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BACKGROUND Using mobile health, vital signs such as heart rate
(HR) can be used to assess a patient’s recovery process from acute
events including acute myocardial infarction (AMI).

OBJECTIVE We aimed to characterize clinical correlates associated
with HR change in the subacute period among patients recovering
from AMI.

METHODS HR measurements were collected from 91 patients (4447
HR recordings) enrolled in the MiCORE study using the Apple Watch
and Corrie smartphone application. Mixed regression models were
used to estimate the associations of patient-level characteristics
during hospital admission with HR changes over 30 days postdi-
scharge.

RESULTS The mean daily HR at admission was 78.0 beats per min-
ute (bpm) (95% confidence interval 76.1 to 79.8), declining 0.2
bpm/day (-0.3 to -0.1) under a linear model of HR change. History
of coronary artery bypass graft, history of depression, or being dis-
charged on anticoagulants was associated with a higher admission
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HR. Having a history of hypertension, type 2 diabetes mellitus
(T2DM), or hyperlipidemia was associated with a slower decrease
in HR over time, but not with HR during admission.

CONCLUSION While a declining HR was observed in AMI patients
over 30 days postdischarge, patients with hypertension, T2DM, or
hyperlipidemia showed a slower decrease in HR relative to their
counterparts. This study demonstrates the feasibility of using
wearables to model the recovery process of patients with AMI and
represents a first step in helping pinpoint patients vulnerable to
decompensation.

KEYWORDS Apple Watch; Biometrics; Cardiac rehab; Digital health;
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Introduction
Acute myocardial infarction (AMI) is a leading cause of
morbidity and mortality in the United States. AMI accounts
for more than 600,000 annual hospitalizations, and 1 in 6 pa-
tients are readmitted within 30 days postdischarge.1 Given
the burden of AMI readmissions on the healthcare system,
research has focused on determining relevant predictors of
poor AMI recovery to guide interventions, 1 of which is
elevated resting heart rate (HR).2–5 Elevated resting HRs,
defined as a HR .70 beats per minute (bpm), has been
associated with higher morbidity and mortality for patients
with acute coronary syndrome both at 1-month and 1-year
follow-up.2–5 The utility of these studies may be limited,
however, owing to the snapshot nature of the HR data
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KEY FINDINGS

� Patients recovering from AMI showed a small progres-
sive decline in mean daily HR (-0.2 bpm/day) over 30
days post-discharge.

� Among recovering patients, patients with diagnosed
depression, prior CABG before index admission, and
those discharged with diuretics or anticoagulants
demonstrated a higher mean admission HR compared
to patients without such characteristics.

� Patients with a history of T2DM, hypertension, or hyper-
lipidemia had a slower decrease in HR compared to pa-
tients without those conditions.

� 11 patients were readmitted within 30 days, with a
mean time to readmission of 6.9 days after discharge.
Of these patients, 6 had HR recordings.90 bpm within
3 days prior to readmission.
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obtained in ambulatory settings, and continuous monitoring
being restricted to the hospital setting. There is a paucity of
research examining HRs for recovering AMI patients in
their home settings.

With the advent of personal wearables, individuals can
now more conveniently monitor their HR multiple times
daily. The Apple Watch has been shown to yield a high de-
gree of concordance with electrocardiograms, especially in
regard to resting HR, compared to other devices.6 This study
aimed to (1) use dynamic HR measures collected from the
Apple Watch and characterize the 30-day HR trajectories
among subacute recovering AMI patients; and (2) identify
potential predictors associated with admission HR status
and the rate of HR change postdischarge.
Methods
Study participants
We used data from a subgroup of patients in the Myocardial
infarction COmbined-device Recovery Enhancement (Mi-
CORE) study. MiCORE was a multicenter prospective study
assessing the effectiveness of the Corrie Health Digital Plat-
form, consisting of a smartphone app, Apple Watch, and
wireless blood pressure cuff in reducing 30-day readmission
after AMI.7 In brief, Corrie Health offered a suite of features
to patients, including interactive educational content, medi-
cation reminders, biometric dashboards, appointment
reminders, and connection to their healthcare network. The
MiCORE study was approved by the Johns Hopkins Medi-
cine Institutional Review Board (IRB0009938). The research
reported in this paper adhered to guidelines outlined by the
Helsinki Declaration for human research. Patient information
was stored in the REDCap (Research Electronic Data
Capture) application. Consent was provided by all patients
as part of the MiCORE study. Details regarding enrollment
can be found in a separate methods publication.7
Among 200 MiCORE patients who used Corrie, 34 pa-
tients were excluded because they participated before back-
end data collection capabilities were developed. Of the 126
patients with available HR records, patients were included
if they had any HRs between first day postdischarge and 30
days postdischarge. HRs were included if they fell in between
the patient’s study enrollment during admission and 30 days
postdischarge (Figure 1). Thirty-five patients had no HRs
within 30 days postdischarge, leaving 91 patients who pro-
vided 4447 valid HR measurements (ie, values falling within
the range [30–210 bpm] of optical heart sensors8). Ten pa-
tients included in this study had no admission HRs recorded,
23 patients had 1 admission HR, and 68 had at least 2.

