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Abstract
Similarity in facial characteristics between relatives suggests a strong genetic component underlies facial variation. While there have

been numerous studies of the genetics of facial abnormalities and, more recently, single nucleotide polymorphism (SNP) genome-

wide association studies (GWASs) of normal facial variation, little is known about the role of genetic structural variation in determining

facial shape. In a sample of Bantu African children, we found that only 9% of common copy number variants (CNVs) and 10-kb CNV

analysis windows are well tagged by SNPs (r2 R 0.8), indicating that associations with our internally called CNVs were not captured by

previous SNP-based GWASs. Here, we present a GWAS and gene set analysis of the relationship between normal facial variation and

CNVs in a sample of Bantu African children. We report the top five regions, which had p values % 9.35 3 10�6 and find nominal ev-

idence of independent CNV association (p < 0.05) in three regions previously identified in SNP-based GWASs. The CNV region with

strongest association (p ¼ 1.16 3 10�6, 55 losses and seven gains) contains NFATC1, which has been linked to facial morphogenesis

and Cherubism, a syndrome involving abnormal lower facial development. Genomic loss in the region is associatedwith smaller average

lower facial depth. Importantly, new loci identified here were not identified in a SNP-based GWAS, suggesting that CNVs are likely

involved in determining facial shape variation. Given the plethora of SNP-based GWASs, calling CNVs from existing data may be a rela-

tively inexpensive way to aid in the study of complex traits.
Introduction

The human face is one of the most visually distinguish-

able human features. Similarity of facial characteristics

within families suggests a strong genetic component

in normal facial development. While single nucleotide

polymorphism (SNP)-based studies have uncovered

many associations with face shape,1–3 the genetics

behind normal facial variation is not well understood.

Particularly little is known about the role of copy number

variants (CNVs). Previous studies of the sample of Bantu

African children studied here have shown that facial

shape measures have considerable narrow sense herita-

bility (28%–67% for 32 of 33 facial measurements).4

Cole et al.4 found that much of this heritability is ex-

plained by common (minor allele frequency, MAF >

1%) SNPs; nevertheless, for a number of facial phenotype

measures, a considerable fraction (26%–64%) of esti-

mated heritability is not explained by common SNPs.

We hypothesize that some of this missing heritability

may reflect genomic structural variation (SV), especially

CNVs that may cause dosage imbalance of genes

involved in facial development.
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Recent studies in large cohorts have shown that CNVs

represent a substantial source of human genetic varia-

tion,5 altogether involving 4.8%–9.5% of the genome.6

CNVs have been associated with several common complex

diseases and traits, such as schizophrenia7 (MIM: 181500),

autism spectrum disorder8 (MIM: 209850), and height9

(MIM: 606255). Additionally, CNVs have been associated

with a number of rare diseases, including several in which

patients have craniofacial abnormalities, such as 22q11

deletion syndrome10 (MIM: 192430) and Angelman syn-

drome11 (MIM: 105830).

While recent research has provided insights into SVs,

including CNVs, across the genome and in multiple

genetic ancestries,12 the role of CNVs in complex traits re-

mains understudied, particularly in non-European ances-

tral populations.12–14 Studying CNVs in non-European

populations is important, as CNVs and especially rare

CNVs may be population specific or differ greatly in fre-

quency.12,15,16 Additionally, the linkage disequilibrium

(LD) structure between SNPs and CNVs differs by ancestral

population.12

CNV calling and subsequent genome-wide association

analysis are both computationally and time intensive; if
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Figure 1. Three dimensional photographs with annotated land-
marks. (A) 3D landmarks used for geometric morphometric
quantification of facial shape as previously described.1 The full
landmark set was used to calculate the shape variables (PCs
and allometry) as well as facial size (centroid size). The red land-
marks are those used to obtain specific interlandmark distances
for analysis. (B) The full set of distances used (Table S1).
CNVs are tagged well by SNPs, additional CNV calling and

analysis may be unnecessary. The Wellcome Trust Case

Control Consortium found that SNP-based analyses

captured common CNVs (MAF > 10%) through high LD

(r2 > 0.8) with SNPs in a large (n ¼ 16,000) European sam-

ple.17 However, only 22% of less common CNVs (MAF <

5%) were well tagged by SNPs. More recently, Collins

et al.12 reported lower LD between SNPs and SVs in an Af-

rican/African American sample compared to other

ancestries.

Here, we describe a CNV GWAS and gene set analysis of

the relationship between rare and common CNVs and

normal facial variation in a sample of 3,388 apparently

healthy Bantu African children from Tanzania. We calcu-

lated pairwise LD between CNVs and SNPs within 1 mega-

base (mb) of the CNV to evaluate whether the previous

SNP-based GWAS in this sample1 likely captured common

and rare CNVs. Within the CNV GWAS, we identify five

genomic regions associated with a facial phenotype and

nominal CNVassociations in three regions that were previ-

ously identified by the SNP-based GWAS. Pairwise LD be-

tween SNPs and CNVs in these eight regions is low

(maximum pairwise r2 < 0.3), further supporting indepen-

dent and novel associations beyond that of the SNP-based

GWAS in African subjects.

Subjects and Methods

Subjects

The study cohort presented here was previously described

in detail by Cole et al.1 Briefly, it consisted of 3,631 Bantu
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African children aged 3–21 from the Mwanza region of

Tanzania. Children with abnormal facial features or a rela-

tive with known facial abnormalities were excluded. Writ-

ten informed consent was obtained for all study subjects or

their parents, as appropriate. The original SNP GWAS and

sample collection was carried out with overall approval

and oversight of the Colorado Multiple Institutional

Review Board (protocol #09–0731), was additionally

approved by the institutional review boards of the Univer-

sity of Calgary, Florida State University, the University of

California San Francisco, and the Catholic University of

Health and Allied Sciences (Mwanza, Tanzania), and was

carried out with the approval of the National Institute for

Medical Research (Tanzania). While subjects were appar-

ently unrelated upon data collection, quality control

discovered considerable cryptic relatedness within the

sample.1 As described below and within Cole et al.,1 this

relatedness is accounted for by including a kinship matrix

in our model.

