; 207 Layers), (b) Fibonacci (n1 = 1.5 and n2 = 2.5; 233 Layers), (c) Rudin-Shapiro (n1 = 1.5 and n2 = 1.7; 
256 Layers) and (d) Thue-Morse (n1 = 1.5 and n2 = 3.5; 256 Layers). Color represents ψ ωx( , )  calculated using 
equation (7).

Figure 8.  Time evolution of optical pulse in different sequence of layers. (a) Periodic micro cavities (n1 = 1.5 
and n2 = 1.65; 207 Layers), (b) Fibonacci (n1 = 1.5 and n2=2.5; 233 Layers), (c) Rudin-Shapiro (n1 = 1.5 and 
n2=1.7; 256 Layers) and (d) Thue-Morse (n1 = 1.5 and n2=3.5; 256 Layers). Color represents ψ x t( , )  calculated 
using equation (10). ‘ct’ in all panels is the time equivalent length where c represents the velocity of light in 
vacuum and t represents time.
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transport behavior according to a nonlinear (power-law) scaling with respect to time. In particular, by noticing 
that the ACF is the time integral of the scattering map, and that any causal power function of the form 

µΦ = Γµ
µ−t t( ) / ( )1  transforms into Φµ+ t( )1  when integrated between zero and t, it follows that ACF must exhibit 

power-law scaling asymptotically, consistently with our numerical simulations. A similar argument can be made 
to support the power-law scaling of the MSD as well. On the other hand, in structures with multifractal transmis-
sion spectra, as the RS systems discussed in the main text, it is not possible to asymptotically represent the scat-
tering maps ψ(x, ω) and ψ(x, t) as power-laws due to the broad distributions of their scaling exponents. As 
explained in the text, when the weight function is a power-law, then ultra-slow Sinai sub-diffusion arises in the 
MSD scaling. No closed-form results are known for the corresponding ACF decay in this case.

Connection with fractional dynamics.  In the previous section we have shown that both the 
space-frequency ψ(x, ω) and the space-time ψ(x, t) scattering maps of fractal structures are self-affine objects that 
can be expressed asymptotically as a convolution integral with a power-law kernel. This feature is the hallmark 
of fractional calculus since fractional operators are defined by convolution integrals with non-local power-law 
kernel functions16. The fractional (non-local) character of the time-dynamics of optical transport across fractal 
structures is exemplified by the scattering maps ψ(x, t) plotted in Fig. 8. The non-Markovian (i.e., correlated) 
nature of the pulse dynamics is clearly evidenced by the fractal distributions of internal pulse reflections that 
characterize aperiodic systems (Fig. 8b–d).

Solutions of the FDWE.  The fundamental solutions (i.e., Green’s functions) corresponding to the Cauchy 
problems of the FWDE in Equation (3) are denoted by βG x t( , )j( )  (j = 1, 2) and can be analytically obtained34. In 
particular, by introducing the similarity variable βx t/ /2 we can express the two Green’s functions in terms of the 
one-variable reduced Green’s functions βK x( )j( )  (j = 1, 2) as follows:

=β
β

β
β−G x t t K x t( , ) ( / ) (11)

(1) /2 (1) /2

=β
β

β
β− +G x t t K x t( , ) ( / ) (12)

(2) /2 1 (2) /2

A convenient expression for the Green’s functions as convergent power series has been recently derived34:
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Both the Green functions above have been shown to be non-negative and normalized, so they can be interpreted 
as probability density functions.

Localization length analysis.  In Fig. 9 we estimate the localization length ξ and photon mean free path 
l for RS structures as a function refractive index contrast. We also compare the results with the case of binary 
pseudo-random structures with the same total length. The data in Fig. 9 demonstrate excellent agreement 
between the analytical theory valid for 1D random structures52, 53 and the numerical results on RS structures 
obtained from the scaling of their transmission spectra. These results indicate that the scattering mean free path 
is larger than the total length L of the samples for the range of refractive index contrast where Sinai sub-diffusion 
is reported. This implies that logarithmic photon transport is strongly influenced by spatial correlations in wave 
interference, which develop even for small values of the refractive index contrast if L is sufficiently large.

The localization length of pseudo-random and RS structures is calculated using the ensemble-averaged 
transmission over the frequency spectrum and it is defined by ref. 52: ξ = −L T/ 1/ ln , where T is the trans-
mission coefficient of the sample and L is the total length of the sample. To calculate the localization length in 

Figure 9.  Localization length and scattering mean free path of the RS sample as a function of refractive index 
contrast. Dashed lines represent localization length normalized to the sample length. Solid lines represent the 
same calculated using the analytical formula derived for random systems53.
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1D random multilayers we averaged over the frequency spectrum of the optical pulse the analytical expression 
provided in ref. 53:

ξ λ
πλ λ

= +
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The scattering mean free path l is estimated using the approximate expression valid for 1D random systems:

ξ π+ l(1 ) (15)

Wavelet Transform Modulus Maxima (WTMM) method.  This powerful mathematical technique was 
introduced to investigate the hierarchical structure of singular signals and it is particularly suited to characterize 
fractal and multifractal measures with non-isolated singularities such as the spectra of the aperiodic structures 
discussed in the main text.

The method enables the computation of the singularity spectrum D(α) of a multifractal signal or measure 
by analyzing the scaling properties of a global partition function defined on the maxima of the modulus of the 
wavelet transform of the signal. The partition function is defined as:

∑=Z q s Wf u s( , ) ( , )
(16)n

n
q

where Wf u s( , )n  is the modulus of the wavelet transform of the function f and un (n integer) denotes the position 
of the local maxima of f at a given scale s and q is a real number. For each value of q, the partition function features 
a power-law scaling according to:

∼ τZ q s s( , ) (17)q( )

at fine scales. All maxima that do not propagate up to the finest scales are typically removed in the calculation 
of the partition function. The singularity spectrum of the multifractal can now be obtained by computing the 
Legendre transform of τ(q):

α α τ= + −D q q( ) min[ ( 1/2) ( )]
(18)q

Additional details on wavelets and multifractal analysis can be found in ref. 54.
We prove the multifractality of the RS transmission spectrum by computing its singularity spectrum using 

the free library of MATLAB wavelet routines WaveLab85055. The non-linear behavior of the τ(q) exponent in Fig. 
(10) demonstrates the multifractal nature of the signal. Moreover, besides a nonlinear τ(q) exponent, multifrac-
tals are also characterized by a distinctive single-humped (concave) shape spectrum D(α)41. The singularity spec-
trum of the RS transmission spectrum is shown in the inset of Fig. (10). Indeed, a very broad singularity spectrum 
is obtained consistently with the multifractality of the RS structure. In contrast, mono-fractals spectra, such as 
Fibonacci quasi-periodic structures, feature a linear scaling exponent τ(q) and the D(α) singularity spectrum is 
supported by a single point coinciding with their fractal dimension.

Figure 10.  Scaling exponent τ(q) of the optical transmission of a Rudin-Shapiro structure (1024 layers). The 
inset shows the corresponding singularity spectrum αD( ) calculated numerically with a Legendre transform of 
τ(q). The wavelet transform WT u s( , ) of the optical transmission was computed using an analyzing wavelet 
ψ = −θ′′ where θ is a Gaussian wavelet.
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