HR measurements from Apple Watch
HR measurements were obtained through the Apple Watch
Series 1 (Apple Inc, Cupertino, CA) and stored in the Corrie
Health Amazon Web Services server, which is compliant
with the Health Insurance Portability and Accountability
Act. The Corrie Health smartphone app screens individual
HRs recorded by the Apple Watch and extracts the first HR
recording that satisfies the time bounds. These time bounds
were as follows: “Morning” – between 8 AM and 11:59
AM; “Noon” – between 12 PM and 3:59 PM; “Afternoon”
– between 4 PM and 7:59 PM; and “Evening” – between 8
PM and 11:59 PM. As demonstrated in Figure 2, a single pa-
tient could have a maximum of 4 HR recordings within a
given day. An overall estimate of daily HR was further calcu-
lated by averaging the morning, noon, afternoon, and eve-
ning HRs each day per patient. The time windows were
created to increase app engagement (having patients revisit
the app a few times a day) and to input manual measurements
like mood and weight. HRs that were recorded during the pa-
tient’s assumed sleeping period (12 AM – 7:59 AM) were not
collected within the designated time windows.

Clinical characteristics
Clinical characteristics of patients were obtained through the
EPIC medical record, including (1) sociodemographic,
anthropometric, and lifestyle factors: age, sex, race (white
vs nonwhite), smoking status, Medicaid status, and body
mass index; (2) admission characteristics, in particular diag-
nosis; left ventricular ejection fraction (LVEF) less than 40%;
revascularization status; whether percutaneous coronary
intervention (PCI), coronary artery bypass graft (CABG),
or neither was performed; transfusion status; thrombolysis
in myocardial infarction (TIMI) major bleeding; develop-
ment of cardiogenic shock; development of heart failure;
(3) history of hyperlipidemia, hypertension, heart failure,
previous PCI, previous CABG, stroke, cerebrovascular dis-
ease, atrial fibrillation (AFIB), peripheral vascular disease,
previous myocardial infarction (MI), type 2 diabetes mellitus
(T2DM), chronic lung disease, dialysis, genitourinary and
gastrointestinal bleeds in the last 6 months, depression; and
(4) discharge medications for MI, specifically adenosine
diphosphate receptor inhibitors, angiotensin-converting
enzyme inhibitors, angiotensin II receptor blockers,



Figure 1 Visual representation of patient and heart rate (HR) inclusion criteria. The y-axis describes 4 sample patients, their associated HR shape, and whether
they would be considered included or excluded based on their HR distribution. The x-axis describes the time associated with each HR recording. Each shape
represents an individual HR associated with the respective patient. Bolded shapes signify inclusion of the HR, while grayed-out ones were excluded.
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anticoagulants, diuretics, beta blockers (BBs), aspirin, high-
intensity statins, and calcium channel blockers (CCBs). All
relevant clinical characteristics captured during index admis-
sion were defined by ICD-10 codes or through manual chart
review if not associated with an ICD-10 code (Supplemental
Table 1). Manually reviewed variables include LVEF,40%,
incomplete revascularization, whether a PCI or CABG was
performed, presence of TIMI major bleeding, and changes
to discharge medications. Medicaid status was used as a bi-
nary covariate in the model to help control for socioeconomic
status and healthcare access. Patient income data were also
collected as an optional fill-in; however, most patients did
not complete this field. Details regarding primary insurance
and racial demographic variables can be found in
Supplemental Table 2.

LVEF was obtained from the patient’s first echocardio-
graphic report after study enrollment. Incomplete revascular-
ization was defined as failure to achieve 0% occlusion of
target arteries after revascularization was deemed appropriate
and attempted. Type of procedure (PCI vs CABG) and revas-
cularization status were obtained from the patient’s
procedural note(s). Transfusion status, TIMI major bleeding
status, development of cardiogenic shock, development of
heart failure, past medical history, and discharge medications
Figure 2 Heart rate recordings—from Apple
were obtained through the patient’s discharge summary.
Changes to prescriptions upon discharge were also collected,
including anticoagulants (warfarin, direct thrombin inhibi-
tors, and direct factor Xa inhibitors) and diuretics (carbonic
anhydrase inhibitors, loop diuretics, thiazide diuretics, and
potassium-sparing diuretics).

Readmission data
Patients readmitted within 30 days were identified from
discharge summaries, including date of and reason for read-
mission. ICD-10 diagnosis codes were used to determine rea-
sons for hospital readmission and were categorized into 2
clinical groups: cardiac (ie, MI, AFIB, pericarditis, cardiac
tamponade, and acute chest pain due to apical akinesis or un-
resolved coronary artery disease [CAD]) and non-cardiac-
related admissions.

Statistical analysis
Modeling change in HR over 30 days postdischarge
We used a multivariable general linear mixed-effects model
(GLMM) to test the associations between clinical characteris-
tics at admission or upon discharge and change in HR during
the 30 days postdischarge. We used this model to (1) derive a
general form of change in HR from the individual-specific
Watch to the Corrie Health application.