Phenotype data

To quantify facial variation, each child was photographed

using a 3D camera, as seen in Figure 1. Twenty-nine stan-

dard facial morphometric landmarks were extracted, and

from these coordinates, twenty-five inter-landmark linear

distances, three measures of overall face size (i.e. allometry,

centroid size, and head circumference), one summary var-

iable from a principal components analysis (PCA) of the

most highly correlated midfacial landmarks (explaining

approximately 40% of total midface variation), and five

summary variables from a PCA of the whole face (explain-

ing approximately 70% of total facial variation) were

derived (Table S1).1 Shape variation associated with size

(allometry) was removed by multiple-multivariate regres-

sion prior to PCA. Head circumference was measured using

a tape measure in 2,686 subjects. This resulted in 34 traits

for analysis. See Cole et al.1 for more details.

Variant calling and quality control

A flowchart of CNV calling and analysis is depicted in

Figure 2. Saliva DNA from each subject was genotyped us-

ing the HumanOmni2.5Exome array (approximately

markers).1 Three CNV calling algorithms were used to

call CNVs across autosomes: PennCNV18 (version 1.0.1),

DNAcopy19 (version 1.46.0), and VanillaICE20 (version

1.32.2). CNVs were defined as segments of loss or gain

>1000 base pair (bp). The scripts used to run the CNV call-

ing algorithms are available (data and code availability).

CNV calling results were filtered as described previ-

ously.41 In PennCNV, CNV calling from genotype data us-

ing high-density SNP arrays can result in artificial splitting

of larger CNVs (approximately >500 kilobase [kb]) into

multiple smaller CNVs.18 Thus, adjacent CNVs of the

same type (i.e., both loss or both gain) and called in at least

two algorithms were merged using the approach of Wang

et al.18 Briefly, for three adjacent genomic regions A, B,

and C, where A and C represent two CNVs of the same
022



Figure 2. Analysis flowchart. Flow chart
describing the analysis process. *CNVs
called in at least two algorithms
with R10% overlap with CNVs called in
all three algorithms; **10-Kb tiling win-
dows with a 3-Kb overlap; *** 15 gene
sets from FaceBase phenotype groups
and three gene sets from SNP GWAS of
normal facial variation.
type separated by region B, CNVs A and C were merged if
B

AþBþC%0:15.

After variant calling, we performed subject and CNV

quality control (QC) to identify and remove subjects and

CNV calls with low confidence. We removed 70 duplicate

subjects and 97 subjects with a total CNV count greater

than three standard deviations above the cohort mean.

CNV QC was then performed to identify and remove

low-quality or low-confidence CNV calls. We removed

CNVs with fewer than five array probes, any centromere

or telomere overlap, more than 50% overlap with a

segmental duplication, a PennCNV score %10, or a DNA-

copy log ratio outside the range (�0.1, 0.1). Restricting to

the set of CNVs called in all three algorithms, one addi-

tional subject with a total CNV count greater than three

standard deviations above the cohort mean was excluded.

A high gain-to-loss ratio is indicative of poor quality of

CNVs. No subjects had a gain to loss ratio greater than

the predefined ratio of four, resulting in no subjects being

removed. One subject with no CNVs remaining after CNV

QC was removed from the sample. Thus, 3,462 samples

passed CNV QC. An additional 74 subjects were removed

for not passing phenotype QC, performed by Cole et al.1

The final sample size was 3,388 subjects. The number of

subjects with non-missing values for each phenotype is re-

ported in Table S2.

Definition of CNV windows, regions, and common

variants

For association analyses, we used internally derived CNVs

that were called in at least two algorithms and had at least

10% overlap with a CNV called in all three algorithms (pri-

mary; n ¼ 216,430 CNV alleles) or were called in all three

algorithms (secondary; n ¼ 71,397 CNV alleles). The inter-

sect command in BEDTools21 was used to identify CNVs

that had at least 10% overlap.

CNV tiling windows were defined across the genome as

10-kb regions with a 3-kb overlap. A CNV was included

in a window if at least 1 bp of the CNVoverlapped the win-

dow. Windows with a minimum of ten subjects with a

CNV were taken forward for analysis (n ¼ 11,605 primary
Human Genetics and Genomic
analysis windows, n ¼ 6,705 second-

ary analysis windows). Regions were

defined as sets of overlapping analysis

windows. This resulted in 1,948 pri-

mary analysis regions and 988 sec-

ondary analysis regions. Common
CNVs were defined as a subset of primary analysis CNVs

that had the same start and end location and were seen

in at least 5% of the sample (170 subjects).

We define CNV sites as called CNVs with the same start

and end location, and CNV alleles as the number of

observed CNVs in our cohort at each CNV site. A CNV

site seen in multiple subjects will have more than one

CNV allele, whereas a CNV site only observed in a single

subject will have one CNV allele.

Genome-wide association

Subjects were assigned values for each CNV window using

two classification functions: (1) absent/present: each subject

was assigned a value of 0 or 1 for the absence or presence of

a CNV, respectively, and (2) directional: each subject was as-

signed a value of 0 for a loss, 1 for no CNV, or 2 for a gain.

Subjects with both a loss and gain in the same window

were coded as 1 (i.e., no CNV) in the directional model

and as 1 in the absent/present model. Eighty-two primary

analysis windows had at least one subject with both a

loss and a gain in non-overlapping portions of the window.

Windows with at least ten subjects with phenotype infor-

mation and a CNVoverlapping the windowwere taken for-

ward for association analysis. Common CNVs were

analyzed individually and within the window analysis.

For common CNVs, each subject received a 0 or 1 for the

absence or presence of the CNV, respectively, in the ab-

sent/present model. In the directional model, each subject

was assigned a 0, 1, or 2 for a loss, no CNV, or gain for

each common CNV of interest.