Figure 3 Flow chart of study patient population. HR 5 heart rate;
Pts 5 patients.
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(within-person) patterns of HR change over time, and (2)
examine the heterogeneity in HR patterns over time between
individuals (between-person) while testing for the contribution
of our chosen clinical variables to this heterogeneity. To ac-
count for within-patient correlations of consecutive HRs, we
used the heterogeneous autoregressive order 1 covariance
structure.9 To account for longitudinal within-patient changes
in HR postdischarge, we assumed a linear change over time.
Compared with the model that assumed linear change over
time, a piecewise linear random coefficient model with the 6
linear splines (ie, study days 0–5, 5–10, 10–15, 15–20, 20–
25, 25–30) did not significantly improve overall model fit to
the data based on reduced Akaike information criteria.10

The modeling process consisted of 2 steps. At the first
step (model 1), we fit an unconditional model without any
predictor or covariates (ie, between-person variables) except
for a person-specific intercept (ie, baseline/admission HR)
and a person-specific slope of change in HR over time. Co-
efficients of association derived from this model were used
as a base with which to compare with the subsequent
models. At the next step (model 2), each potential predictor
of HR was entered while controlling for between-person
variables including age, sex, race, Medicaid status, BB
dose, and CCB dose. These variables were chosen to focus
our analysis on modifiable cardiovascular comorbidities and
surgical/medical interventions. Because there is well-
established evidence showing that BBs and CCBs lower
HR in the short and long term, we controlled for these med-
ications to unmask any changes in HR contributed by spe-
cific comorbidities, admission characteristics, or other
medications.

Each patient’s mean admission HR was calculated by
averaging HRs collected between study recruitment and hos-
pital discharge. The number of days between recruitment and
discharge, as well as the number of recordings, varied across
each patient. All models treated mean admission HR as the
patient’s mean daily HR associated with study “day”
0 (defined as the inpatient time period, with study day 1 being
the day after discharge). We first tested if potential predictors
would be associated with their mean admission HR. To
compare alternative means of assessing patients’ HR at base-
line, we replaced the mean admission HR with the mean HR
on the day of discharge and reran the analysis. We then
included an interaction term between potential predictors
and time within model 2 and tested if it would be associated
with the rate of HR change over time. Interactions between
covariates were also tested by including the cross-product
terms in the model. Differences with 2-sided P values ,.05
were considered statistically significant. All analyses were
performed using STATA version 15.1 (StataCorp, College
Station, TX).

From the clinical characteristics mentioned previously, a
subset was chosen and analyzed based on clinical relevancy
in similar prior studies,11,12 sample size considerations, and
multicollinearity testing. These variables were (1) medical
history of hypertension, T2DM, prior MI, prior PCI, prior
CABG, stroke, dyslipidemia and depression, and any smok-
ing history; (2) admission characteristics: diagnosis of
ST-elevated myocardial infarction, LVEF ,40%, CABG
and/or PCI performed during hospitalization, transfusions
performed, development of heart failure, incomplete revas-
cularization; and (3) non-BB/CCB medications:
angiotensin-converting enzyme inhibitors and angiotensin
II receptor blockers, anticoagulants, diuretics, and adeno-
sine diphosphate receptor inhibitors.

To comment on howmissing datawere treated,GLLMs can
account for unbalanced data sets such as ours by using
likelihood-based analyses that provide unbiased estimates un-
der a missing-at-random assumption. To explore whether this
unbalanced data set can be considered missing-at-random,
we conducted a sensitivity analysis using a random-slope
missing-not-at-random mechanism where the likelihood of
dropping out is related to the patient’s unobserved slope.
Thismechanismwasfitted through a jointmodel that combined
a survival model for the dropout process and a GLMM for the
longitudinal HR outcome, allowing dropout to be related to the
patients.13 The coefficient estimates for the effect of our vari-
ables of interest on change in HR, comparing GLMMs and
the joint models, can be found in Supplemental Table 3. The
analysis under missing-not-at-random did not materially
change the estimates from GLMMs, providing further support
for model validity under this study context.
Descriptive statistics for readmission data and HR
distribution
To further assess patterns of HR in relation to readmission,
we calculated the mean, range, and frequency of HR record-
ings across 7 days prior to readmission, as well as the fre-
quency of HRs over 90 bpm, HRs under 60 bpm, and the
number of patients represented by those recordings. This
threshold was decided based on previous studies, which



Table 1 Baseline characteristics of study patients

Patient characteristics
Patients
(N 5 91)

HRs
(N 5 4447)

Demographics
Age, mean (SD) 57.0 (10.6)
18–49, n (%) 25 (27.47) 1205 (27.10)
50–64, n (%) 41 (45.05) 3242 (72.90)
�65, n (%) 25 (27.47) 1004 (22.58)

Female, n (%) 24 (26.37) 1038 (23.34)
White, n (%) 63 (69.23) 3292 (74.03)
BMI, mean (SD) 30.3 (5.0)
,25, n (%) 8 (8.79) 381 (8.57)
25–35, n (%) 68 (74.73) 3296 (74.12)
.35, n (%) 15 (16.48) 770 (17.32)

Current/previous smoker, n (%) 46 (50.55) 2387 (53.68)
Medicaid, n (%) 7 (7.69) 195 (4.38)

Admission characteristics, n (%)
STEMI 41 (45.05) 2348 (52.80)
LVEF ,40% 16 (17.58) 712 (16.01)
Incomplete revascularization 9 (9.89) 498 (11.20)
PCI performed 69 (75.82) 3484 (78.34)
CABG performed 20 (21.98) 706 (15.88)
Transfusion performed 16 (17.58) 562 (12.64)
TIMI major bleeding 1 (1.10) 8 (0.18)
Development of heart failure 11 (12.09) 397 (8.93)
Cardiac rehab referral 76 (83.52) 3877 (87.18)
Cardiogenic shock 0 0

Past medical history, n (%)
Hyperlipidemia 47 (51.65) 2332 (52.44)
Hypertension 58 (63.74) 2736 (61.52)
Heart failure† 2 (2.20) 159 (3.58)
Previous PCI 13 (14.29) 668 (15.02)
Previous CABG 6 (6.59) 398 (8.95)
Stroke 6 (6.59) 223 (5.01)
Cerebrovascular disease 2 (2.20) 6 (0.13)
Atrial fibrillation 3 (3.30) 159 (3.58)
Peripheral vascular disease 4 (4.40) 134 (3.01)
Prior MI 9 (9.89) 523 (11.76)
T2DM 33 (36.26) 1450 (32.61)
Chronic lung disease 11 (12.09) 609 (13.69)
Dialysis 1 (1.10) 112 (2.52)
GU/GI bleeding in last 6 mo 1 (1.10) 112 (2.52)
Depression 6 (6.59) 99 (2.23)

Cardiac medications, n (%)
ADP receptor inhibitors 81 (89.01) 4165 (93.66)
ACE inhibitors/ARBs 52 (57.14) 2699 (60.69)
Anticoagulants 13 (14.29) 453 (10.19)
Aspirin 84 (92.31) 4127 (92.80)
Beta blockers 85 (93.41) 4144 (93.19)
Calcium channel blockers 8 (8.79) 302 (6.79)
Diuretics 28 (30.77) 1007 (22.64)
Statins 89 (97.80) 4356 (97.95)

ACE 5 angiotensin-converting enzyme; ADP 5 adenosine diphosphate;
ARBs 5 angiotensin II receptor blockers; BMI 5 body mass index; CABG 5
coronary artery bypass graft; GI 5 gastrointestinal; GU 5 genitourinary;
HR 5 heart rate; LVEF 5 left ventricular ejection fraction; MI 5 myocardial
infarction; PCI 5 percutaneous coronary intervention; STEMI 5 ST-elevated
myocardial infarction; TIMI 5 thrombolysis in myocardial infarction;
T2DM 5 type 2 diabetes mellitus.
†Heart failure diagnosis prior to index admission.
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have shown that admission HRs over 90 bpm or under 60
bpm were associated with increased mortality within 30
days postdischarge.4,5
Results
Study population characteristics
The study population initially included 126 patients from the
MiCOREcohortwhohad8248HRrecordings.After exclusion
of patients and HRs based on our selection criteria detailed in
Figure 3, thefinal cohort included 91 patientswith 4447HR re-
cordings, yielding 1511 calculations of mean daily HR. The
baseline characteristics of patients and their associatedHR dis-
tribution are summarized in Table 1, most notably a mean pa-
tient age of 57.0 (SD 10.6), 24 of 91 (26%) female, 63 of 91
(69%) identified aswhite, 47 of 91 (52%)with hyperlipidemia,
58 of 91 (64%)with hypertension, 33 of 91 (35%)with T2DM,
and 6 of 91 (6.6%) who had undergone a CABG at a historical
admission. Compared to patients who were excluded from the
study (those with no recorded HRs or HRs in the defined study
period), patients included in the studywere less likely to have a
prior MI and were more likely to have complete revasculariza-
tion during admission (Supplemental Table 4). There was no
statistical difference in the prevalence of aggregated cardiovas-
cular risk factors between both groups. This aggregation
included patients who had hypertension, T2DM, prior MI,
prior stroke, or dyslipidemia as defined by AHA guidelines.14

A total of 7.89% of recordingswere obtained during admission
(day0), 35.19%between study days 1 and 10, 31.84%between
days 11 and 20, and 25.07% between days 21 and 30. Further
segmentation of HR data can be found in Supplemental
Table 5.
Change in HR over 30 days postdischarge
Starting at a mean admission HR of 78.0 bpm (95% CI 76.1
to 79.8), each consecutive study day was associated with a
0.172 bpm decrease (P , .001, -0.265 to -0.078) in mean
daily HR in unconditional model 1 (Figure 4), which re-
mained significant after adjusting for sex, age, race, Medicaid
status, and prescription of BBs and CCBs. When examining
HRs segmented by time of day, both the morning (-0.151
bpm/day, -0.252 to -0.050) and evening (-0.225 bpm/day,
-0.318 to -0.132) recordings showed a progressive decrease
in HR per study day. The noon and afternoon recordings
showed a similar trend without statistical significance
(Supplemental Table 6).
Associations of risk factors with change in average
daily HR across 30 days postdischarge
In fully adjusted model 2 accounting for age, sex, race,
Medicaid status, BB dose, and CCB dose, clinical character-
istics associated with an elevated mean daily HR during
admission included having a prior CABG before admission
(8.98 bpm; P 5 .017; 1.59–16.37), depression (12.5 bpm;
P 5 .003; 4.29–20.6), discharge prescription for anticoagu-
lants (9.6 bpm; P 5 .001; 4.11–15.16), and discharge pre-
scription for diuretics (5.6 bpm; P 5 .006; 1.60–9.61)
compared to those who did not have such characteristics.
These results are reflected in Table 2. When the mean admis-
sion HR were replaced with the mean HR on the day of
discharge, the association estimates were similar.