For all associationmodels, we implemented linear mixed

effects regression using Efficient Mixed-Model Association

eXpedited22 (EMMAX) via the EPACTS toolbox with

default parameters. The kinship matrix was estimated in

EMMAX separately for each chromosome using SNPs

from all other chromosomes1 (i.e., a leave-one-out strat-

egy) and was used to adjust for relatedness. Additionally,

we adjusted for sex, age, and centroid size as described pre-

viously.1 Quantile-quantile (QQ) plots were created to

assess whether there was bias due to unaccounted for pop-

ulation structure or other confounders. Due to high
s Advances 3, 100082, January 13, 2022 3



Table 1. Top CNV regions associated with facial phenotypes

Region (hg19) Win (n) Associated phenotypeb

Minimum p valuea

Loss (n);
gain (n)a Overlapping genes r2cAbsent/present Directional

Chr18: 77,147,000– 77283000 19 head circumference 1.31 3 10�3 1.16 3 10�6 73; 12 NFATC1 0.035

lower facial depth (average) 1.03 3 10�4 7.03 3 10�3 55; 7

upper lip height 3.47 3 10�4 5.80 3 10�3 55; 7

PC1 3.71 3 10�4 3.05 3 10�2 55; 7

Chr10: 111,034,000–111058000 3 upper facial depth (average) 2.64 3 10�4 2.64 3 10�6 13; 0 0.040

Chr4: 3,423,000–3538000 16 upper facial depth (average) 5.20 3 10�6 1.51 3 10�1 41; 7 DOK7, LRPAP1,
HGFAC, RGS12

0.028

midfacial depth (average) 4.79 3 10�5 2.21 3 10�1 41; 7

Chr2: 34,230,000–34324000 13 subnasal width 2.47 3 10�5 5.23 3 10�6 19; 1 LINC01317,
LINC01318

0.063

nasal width 7.82 3 10�5 5.71 3 10�5 19; 1

midface PC1 6.63 3 10�4 4.65 3 10�4 19; 1

Chr16: 1,225,000–1508000 40 nasal ala length (average) 9.35 3 10�6 6.26 3 10�5 1; 9 TPSAB1, TPSD1, TPSB2,
TPSG1, CACNA1H,
UBE2I, BAIAP3, GNPTG,
TSR3, UNKL, C16orf91,
CCDC154, CLCN7

0.100

subnasal width 5.12 3 10�5 1.10 3 10�4 1; 9

nasal width 5.60 3 10�5 1.05 3 10�4 1; 9

midfacial depth (average) 2.85 3 10�4 3.32 3 10�2 12; 7

aReported for the windowwith lowest p value in the region. Details from each window in the region, as well as genes within a 10-kb flanking region are in Table S8.
bAssociated phenotypes with minimum region p value < 5 3 10�4 in at least one model are reported.
cMaximum pairwise r2 between SNP and CNV window in the region is reported.
correlation between overlapping analysis windows within

a region, a random window from each region was selected

for the QQ plots. To ensure that the top five signals were

not driven by small CNVs, which are more likely to be false

positives, we performed a sensitivity analysis by restricting

CNVs within the region to those >10 kb. Windows with at

least 10 subjects with a CNV >10 kb in the window were

evaluated.

Gene annotation was performed using GENCODE,23

release 31 (GRCH37). Gene annotation in figures was

created using the UCSC Genome Browser.24

Association of CNVs in regions previously identified by

SNP-based GWAS

We examined the associated and replicated genetic loci re-

ported in three SNP-based GWASs of normal facial varia-

tion: (1) the same sample of Bantu African children studied

here from Cole et al.,1 (2) a sample of children and adults

with European ancestries fromClaes et al.,2 and (3) four co-

horts of children and adults with European ancestries from

the United States (three cohorts) and United Kingdom

(one cohort) examined within a meta-analysis framework

by White et al.3 (Table S3). From Cole et al.,1 we investi-

gated the 11 associated and replicated gene regions, as re-

ported by Cole et al. in Table 2 of their manuscript. From

Claes et al.,2 we investigated 14 loci (containing 25 genes)

that were associated and replicated, as reported by Claes

et al. in Table 12 of their manuscript. From White et al.,3

we investigated the 120 loci with consistent genetic effects

between the US and UK meta-analyses and passed study-

wise significance threshold, as reported in Table S3 of their
4 Human Genetics and Genomics Advances 3, 100082, January 13, 2
manuscript. Additional details about the studies, including

how replication was defined, are reported in each manu-

script.1–3 We examined windows directly overlapping

and within a 50-kb flanking region around the reported ge-

netic region. Here, we report nominally significant CNV

windows (i.e., p < 0.05). If the CNV window and SNP

were both nominally associated with the same phenotype

in our Bantu sample, we performed conditional analysis by

including the reported GWAS SNP as a covariate in the

CNV window analysis model.

Gene set analysis

We completed gene set analysis using two primary sources:

(1) three gene sets from normal facial variation SNP-based

GWAS loci reported in Bantu1 and two European2,3

ancestry groups (Table S3) and (2) 15 gene sets, each corre-

sponding to a phenotype category, from the FaceBase

consortium25 (Table S4). The FaceBase gene sets were

generated by manual curation of genes associated with

abnormal craniofacial phenotypes observed in human

subjects. Gene regions from normal facial variation SNP-

based GWASs were assessed for each of the three studies.

The 11 genes from the Bantu study1 were analyzed as a

gene set, as were the 26 genes from the smaller European

study.2 The 108 genes from the European meta-analysis

gene set3 were divided into seven gene sets. The reported

genes were annotated with the region of the face with

the strongest association in White et al.3 The regions

defining the seven gene sets, seen in Figure 1 of White

et al.,3 are as follows: (1) the full face (n ¼ 11), which sep-

arates into (2) Segment 2, the midface (n ¼ 14), and (3)
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Segment 3, the rest of the face (n ¼ 3). Segment 2 was

further divided into (4) Quadrant 1, the region of the

mouth (n ¼ 14), and (5) Quadrant 2, the region of the

nose (n ¼ 29). Likewise, Segment 3 was further divided

into (6) Quadrant 3, the lower facial area (n ¼ 21), and

(7) Quadrant 4, the upper facial area (n ¼ 27). Eleven of

the 108 genes were associated with multiple phenotypic

regions and thus in multiple gene sets.

Gene set analysis was completed for both the primary

(called in at least two algorithms) and secondary (called

in all three algorithms) CNV calling sets using CNVs over-

lapping a gene (i.e., at least 1 bp) and for CNVs overlapping

a550-kb flanking region of a gene set. This resulted in four

analyses within each of the gene sets described above. Each

subject was coded as 1 for at least one CNV in the gene set

and 0 for no CNVs in the gene set. Gene sets with at least

ten CNVs were analyzed. Association analyses were per-

formed using EMMAX22 as described for the window

analysis.

Linkage disequilibrium between SNPs and CNVs

We estimated pairwise r2 between SNPs and common

CNVs as well as between SNPs and CNV windows. CNV

windows with CNVs called in all three algorithms and

the absent/present coding were used. As reported and

described in Cole et al.,1 SNPs were imputed using

SHAPEIT2 and IMPUTE2 software to 1000 Genomes Proj-

ect Phase 1 data. We estimated pairwise r2 using the

method of Mangin et al.26 that adjusts for relatedness.

We calculated r2 between the CNVs called here (i.e., com-

mon CNVs and CNV windows that include common and

rare CNVs) and each SNP within 51 mb of the common

CNV or window. The SNP with the largest r2 value was re-

ported as the tag SNP for the common CNV, window, or re-

gion. A CNV window or common CNV was considered

well tagged if the tag SNP had r2 R 0.8.

To evaluate the differences in LD between CNVwindows

that hadmore loss versus gain CNVs, we ran a linear mixed

effects model using a dummy variable formore gains in the

window and the region (as a random effect) to predict r2.

Only CNV analysis windows with unequal numbers of

loss and gain CNVs were included (n ¼ 6,621).

Significance threshold

For each analysis, we applied a Bonferroni correction for

the effective number of independent tests with a family-

wise error rate (FWER) significance level of p < 0.05. The

Bonferroni correction can be overly conservative, particu-

larly given our correlation in both phenotypes and

windows. Using the effective number of tests corrects for

multiple testing without being overly conservative. The

effective numbers of independent tests and phenotypes

were estimated using the method of Gao et al.,27 estimated

separately for each chromosome to ensure more subjects

than windows. We calculated 23 effectively independent

phenotypes, and the effective number of independent

tests for each analysis is shown in Table S5. For the primary
Human
window analysis, 6,913 effectively independent tests were

estimated resulting in an FWER significance threshold p ¼
0:05

6:193323 ¼ 3:143 10�7.
Results

CNV calling and quality control

We observed 57,142 CNV sites called within our sample

with a total of 216,430 CNV alleles across all autosomes

(subjects and methods). Of the CNV alleles, 179,729 were

losses and 36,701 were gains. About one-third of CNV sites

were observed in more than one subject (n ¼ 19,355;

33.9%) and two-thirds were limited to one subject (n ¼
37,787; 66.1%). The 19,355 CNV sites found in multiple

subjects produced the majority of CNV alleles (n ¼
178,643; 82.5%). The vast majority of the 57,142 CNV sites

were rare (MAF %5%, n ¼ 56,990, 99.73%) with only 152

common CNV sites (MAF >5%, 0.27%). The subset of

CNVs called by all three algorithms used in the secondary

analysis included 14,181 CNV sites and a total of 71,397

CNV alleles. A complete list of CNV sites and allele counts

is in Table S6. Many of the CNVs are near each other, some-

times sharing either the start and/or end with another

CNV site (e.g., Figure 3C). The variability in start and end

sites may reflect lack of precision in the CNV calls or true

biological sample to sample variability.

For the 3,388 subjects that passed QC, themean andme-

dian number of CNVs called per person was 63.88 (SE ¼
0.79) and 50, respectively, with a minimum of 18 and a

maximum of 432. For subjects with at least one gain, the

mean gain-to-loss ratio was 0.259. All samples had at least

one loss; six subjects did not have a gain. The maximum

CNV length detected was 2,741 kb, with a mean length

of 21.6 kb (SE ¼ 97.9 bp). Complete CNV summary statis-

tics are in Table S7.
CNV analysis windows and regions

Like rare single nucleotide variants (SNVs), rare CNVs

cannot be assessed for association individually due to hav-

ing too few rare alleles. Thus, we use 10-kb tiling windows

with a 3-kb overlap to capture CNVs within a genetic re-

gion. The window analysis did not contain all CNVS;

11,592 CNV alleles (5.4%) across 7,761 sites (13.6%) were

not included in an analysis window due to the minimum

requirement of ten CNVs per window. Within the second-

ary analysis, 6,710 CNV alleles (9.4%) across 4,508 CNV

sites (31.8%) were not included in an analysis window.

Of the 11,605 primary analysis windows, 3,525 (30.4%)

contained only losses, 1,472 (12.7%) contained only gains,

and 6,608 (56.9%) contained both gains and losses. Inter-

estingly, the distribution of the secondary analysis

windows was considerably different with an increased pro-

portion of only losses (n ¼ 2,735, 40.8%) and only gains

(n¼ 1,703, 25.4%) and fewer analysis windows containing

both gains and losses (n ¼ 2,267, 33.8%). These results

show that many of the opposite CNV type (i.e., gains
Genetics and Genomics Advances 3, 100082, January 13, 2022 5



Figure 3. Region plot, chromosome 18. (A) A
canonical variates plot for facial shape varia-
tion by CNV variant. The 3D morphs show
the mean face for the common variant (no
CNV) as well as exaggerated shape contrasts
(33) for the loss and gain variants. (B) Heat-
maps for the shape contrasts between the
common variant and each of the CNV variants.
(C) Loss (red) and gain (blue) CNVs. Each line
represents a unique CNV allele from one sub-
ject with the genes in the region shown below.
A zoom plot of the subset of CNVs overlapping
the window with the lowest p value is also
shown. The CNV analysis region is shown in
black. (D) Test statistic t values (effect esti-
mate/standard error of effect estimate) across
the region with 95% confidence intervals in
the directional model (top) and absent/present
model (bottom). Phenotypes with at least
one window with p value < 5 3 10�4 are
shown: lower facial depth (GN_T), head
circumference (HC), principal component 1:
upper facial height and mid facial width
(PC1), and upper lip height (SN_STO).
and losses) called near one another are not likely to be

called with all three CNV calling algorithms. This may be

due to differences in the CNV algorithms’ ability to call

both losses and gains in the same region or due to biolog-

ical differences in the likelihood of gains and losses being

in the same region.