Figure 4 Predicted change in heart rate (HR) across 30 days using unconditional model 1.
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With respect to change in HR over time (Table 2), patients
with hypertension had a -0.11 bpm/day change in HR, while
those without hypertension had a -0.30 bpm/day change,
demonstrating a slower magnitude of decrease associated
Table 2 Association of clinical characteristics with average admission
postdischarge (in comparison with patients without the designated char

Clinical characteristics
Relative diff. in mean
admission HR 95% CI

Medical history
Current/previous smoker 0.202 -3.33 to 3.7
Hypertension -3.18 -7.05 to 0.6
T2DM† 1.21 -2.31 to 4.7
Prior MI 2.67 -3.65 to 8.9
Prior CABG‡ 8.98 1.59 to 16
Stroke 1.10 -7.28 to 9.4
Hyperlipidemia 0.125 -3.64 to 3.8
Depression 12.5 4.29 to 20

Admission characteristics
Diagnosis of STEMI 0.984 -2.77 to 4.7
LVEF ,40% 2.89 -2.62 to 8.3
CABG performed 2.41 -2.31 to 7.1
PCI performed -2.04 -6.69 to 2.6
Transfusion performed -0.026 -5.76 to 5.7
Incomplete revascularization 0.408 -6.37 to 7.1
Development of heart failure 2.50 -3.47 to 8.4

Non-BB/CCB medications
ACE inhibitors/ARBs -0.551 -4.74 to 3.6
Anticoagulants 9.64 4.11 to 15
Diuretics 5.61 1.60 to 9.6
ADP receptor inhibitors 2.06 -4.17 to 8.2

BB 5 beta-blocker; CCB 5 calcium channel blocker; other abbreviations as in
†After adjusting for CABG in T2DM association analysis.
‡After adjusting for T2DM in CABG association analysis.
with hypertension (0.19 bpm/day difference; P 5 .048;
0.002–0.38). Similarly, patients with T2DM had a slower
magnitude of HR decrease compared to their counterparts:
-0.04 bpm/day for T2DM compared to -0.25 bpm/day for
heart rate and change in average daily heart rate across 30 days
acteristic)

P
Relative diff. in mean
daily HR change 95% CI P

3 .911 0.001 -0.183 to 0.185 .990
90 .107 0.190 0.002 to 0.378 .048
2 .500 0.220 0.044 to 0.395 .014
8 .409 0.184 -0.109 to 0.477 .219
.37 .017 0.255 -0.043 to 0.552 .093
7 .797 0.229 -0.127 to 0.585 .207
9 .948 0.179 0.002 to 0.355 .047
.6 .003 0.319 -0.155 to 0.793 .187

3 .607 -0.067 -0.251 to 0.118 .479
9 .304 0.039 -0.201 to 0.279 .753
3 .317 0.049 -0.198 to 0.296 .697
2 .391 -0.066 -0.294 to 0.163 .573
1 .993 0.068 -0.182 to 0.317 .595
9 .906 -0.025 -0.334 to 0.284 .875
7 .412 0.287 -0.002 to 0.576 .052

4 .797 -0.007 -0.194 to 0.180 .942
.16 .001 -0.253 -0.517 to 0.010 .059
1 .006 0.096 -0.109 to 0.302 .358
9 .517 -0.234 -0.590 to 0.123 .198

Table 1.



Figure 5 Predicted admission and change in heart rate (HR) over 30 days using fully adjusted model 2 for patients with history of hypertension, type 2 diabetes
mellitus (T2DM), or hyperlipidemia.
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patients without T2DM (0.22 bpm/day difference; P5 .014;
0.04–0.40). Patients with hyperlipidemia also had a slower
magnitude of HR decrease: -0.09 bpm/day for patients with
hyperlipidemia compared to -0.27 bpm/day for patients
without (0.18 bpm/day difference; P 5 .047; 0.002–0.36).
These comparisons are visualized in Figure 5. The results
pertaining to T2DM were obtained after adjusting for poten-
tial collinearity with prior CABG.
HR recordings among patients with 30-day
postdischarge readmissions
Eleven out of the 91 patients were readmitted within 30 days
postdischarge and included in this subanalysis, with a mean
time to readmission of 6.91 days. A description of their de-
mographics and clinical characteristics can be found in
Supplemental Table 7. These readmitted patients contributed
364 HR recordings, representing 8.19% of total HRs re-
corded. One hundred seventy-nine of those HRs were re-
corded on the day of or day prior to readmission. Five of
the readmitted patients did not have any HR recordings
within 7 days prior to admission. Table 3 summarizes the
HR recordings across 7 consecutive days before readmission.
Of note, the mean of HRs recorded, and instances of HR.90
bpm, were highest within 3 days prior to readmission, with
variable contributions from each patient. There were no re-
corded episodes of bradycardia 7 days prior to readmission.
Discussion
Principal results
In this prospective study of recovering AMI patients, we used
mobile health technologies to determine predictors for
change in HR within 30 days postdischarge. No prior studies
have examined changes in subacute HR post-AMI outside
the hospital setting. We observed that there was a slight
decline in mean daily HR over 30 days in both unconditional
and adjusted models, which could reflect gradual cardiac re-
covery secondary to a combination of medical and surgical
interventions. Consequently, deviation from this trend, such
as a persistently elevated HR, should be studied as a potential
biometric of comorbidities contributing to a more difficult re-
covery process. We identified several putative factors (co-
morbidities and cardiac medications) associated with
increased admission HR and/or deviations in postdischarge
HR compared to the overall population. Specifically, a prior
history of CABG, history of depression, discharge anticoag-
ulants, and discharge diuretics were associated with a higher
average admission HR. Patients with hypertension, T2DM,
or hyperlipidemia were associated with a slower decrease



Table 3 Descriptive statistics of HR recordings before
readmission

Number of HR Recordings, Mean, and Range

# of recordings Mean, bpm Range, bpm

Days prior
1 13 81.2 60-137
2 13 82.6 61-98
3 10 77.3 61-94
4 11 69.2 60-81
5 9 71.4 60-91
6 8 68.9 60-82
7 10 69.6 61-105

# of HRs . 90 bpm

# of recordings
# of pts
represented

Cumulative
tally of unique
pts represented

Days prior
1 2 1 1
2 7 4 5
3 3 3 6
4 0 0 6
5 1 1 6
6 0 0 6
7 1 1 6
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in HR compared to those without the corresponding condi-
tion. Lastly, for a small subset of patients who were readmit-
ted within 30 days, they typically came back within a week
after discharge with elevated HR recordings, generally man-
ifesting 3 days prior to readmission.
Comparison with prior work
Predictors associated with deviations from HR recovery (hy-
pertension, T2DM, hyperlipidemia) as identified in our study
have been associated with higher resting HR among patients
with stable CAD.11,12 Other predictors explored by these
studies (ie, tobacco use, chronic obstructive pulmonary dis-
ease) were not associated with changes in HR among sub-
acute post-AMI patients. Several methodological
differences exist between our study and others, which include
patient population (stable CAD vs post-AMI), the timing and
frequency of HR recordings (single vs multiple repeated
measures over time), a continuous vs categorical HR
outcome, and confounding factors accounted for.11,12 Impor-
tantly, we applied a mixed modeling strategy, which was
likely to yield more accurate results by leveraging a substan-
tial number of measurements per individual.

Monitoring HR as a biometric indicator for AMI recovery
may elucidate the role of sympathetic activation in both
increased HR and adverse outcomes of recovering patients.
Patients recovering fromAMI are at risk for recurrent MI, sud-
den cardiac death from arrhythmias, new-onset heart failure,
and ventricular remodeling owing to the consequences of sym-
pathetic activation.15 To explain the observed decrease in HR
post-AMI, current guidelines advise prescribing BB therapy to
blunt sympathetic activation, leading to better clinical
outcomes.16 Additionally, studies have shown that successful
reperfusion through PCI resulted in a significant recovery in
HR variability, a marker for sympathetic withdrawal and resto-
ration of autonomic balance.17 Biometric outcomes post-
CABG are more complex: HR variability tends to worsen
immediately post-CABG owing to highly invasive surgical
manipulation but recovers over several months.18 Beyond
medical/surgical management, additional guidelines focus on
the importance of discharge preparation, which includes
referral to an exercise-based cardiac rehabilitation program, re-
viewing barriers toward medication adherence, education
about lifestyle modifications, and a clear follow-up plan.19

These components are expected to help decrease HR to cardi-
oprotective ranges over time. Patients in this study also had ac-
cess to the Corrie smartphone application, which aided in these
objectives during their hospitalization and 30 days postdi-
scharge. While we assumed a linear relationship between
change in HR over time postdischarge, it is possible that HR
might decrease more rapidly in the first 1 or 2 weeks postdi-
scharge owing to a greater adherence to BB therapy or imme-
diate effects of surgical intervention, and then stabilize,
reflecting a nonlinear change in HR. While we were able to
demonstrate comparable fit between our linear model and a
piecewise linear mixed-effects model, future analysis powered
by larger sample sizes may better reflect more complex,
nonlinear changes during different time points. Further
research is also needed to explore the impact of Corrie on
HR change between those with and without such intervention.

Diving deeper into this decrease in postdischarge HR, we
found a significant decrease in morning and evening HR,
but not in noon and afternoon HR. To explain these temporal
associations, we have hypothesized 3 potential explanations:
(1) direct influence of circadian-based cardiovascular changes
on HR reduction, (2) the timing of patient medication intake,
and (3) the increased levels of activity midday (for noon and
afternoon HRs). Several studies have shown that a patient’s
chronotype (a patient’s natural sleep-wake cycle) can
contribute to their HR variation and cardiovascular processes
such as endothelial vasodilation.20,21 However, these specific
mechanisms warrant further research to explain specific trends
in HR decline. Regarding medications, most of the patients in
this study were prescribed a 1-time-daily-dose BB at
discharge. It is possible that most patients had taken their med-
ications either in the morning or in the evening, leading to
more immediate declines in HR during those times. Lastly, pa-
tients in this cohort had a slightly higher noon and afternoon
mean HR, which may reflect increased activity midday. This
could lead to an attenuation of HR change, yielding nonsignif-
icant results for noon and afternoon HR recordings.