Genome-wide association

In the window association analysis between the primary

CNV windows and the 34 facial measurements, no win-

dows passed the multiple testing corrected threshold of p

¼ 3.14 3 10�7. We report the top five regions, which had

p values % 9.35 3 10�6 (Table 1). The QQ plots show

well-controlled test statistic distributions for each pheno-

type (Figures S1, S2, S3, and S4). The median l values

over all phenotypes were 1.002 and 1.028 for the absent/

present and directional models, respectively. The most sig-

nificant CNV association is from a 136-kb CNV region on

chromosome 18 (Figure 3). This region contains 19 CNV

analysis windows and 466 overlapping CNVs consisting

of 412 losses and 54 gains. All but one CNV are between

1 kb and 376 kb in size, with 222 CNVs <10 kb

(Figure 3C). However, the window that is most associated

within the region contains 73 losses and 12 gains, with 6

loss CNVs <10 kb, as seen within the zoom plot of

Figure 3C. Notably, the p value only slightly increased

from p ¼ 1.16 3 10�6 to p ¼ 2.41 3 10�6 when restricting

to CNVs >10 kb (Table S8). NFATC1 (MIM: 600489) is the

only gene to overlap this CNV region, although ATP9B

(MIM: 614446) is just outside the CNV region and overlaps
6 Human Genetics and Genomics Advances 3, 100082, January 13, 2
two CNVs, including one long CNV (>376 kb). The associ-

ation appears to be driven by losses, with a loss in the re-

gion associated with smaller average lower facial depth

(Figures 3A and 3B). The four remaining regions are sum-

marized in Figures S5–S8 and Table S8. Within these four

regions, two of the driving windows (i.e., window with

the lowest p value) contained no small CNVs (i.e., all

CNVs >10 kb), and another region had only one CNV

<10 kb in the top window. Only the region on chromo-

some 10 appeared to be driven by CNVs <10 kb, as ten

of the 13 CNVs were <10 kb. Genome-wide results with

p values < 0.1 are in Table S9 with complete results avail-

able online (data and code availability).

For the secondary analysis, one window (chr5:

46,130,000–46,140,000, ppresent/absent ¼ 9.70 3 10�7)

within an intergenic region passed the multiple testing

correction threshold (p < 1.43 3 10�6). This region con-

tains 66 CNV analysis windows and 588 overlapping

CNV alleles across 117 CNV sites consisting of 537 losses

and 51 gains. There are no genes within 250 kb of the

CNV region, and the region is relatively close to a centro-

mere (within 73 kb). Additionally, two of the top five

regions in the primary analysis (chromosome 10 and chro-

mosome 2) are also in the top five signals for the secondary

analysis. Complete results for the secondary window

model are in Table S10.

No commonCNVs passed themultiple testing correction

of p< 1.313 10�5. Themost significant associationwas be-

tween PC1 and the common CNV chr5: 17,466,056–

17,469,290 (pboth models ¼ 2.04 3 10�4). None of the five
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Table 2. CNV associations in gene regions previously identified by SNP GWAS

SNP GWAS Gene Association Phenotype p valuea
p value
(SNP study) With SNPb

Cole et al.1,4 DPP6 reported SNP rs114189713 mouth width 7.26 3 10�8 1.87 3 10�7 0.067

CNV region 7: 153,860,000–153,870,000 lower lip height 2.93 3 10�3

lower facial depth (average) 1.78 3 10�2

Claes et al.2 HOXD@ Reported SNP rs970797 nose width; mouth and
philtrum

5.47 3 10�1 6.17 3 10�11 0.254

CNV region 2: 176,918,000–176,977,000 head circumference 1.93 3 10�3

lower facial height 4.64 3 10�3

nasal width 7.58 3 10�3

inner canthal width 9.02 3 10�3

PC5 2.45 3 10�2

White et al.3,c FGFRL1 Reported SNP rs74921869 quadrant 2: region
of the nose

8.95 3 10�1 3.51 3 10�11 0.0002

CNV region 4: 931,000–1,060,000 centroid size 2.20 3 10�2

PC5 3.87 3 10�2

philtrum length 2.44 3 10�2

nasal width 3.89 3 10�2

ap value calculated with our sample. Due to CNV QC, our sample is slightly different than that of Cole et al.
bMaximum SNP-window pairwise r2 within the region for the reported SNP.
cAnalysis windows with p values < 0.05 reported. Other two were reported for <2.5 3 10�2.
most significant regions identified in the primary window

analysis contained common CNVs. Complete results for

the common CNV analysis are in Table S11.

Association in regions previously identified in SNP-

based GWASs

We examined the top reported results from three SNP-

based GWASs of normal facial variation for association

with CNVs. Of the 145 genes reported by Cole et al.1, Claes

et al.,2 and White et al.,3 five gene regions—DPP6 (MIM:

126141), the homeobox D cluster (HOXD@), FGFRL1

(MIM: 605830), ELP1 (MIM: 603722), and SHBG (MIM:

182205)—directly overlapped primary analysis windows

with nominal association (p < 0.05). However, ELP1 and

SHBG came from phenotypic gene sets that did not contain

the phenotype the CNV window was associated with. Ta-

ble 2 summarizes facial phenotype associations for these

three SNP-based GWAS gene regions.

In the SNP-based GWAS for facial variation in the same

sample of BantuAfricans thatweusehere,Cole et al.1 found

thatDPP6was associated withmouth width (rs114189713;

Cole et al. replicationmeta-analysis p¼ 8.35310�8). In our

CNV GWAS, we found the top associated CNV window

(chr7: 153,860,000–153,870,000) to be most strongly asso-

ciated with lower lip height (pboth models ¼ 2.93 3 10�3; 16

losses and 0 gains) (Figure S9). The SNP was not associated

with lower lip height in our sample of 3,388 subjects (p ¼
0.769), nor didweobserve a significant association between

a CNVwindow in theDPP6 region andmouth width (min-

imum p ¼ 0.212). There was low LD between the CNV re-
Human
gion and rs114189713 (maximum r2 ¼ 0.067), indicating

that the SNP and CNV associations are likely to be

independent.

We observed nominally significant associations for

CNV windows overlapping the HOXD@ on chromosome

2, previously associated with nose width, and mouth and

philtrum by Claes et al.2 (reported from Claes et al.

rs970797; discovery p value ¼ 6.17 3 10�11)

(Figure S10). For our CNV analysis, the HOXD@ had

strongest association with head circumference (pabsent/

present ¼ 1.90 3 10�3), lower facial height (pabsent/present

¼ 4.64 3 10�3), and nasal width (pabsent/present ¼
7.58 3 10�3). In our sample, we observed low LD be-

tween the HOXD@ CNV region and the reported SNP

from Claes et al. (rs970797, maximum r2 ¼ 0.254), and

the SNP identified in Claes et al.2 (rs970797) was not

associated with head circumference (p ¼ 0.252), lower

facial height (p ¼ 0.875), or nasal width (p ¼ 0.547).

The lack of replication for rs970797 may be due to true

lack of association or differences in LD between Bantu

and European ancestries.

In the SNP-based meta-analysis for normal facial varia-

tion White et al.3 found that FGFRL1 was associated with

the region of the nose (p ¼ 3.51 3 10�11; US meta-anal-

ysis). Our CNV window analysis had nominal associations

with PC5 (nose shape, height of mouth, p ¼ 0.039, direc-

tional model), and nasal width (p ¼ 0.039, directional

model). Within the analysis window most associated

with the phenotype, there were 137 losses and 66 gains,

and 158 losses and 87 gains for the PC5 and nasal width
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analysis windows, respectively (Figure S11). Within our

cohort, the lead SNP, rs74921869, was not associated

with PC5 (p ¼ 0.895) or nasal width (p ¼ 0.303). There

was very low LD (max r2 ¼ 0.000177) between the lead

SNP and the CNV windows within the region of interest.

Unsurprisingly, the conditional analysis incorporating

rs74921869 resulted in little change in the CNV window

association with FGFRL1 (PC5: minimum punconfitioned ¼
3.89 3 10�2; minimum pconfitioned ¼ 3:893 10�2; nasal

width: minimum punconfitioned ¼ 3.89 3 10�2; minimum

pconfitioned ¼ 3.62 3 10�2). This likely indicates that either

the SNP and CNV represent independent signals within

the FGFRL1 region, that both are in LD with an as-yet un-

identified causal locus, or that there are differences within

the two samples, as the SNP was not associated with the

nose phenotypes of interest within our Bantu cohort.

Comparison of absent/present and directional CNV

classification

By design, CNV windows with all losses or all gains pro-

duced identical results. Restricting to windows with both

losses and gains, we observed moderate correlation of

0.387 between the for the absent/present and directional

models (Figure S12). Using various significance thresholds

(1.0 3 10�2, 1.0 3 10�4, 1.0 3 10�3, 1.0 3 10�2, and 5.0 3

10�2), 36.1%–57.1% of the windows with both losses and

gains are captured by only one classification. This indicates

that both models were likely necessary to capture the rela-

tionship between CNVs and normal face shape. The ab-

sent/present model had slightly more windows that passed

the nominal significance threshold (p < 0.05) than the

directionalmodel (n¼ 9,503 versus n¼ 7,494, respectively)

(Table S12). Out of 77 windows with p values< 1.03 10�4,

5, 31, and 41 windows were observed in both, only absent/

present, and only directional, respectively.

Gene set analysis

Three normal facial variation gene sets were examined

from Cole et al.,1 Claes et al.,2 and White et al.3 with 11,

26, and 108 genes, respectively. The White et al.3 gene

set was further divided into seven gene sets based on facial

region (methods). Within the Bantu sample, 25 CNV al-

leles from 25 subjects overlapped 2 genes: DPP6 and

EXOC6B (MIM: 607880). When including a 550-kb flank-

ing region around each gene, 38 CNV alleles from 38 sub-

jects overlapped 5 genes 550 kb: DPP6, EXOC6B, PDE8A

(MIM: 602972), WNK2 (MIM: 606249), and GABRG3

(MIM: 600233). Within the Claes et al.2 gene set, 208

CNV alleles from 207 subjects overlapped one gene region:

HOXD@. When including a 550-kb flanking region

around each gene, 332 CNV alleles from 305 subjects over-

lapped five gene regions: HOXD@ (328 subjects overlap-

ping), ASPM (MIM: 605481), DYNC1I1 (MIM: 603772),

RAB7A (MIM: 602298), and RPS12 (MIM: 603660).

Notably, 10 gene regions identified in these two SNP-based

GWAS did not have an overlapping CNV in our sample

even when including the additional 50-kb flanking region,
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and eight gene regions had fewer than ten individuals with

CNVs in the region. This suggests that association signals

found in the CNV GWAS may differ from those found in

the SNP GWAS simply due lack of detected CNV variation

in most of the genes identified from these two GWASs of

facial variation.

Within the meta-analysis gene sets from White et al.,3

332 CNV alleles from 292 subjects overlapped 20 genes.

When including a 550-kb flanking region around each

gene, 1,745 CNV alleles from 896 subjects overlapped 32

genes 550 kb.

No gene set association passed multiple testing correc-

tion of 1.34 3 10�4. However, each gene set derived from

SNP GWAS of normal facial variation had at least one

nominally significant association (subjects and methods,

Table S13). The SNP GWAS gene set from the meta-anal-

ysis, quadrant 3 (lower facial area) had the strongest associ-

ation with philtrum width (p ¼ 2.42 3 10�4), which is in

quadrant 1, not quadrant 3. Complete results can be found

in Table S13.

The top two associations for the analysis of FaceBase

Consortium25 gene sets derived from genes associated

with facial abnormalities were between the phenotype up-

per facial height and FaceBase gene sets for (1) abnormality

of the jaws (p ¼ 3.26 3 10�4) and (2) micrognathia (p ¼
6.02 3 10�4), both with CNVs directly overlapping the

gene set (Table S14). The third most significant association

had phenotype and gene sets that were related to the nose.

The association was between nasal ala length and abnor-

mality of the nose (p ¼ 7.36 3 10�4) with CNVs within

the 50-kb flanking region of the gene set. Interestingly,

five of the ten most significant results are with the upper

facial height phenotype. Although more research in larger

sample sizes is needed, these results suggest that regions

previously implicated in facial abnormalities may play a

role in normal facial variation as well.