There are several hypotheses explaining why patients with
a prior CABG may have elevated HR during admission. The
most likely explanation is that having a prior CABG indicates
a patient’s poor health status and extensive CAD. Such a pro-
cedure is usually reserved for those with triple vessel disease
or left main disease, and for those for whom PCI or medical
therapy is not amenable. This chronic disease burden is high-
lighted by a population-based study from the Veterans
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Affairs Surgical Quality Improvement Program, showing an
increased prevalence of obesity, T2DM, left main CAD, and
advanced heart failure among veterans undergoing CABG.22

Similarly, our study found that patients with a prior CABG
had more comorbidities (6.2 vs 2.0) and were discharged
on more medications (13.5 vs 9.7) compared to
those without such history. A more detailed analysis of these
patients can be found in Supplemental Table 8. Our
study contributes to existing literature suggesting that
patients with prior CABG tend to have a greater chronic
disease burden and may be more susceptible to certain
complications.23,24

Patients with either hypertension or T2DM have a slower
rate of HR decrease compared to patients without the comor-
bidity. The short-term relationship observed in recovering
AMI patients is comparable to the results of previous studies
that focused on long-term HR changes in relation to these co-
morbidities in the general population.12,25 Elevated HR is a
common feature in patients with hypertension and has been
implicated in its pathogenesis and progression.26,27 Hyper-
tension has also been shown to cause impairments in auto-
nomic cardiovascular control, such as abnormalities in
baroreceptor and chemoreceptor signaling, leading to reduc-
tions in parasympathetic tone.28 Patients with T2DM have
been shown to derive more myocardial energy from nonester-
ified fatty acids, resulting in higher myocardial oxygen con-
sumption and a higher resting HR.12 When coupled with an
acute myocardial insult or chronic CAD leading to chrono-
tropic incompetence, diabetic patients were more likely to
suffer an adverse cardiac event.29 For both the hypertensive
and diabetic patient populations, the slower rate of HR recov-
ery may be partially attributable to an escalation in sympa-
thetic activity and reflect barriers toward HR recovery. In
addition, chronic sympathetic overactivity may affect
glucose tolerance and worsen a patient’s glucose control.12

The exact relationship between HR, BP, and the role of sym-
pathetic activation is still an active area of discussion, espe-
cially in the context of obesity, T2DM, and metabolic
syndrome.27

Patients with a history of hyperlipidemia also showed a
slower rate of HR decrease in this study. Prior research has
shown positive associations between HR and hyperlipid-
emia, which includes elevated serum total cholesterol, LDL
cholesterol, and triglyceride levels through blood screening
as well as through documentation.30,31 The mechanism is
likely multifactorial, involving development of CAD and
endothelial dysfunction leading to impaired autonomic regu-
lation over long-term cumulative exposure.32–34 However,
the short-term impact of hyperlipidemia on HR change dur-
ing a patient’s subacute recovery period remains unclear.
Furthermore, this association pertains more generally to a
prior documentation of hyperlipidemia, as we did not record
patients’ current lipid status obtained through bloodwork.
Further interpretation of this association would require
more in-depth analysis of patients’ current lipid status based
on laboratory work and usage of lipid-lowering medications.
We also identified an association of prescription of di-
uretics with increased HR during admission, but not with
change in HR. This association can be partly explained
from the patient’s cardiac status andmedication’s mechanism
of action. Indications for discharge diuretics post-AMI
include volume overload and acute heart failure during
admission,16 consistent with our study findings after review-
ing each patient’s indication for diuretics (Supplemental
Table 9). In the acute setting, this complication leads to a
decrease in blood pressure owing to reduced cardiac contrac-
tility, leading to a compensatory increase in HR to preserve
cardiac output. This increase in HR has also been shown in
patients with heart failure, both for discharge HR and for first
follow-up HR 1 week postdischarge.35,36 While these
discharge medications may indirectly reflect the impact of
underlying disease burden on AMI recovery, it is difficult
to make robust conclusions owing to the variability in medi-
cal optimization and treatment plan during admission.

Similarly, patients discharged with anticoagulant therapy
had an elevated admission HR but not change in HR. Current
guidelines indicate anticoagulative therapy among patients
withAFIB, deep venous thrombosis, left ventricular thrombus,
and other hypercoagulable disorders for at least 3 months.37

Thus, it is likely that prescription of anticoagulant therapy is
an indicator of adverse events occurring during admission,
such as occurrence of AFIB, which is characterized by rapid,
irregular atrial contractions leading to uncoordinated ventricu-
lar contractions.

While past studies have speculated an association between
depression and increased admission HR owing to impaired
autonomic function in patients (especially those with concur-
rent CAD),38 data from a large population-based prospective
cohort study did not support a causal pathway or genetic plei-
otropy that explained a putative link between depression and
autonomic dysregulation.39 Alternatively, it is possible that
certain classes of antidepressants could confound this associ-
ation.39 On chart review, 13% of patients (10 out of 77 from
Johns Hopkins recruitment sites) were prescribed antidepres-
sants, which include selective serotonin reuptake inhibitors,
serotonin-noradrenaline reuptake inhibitors, tricyclic
antidepressants, atypical antidepressants, and antiepileptics
used for refractory depressions. Further research focusing
on the impact of these antidepressants is warranted to disen-
tangle this relationship. This limitation, along with the small
sample size of patients, warrants further exploration into
depression as well as other psychiatric diagnoses on post-
AMI recovery.