Linkage disequilibrium between SNPs and CNVs

To assess whether GWAS arrays with dense SNP imputation

can adequately capture CNVs through LD and thus elimi-

nate the need to call CNVs, we calculated pairwise r2 be-

tween SNPs within 1 mb of CNV windows or common

CNVs (Tables S15 and S16). Only one common CNV was

tagged well (maximum r2 ¼ 0.809). Approximately

36.8% of common CNVs were tagged moderately (n ¼
56; 0.2 % maximum r2 < 0.8), while the remaining

62.5% were tagged poorly (n ¼ 95, maximum r2 < 0.2)

(Figure 4A). Only 10.2% of the 988 CNV window regions

were tagged well (n ¼ 101; r2 > 0.8), while 29.8% were

tagged poorly by SNPs (n ¼ 296; maximum r2 < 0.2). The

low LD supports the need to call and analyze CNVs, as

CNV associations are not likely to be captured in SNP

GWASs, especially in African ancestry as presented here.

After adjusting for region, windows with more gains have

lower average maximum pairwise r2 (mean r2 ¼ 0.3147)

compared with windows with more losses (mean r2 ¼
0.3883, p < 2.0 3 10�16) (Figure 4B).
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Figure 4. LD between SNPs and CNVs.
(A) Bar chart showing frequency of com-
mon CNVs and CNV regions by strength
of maximum pairwise r2 with SNPs within
1 Mb of the region. (B) Windows with
more than 50% losses (light gray, n ¼
3,878), windows with more than 50%
gains (dark gray, n ¼ 2,743). Eighty-four
windows that had an equal number of
loss and gains had r2 < 0.2 and are not
included.
Discussion

We investigated the role of CNVs in normal facial varia-

tion in a sample of Bantu African children. We found

that CNVs, both common and rare, are poorly tagged by

SNPs, indicating that association signals representing

CNVs were likely not captured by previous SNP-based

GWASs. We completed a CNV GWAS, identifying five ge-

netic regions with evidence of association with various

normal facial phenotypes. The strongest associations

were for head circumference, average upper facial depth,

subnasal width, and nasal ala length. CNV association

windows were poorly tagged by SNPs in all five putative re-

gions (maximum pairwise r2 ¼ 0.100). Four of these five

regions were driven by CNVs >10 kb, while the associa-

tion between face shape and the CNVs in the region on

chromosome 10 was driven by relatively small CNVs

<10 kb.

The region showing the strongest association (pdirec-

tional ¼ 1.16 3 10�6) is on chromosome 18 and contains

the gene NFATC1, a transcription factor that regulates

genes in the Wnt signaling pathway, which is known to

play an important role in facial morphogenesis.28

NFATC1 was recently identified in a GWAS of facial asym-

metry,29 regulates bone mass in mouse models,30 and has

been linked to facial morphogenesis28,30,31 and Cherub-

ism,32 a genetic disorder with abnormal bone tissue in

the lower face. This is particularly interesting given one

of the top associated facial phenotypes is average lower

facial depth. We identified 55 losses and seven gains in

NFATC1.

The associated region on chromosome 4 (pabsent/present ¼
5.20 3 10�6) contains four genes, including DOK7, which

has been implicated in a disorder characterized by craniofa-

cial abnormalities.33 This region is nested within themicro-

deletion in 4p16.3 associated with Wolf-Hirschhorn syn-

drome (MIM: 194190), which includes characteristic

dysmorphic facial features.34 Similarly, the associated region

on chromosome 16 (pabsent/present ¼ 9.35 3 10�6) is nested
Human Genetics and Genomic
within the region associated with the

16p13.3 deletion (MIM: 610543) and

duplication (MIM: 613458) syn-

dromes, both of which include dys-

morphic facial features.35 Interest-

ingly, the association observed in our
study is predominantly due to gain CNVs, which reflect

interstitial duplications in 16p13.3.

The other two novel associations, on chromosomes 2

and 10 (Table 1), are localized within regions that are

gene-poor and do not have any obvious candidate genes

that appear to have roles in facial development. However,

the region on chromosome 2 contains two long inter-

vening non-coding RNAs (lincRNAs). Although the down-

stream targets of these particular lincRNAs are not known,

some lincRNAs are known to play a role in gene regulation

and other cellular processes.36

Two of 25 gene regions from the two smaller SNP-based

GWAS (nCole ¼ 11; nClass ¼ 14) contained nominally

significant CNVanalysis windows overlapping the gene re-

gion (DPP6 and HOXD@, which contains multiple genes).

While the gene set analysis supported nominal association

between GWAS genes and facial phenotype, this analysis

was almost entirely driven byDPP6 and theHOXD@. Three

of 108 meta-analysis gene regions contained nominally

significant CNVanalysis windows overlapping the gene re-

gion; one of those three gene regions (FGFRL1) had CNV

windows associated with a phenotype similar to the SNP

meta-analysis. Using more precise phenotypes within the

gene set analysis may eliminate noise to allow for detec-

tion of a significant association.

The majority of common CNVs and CNV windows are

poorly tagged by SNPs, as measured by pairwise r2. A cen-

tral assumption is that our CNV calls are true CNVs. An

abundance of false CNV calls would also likely result in

low LD with SNPs. While we were unable to molecularly

verify the CNV calls, the CNVs presented here are opti-

mized for true positive calls based on filtering criteria

applied.41 Additionally, SNP haplotypes may result in

higher pairwise r2 with CNVs37 relative to the genotype

data used here. Thus, the lack of well-tagged CNV win-

dows and common CNVs suggests that SNP-based

GWASs are insufficient to capture CNV contributions

(and likely other more complex SVs as well), particularly

for lower frequency CNVs and in samples of African
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ancestry. SNP GWASs capturing CNVs are perhaps less

problematic in samples of European ancestry where LD

is comparatively stronger17 or in studies that include

haplotype data.

It is possible that SVs, including CNVs, could be

imputed from reference samples containing both struc-

tural and SNV data. Given the additional complexity of

functional variants with regards to alleles and variant

size, reference samples will likely need to be much larger

than those needed to impute SNVs, especially for low-fre-

quency CNVs and SVs. Imputation reference panels from

large and more diverse whole-genome sequencing studies,

such as the Trans-Omics for Precision Medicine con-

sortium,38 have the potential to include structural varia-

tion to enable investigation of SVs. Until these reference

panels are available and imputation of SVs is assessed,

continued study of SVs through direct assay and calling

will be necessary.