In our analysis of readmissions, more than half of these pa-
tients exhibited an elevation in HR greater than 90 bpm within
3 days of readmission. However, the small sample size pro-
hibits us from any firm interpretation of the current findings.
Apart from using an HR threshold as a surrogate marker of
signs of decompensation, future researchmay investigate acute
changes in HRwithin various time frames before readmission.
It may also investigate the effectiveness of real-time telemedi-
cine interventions when higher HR values are detected.
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Limitations
One limitation affecting the applicability of this study is that
our patients had access to a digital health intervention, mak-
ing our study population less representative of all post-AMI
patients. Self-directed patient participation may introduce se-
lection bias as another limitation of this study. Patients who
were healthier during their admission may have more phys-
ical and mental bandwidth to engage in a new technology.
As such, having a healthier sample is more likely to attenuate
current results than produce biased estimates: elevations in
HR may be underestimated, as healthier patients tend to
have better autonomic control and hemodynamic stability.
Further evidence of selection bias includes a decreased prev-
alence of prior MI for patients included in this study. Another
limitation is the small sample size in the current analysis,
which particularly affected the reliability of the association
estimate for prior CABG, given that only 6 patients had prior
CABG. There were also insufficient parameters to help
differentiate resting and exercise-induced HR through the
Apple Watch. While AMI patients are advised to limit heavy
exertion postdischarge, elevated HR due to increased activity
still represents a confounding factor that reflects limitations
of the Apple Watch.

Our statistical model did not account for medication titra-
tions that occurred during follow-up within the study period.
To evaluate the impact of these changes, we conducted a chart
review of 77 of 91 available patient records at Johns Hopkins
(Supplemental Table 10) and found that 20% of patients had a
CVmedication changed during follow-up, and 14% had a BB/
CCB changed. Fourteen percent of HRs were collected after a
CV medication change and 7% of HRs were collected after a
BB/CCB change.While these titrations had an impact on a mi-
nority of HR recordings predominantly 2 weeks after
discharge, they are a limitation to the study. Another limitation
is the absence of reliablemedication adherence data among pa-
tients. While there are data available through manual chart re-
view associated with patient follow-up visits, it would not be
appropriate to confidently reference these statistics without
further evaluation of data accuracy and potential reporting
bias.
Clinical implications
Patients recovering from AMI are particularly vulnerable
during their subacute period and require personalized rehabil-
itation. Historically, HR and other vital signs during follow-
up have often been used as isolated snapshots of a patient’s
wellbeing. The lack of multiple data points over time limits
evaluation of trends necessary to monitor patient recovery
status. The introduction of wearables such as the Apple
Watch facilitates longitudinal monitoring of vital signs and
can aggregate larger quantities of real-time health data
without requiring frequent clinic visits.

This continuous source of data allows us to better under-
stand each patient’s recovery progress day-by-day, pinpoint
higher-risk patients who exhibit HR trends that deviate from
the norm, and monitor potential deviations in patient
behavior. Our study highlights the overall decrease in HR
post-AMI (0.2 bpm/day) over 30 days postdischarge as a
promising indicator of recovery with current guideline-
directed therapies and use of digital health technology.16

Understanding the predictors of elevated HR within this
subacute period helps lay the groundwork for future algo-
rithms that take static inputs (comorbidities, admission
data), dynamic inputs (HR, blood pressure, activity, medi-
cations prescribed), and their interactions to assess for early
signals of decompensation. Future steps include analyzing
more granular HR data (beyond 4 measurements per day)
and more rigorously exploring biometric data for readmitted
patients. Beyond HR data, collecting other biometrics such
as blood pressure, step count, daily activity, and sleep time
through consumer wearables may be informative. There
also exists an opportunity to investigate sustained brady-
cardia, which has been linked to excess morbidity and mor-
tality.5 Other admission variables, such as occurrences of
postprocedural AFIB or other arrhythmias, may also be
collected to elaborate on factors affecting HR change in
the subacute period.

This study is a first step in understanding post-AMI wear-
able HR data and its future uses in remote patient monitoring
leading to targeted early interventions. Prior research has
shown the potential role for other forms of remote patient
monitoring. One study assessed the 30-day readmission rates
of AMI patients who used a telemedicine system consisting
of (1) a patient-worn cardio-beeper that can transmit 12-
lead electrocardiograms, (2) a 24-hour-a-day call center,
and (3) a mobile intensive care unit. Out of 897 patients,
5.8% were readmitted within 30 days, compared to readmis-
sion rates of 11%–28% in the region. Solutions such as this
highlight how wearables can be incorporated into larger
workflows to streamline medical decision-making and pro-
vide numerous capabilities as a longitudinal research tool.
Furthermore, their financial feasibility is highlighted by
recent policy changes by the Centers for Medicare &
Medicaid Services, which has helped broaden reimbursement
for digital health tools involved in remote patient moni-
toring.40,41
Conclusion
In this study, we characterized longitudinal HR and predictors
of HR change in recovering AMI patients to investigate its po-
tential as a biometric for recovery.We found that these patients
have a decline in average daily HR of 0.2 bpm/day during their
30-day postdischarge period. Patients’ past medical history,
including prior CABG, hypertension, T2DM, hyperlipidemia,
depression, and specific cardiac medications prescribed at
discharge, may contribute to the variation in admission HR
and/or the rate of HR change between patients postdischarge.
Patients readmitted within 30 days postdischarge showed
elevated HR recordings within 3 days prior to admission,
based on a limited data set of 11 participants. This study high-
lights the feasibility of analyzing large quantities of longitudi-
nal data collected from a commercial wearable and digital
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health application in estimating postdischarge HR trends
among AMI patients. Ultimately, this enables us to monitor
HR outside the hospital and better contextualize HR data
based on the patient’s clinical profile, and could further enable
precision medicine by guiding more targeted treatments at the
appropriate times.
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