It is important to consider the ethics surrounding

research that aims to understand the genetics behind

normal facial variation. While the genetics of face

shape have the potential to be used in questionable ap-

plications,39 excluding normal facial variation—a highly

heritable trait—completely from genetics research would

limit the understanding of common and syndromic

facial variation. Importantly, we do not predict facial fea-

tures here, nor do we recommend that these data be used

to predict facial features for both ethical reasons as well

as poor accuracy to predict facial features for subjects

especially for understudied ancestral populations.40

Here, we show that CNVs contribute to the complex

phenotype of common facial variation for Bantu African

children using CNVs called from GWAS array intensity

data. Given the low LD with densely imputed SNPs for

the CNV associations identified here, calling CNVs from

GWAS array data may identify associations not detectable

with solely SNP data. Thus, the large resource of existing

SNP GWASsmay provide a good resource for calling and as-

sessing the role of CNVs in other complex traits. There is a

dearth of studies of CNVs and in people of African ancestry

and culture. Here, we add to the understanding of the ge-

netic etiology of common facial variation for both.
Data and code availability

TheCNVdata presented in this articlewas previously depos-

ited in the FaceBaseConsortiumDatabase (FaceBase: https://

doi.org/10.25550/1-7330). The genotype data used for CNV

detection were previously deposited in the Database of Ge-

notypes and Phenotypes (dbGaP: http://www.ncbi.nlm.

nih.gov/gap; dbGaP study accession: phs000622.v1.p1).

Scripts that were used to run the CNV calling algorithms

are available at https://github.com/dpastling/facebase_cnv.

Complete results from the primary analysis are available at

https://github.com/meganmichelle/

CNV_FaceShape.
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Supplemental information

Supplemental information can be found online at https://doi.org/
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Acknowledgments

This workwas supported in part by a grant (DE025363) to T.H.S. by

the National Institute of Dental and Craniofacial Research of the

National Institutes of Health.
Declaration of interests

F.Y. is now a postdoctoral associate at The Jackson Laboratory. H.Y.

is now an employee at Bionano Genomics. J.B.C. has current affil-

iations with the Programs in Metabolism and Medical & Popula-

tion Genetics at Broad Institute of Harvard and MIT, the Center

for Genomic Medicine at Massachusetts General Hospital, and

the Division of Endocrinology and Center for Basic and Transla-

tional Obesity Research at Boston Children’s Hospital. A.E.H. is

on the editorial board for HGGAdvances. All other authors declare

no competing interests.

Received: July 15, 2021

Accepted: December 21, 2021
Web resources

BEDTools: https://bedtools.readthedocs.io/en/latest/

DNAcopy: https://bioconductor.org/packages/release/

bioc/html/DNAcopy.html.

EPACTS: https://genome.sph.umich.edu/wiki/EPACTS.

GENCODE: https://www.gencodegenes.org/

PennCNV: http://penncnv.openbioinformatics.org/en/

latest/

OMIM: http://www.omim.org.

UCSC Genome Browser: https://genome.ucsc.edu/cgi-

bin/hgGateway.

VanillaICE: https://www.bioconductor.org/packages/

release/bioc/html/VanillaICE.html.
References

1. Cole, J.B., Manyama, M., Kimwaga, E., Mathayo, J., Larson,

J.R., Liberton, D.K., Lukowiak, K., Ferrara, T.M., Riccardi,

S.L., Li, M., et al. (2016). Genomewide association study of Af-

rican children identifies association of SCHIP1 and PDE8A

with facial size and shape. PLoS Genet 12, e1006174.

https://doi.org/10.1371/journal.pgen.1006174.

2. Claes, P., Roosenboom, J., White, J.D., Swigut, T., Sero, D., Li,

J., Lee, M.K., Zaidi, A., Mattern, B.C., Liebowitz, C., et al.

(2018). Genome-wide mapping of global-to-local genetic ef-

fects on human facial shape. Nat Genet 50, 414–423.

https://doi.org/10.1038/s41588-018-0057-4.

3. White, J.D., Indencleef, K., Naqvi, S., Eller, R.J., Hoskens, H.,

Roosenboom, J., Lee, M.K., Li, J., Mohammed, J., Richmond,

S., et al. (2021). Insights into the genetic architecture of the

human face. Nat Genet 53, 45–53. https://doi.org/10.1038/

s41588-020-00741-7.

4. Cole, J.B., Manyama, M., Larson, J.R., Liberton, D.K., Ferrara,

T.M., Riccardi, S.L., Li, M., Mio, W., Klein, O.D., Santorico,
2022

https://doi.org/10.25550/1-7330
https://doi.org/10.25550/1-7330
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
https://github.com/dpastling/facebase_cnv
https://github.com/meganmichelle/CNV_FaceShape
https://github.com/meganmichelle/CNV_FaceShape
https://doi.org/10.1016/j.xhgg.2021.100082
https://doi.org/10.1016/j.xhgg.2021.100082
https://bedtools.readthedocs.io/en/latest/
https://bioconductor.org/packages/release/bioc/html/DNAcopy.html
https://bioconductor.org/packages/release/bioc/html/DNAcopy.html
https://genome.sph.umich.edu/wiki/EPACTS
https://www.gencodegenes.org/
http://penncnv.openbioinformatics.org/en/latest/
http://penncnv.openbioinformatics.org/en/latest/
http://www.omim.org
https://genome.ucsc.edu/cgi-bin/hgGateway
https://genome.ucsc.edu/cgi-bin/hgGateway
https://www.bioconductor.org/packages/release/bioc/html/VanillaICE.html
https://www.bioconductor.org/packages/release/bioc/html/VanillaICE.html
https://doi.org/10.1371/journal.pgen.1006174
https://doi.org/10.1038/s41588-018-0057-4
https://doi.org/10.1038/s41588-020-00741-7
https://doi.org/10.1038/s41588-020-00741-7


S.A., et al. (2017). Human facial shape and size heritability and

genetic correlations. Genetics 205, 967–978. https://doi.org/

10.1534/genetics.116.193185.

5. Karczewski, K., Francioli, L.C., Tiao, G., Cummings, B.B., Al-
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