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ABSTRACT Microbial flow cytometry can rapidly characterize the status of microbial
communities. Upon measurement, large amounts of quantitative single-cell data are
generated, which need to be analyzed appropriately. Cytometric fingerprinting
approaches are often used for this purpose. Traditional approaches either require a
manual annotation of regions of interest, do not fully consider the multivariate charac-
teristics of the data, or result in many community-describing variables. To address
these shortcomings, we propose an automated model-based fingerprinting approach
based on Gaussian mixture models, which we call PhenoGMM. The method success-
fully quantifies changes in microbial community structure based on flow cytometry
data, which can be expressed in terms of cytometric diversity. We evaluate the per-
formance of PhenoGMM using data sets from both synthetic and natural ecosystems
and compare the method with a generic binning fingerprinting approach. PhenoGMM
supports the rapid and quantitative screening of microbial community structure and
dynamics.

IMPORTANCE Microorganisms are vital components in various ecosystems on Earth.
In order to investigate the microbial diversity, researchers have largely relied on the
analysis of 16S rRNA gene sequences from DNA. Flow cytometry has been proposed
as an alternative technology to characterize microbial community diversity and dy-
namics. The technology enables a fast measurement of optical properties of individ-
ual cells. So-called fingerprinting techniques are needed in order to describe micro-
bial community diversity and dynamics based on flow cytometry data. In this work,
we propose a more advanced fingerprinting strategy based on Gaussian mixture
models. We evaluated our workflow on data sets from both synthetic and natural
ecosystems, illustrating its general applicability for the analysis of microbial flow
cytometry data. PhenoGMM supports a rapid and quantitative analysis of microbial
community structure using flow cytometry.

KEYWORDS diversity, fingerprint, flow cytometry, machine learning, microbial
communities, mixture model

Various tools have been developed to study and monitor microbial communities.
With the emergence of 16S rRNA gene sequencing, researchers have uncovered

the genotypic diversity of microbial communities to a large extent (1). However, micro-
organisms with the same genotype can still present different phenotypes, displaying
so-called phenotypic heterogeneity (2). Therefore, instead of solely focusing on geno-
typic information, there is a need to combine omics data with phenotypic information
(3). One such tool to study the phenotypic identity of microbial communities is flow
cytometry (FCM). FCM is a high-throughput technique, measuring hundreds to thou-
sands of individual cells in mere seconds. These measurements result in a multivariate
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description of each cell, derived from both scatter and fluorescence signals. The first is
related to cell size and morphology, while the latter depends on either autofluores-
cence properties or the interaction between the cell and a specific stain.

Many algorithms exist in the field of immunophenotyping cytometry to identify
separated cell populations, i.e., cells that share similar phenotypic characteristics as
measured by FCM and that therefore can be grouped together. These algorithms are
extensively benchmarked for different human FCM and mass cytometry data sets (4, 5).
However, microbial cytometry data have a number of different characteristics. This
originates from the fact that bacterial cells are typically much smaller in both cell size
and volume than eukaryotic cells (6), which complicates their detection. In addition, no
general antibody-based panels have been established for microbial cells due to the
high complexity of microbial communities (7). One has to rely on general DNA stains,
for which it is difficult to develop multicolor approaches (8). Therefore, the number of
variables describing an individual bacterial cell is typically much lower than that for,
for example, a human cell. As the number of bacterial taxa is much larger than the
number of differentiating signals, cytometric distributions of these taxa can highly
overlap (9–11). This is why automated cell population identification algorithms cannot
be directly applied for the analysis of bacterial cytometry data. Consequently, data
analysis pipelines should be designed to consider these characteristics.

To do so, microbiologists commonly rely on so-called cytometric fingerprinting
techniques (12, 13). Such a fingerprint allows researchers to derive community-level
variables in terms of the number of bins or clusters (i.e., gates), cell counts per cluster,
and the position of those clusters (14), despite the fact that there are no or only a few
clearly separated cell populations. The approaches that are currently used for the anal-
ysis of bacterial communities can be broadly divided into two categories: (i) manual
annotation of clusters (12, 15) and (ii) automated approaches that employ binning
strategies (13, 16–18). Both categories of methods have a number of drawbacks: (i)
manual gating of regions of interest is laborious in time and operator dependent, (ii)
traditional binning approaches result in a large number of variables (e.g., a fixed grid
of dimensions 100� 100 will result in 10,000 sample-describing variables), and because
of that, (iii) only bivariate interactions of cytometry channels are considered when
employing such a binning approach.

After a fingerprint has been constructed, communities are described by a contin-
gency table that contains the abundances of groups of cells that are similar. Based on
this, changes in microbial community structure can be quantified. This approach has
been successfully applied to characterize dynamics of the microbiome in a multitude
of environments, including pure (19, 20), synthetic (21), drinking water (22, 23), waste-
water (12, 15), freshwater (24, 25), marine (16, 26), salivary (27), soil (28), and gut (29,
30) microbial communities. Cytometric fingerprint data can be summarized in what
has been proposed as the cytometric or phenotypic diversity of a microbial community
(13, 18). These are estimations of the diversity of a microbial community based on the
cell counts per gate, bin, or cluster. If many clusters or bins contain cells, a community
can be considered “rich.” If the cells are equally distributed over those clusters, a com-
munity can be considered “even.” Recent reports have shown a moderate to strong
correlation between the cytometric diversity and genotypic diversity derived from 16S
rRNA gene amplicon sequencing data (13, 16, 25, 30).

Our methodology makes use of Gaussian mixture models (GMMs). GMMs have
been successfully applied to cytometry data before to identify separated cell popula-
tions in an automated way (31, 32). Considering microbial communities, Hyrkas et al.
have shown that their GMM approach outperformed state-of-the-art immunopheno-
typing cytometry algorithms for the automated identification of phytoplankton popu-
lations (33). A similar approach has been recently proposed by Ludwig et al. to identify
separated bacterial populations using two-dimensional cytometry data (34). By over-
clustering the data, GMMs can be adjusted to describe the distribution of multivariate
data without the need to identify separated populations. As such, GMMs can be used
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as an effective fingerprinting strategy. Two additional advantages are the fact that mul-
tivariate data can be modeled at once and that the number of mixtures needed to
describe the data is much lower than the number of variables resulting from traditional
binning approaches.

In this work, we propose an extension of current fingerprinting approaches that we
have called PhenoGMM. The methodology is able to describe the potentially many
overlapping cell populations in microbial FCM data. We demonstrate that changes in
community structure can be quantified based on the cytometric fingerprints derived
from PhenoGMM. We evaluate its performance for synthetic and natural freshwater mi-
crobial communities and compare its performance with that of a generic binning
approach. The methodology has been integrated in the R package PhenoFlow (13).

RESULTS
PhenoGMM correctly quantifies the community structure of in silico synthetic

microbial communities. In the first experiment, we evaluated the capacity of
PhenoGMM to estimate the intracommunity diversity (i.e., a-diversity) of synthetic mi-
crobial communities. To this end, we simulated 400 different synthetic microbial com-
munity compositions and artificially aggregated the data of bacterial strains that were
measured individually by FCM according to these compositions. Three hundred com-
munities made up a training set; the other 100 communities made up the test set. The
number of strains varied randomly between two and 20 (the total number of available
strains). Community compositions were simulated using a Dirichlet distribution for
three different values of the concentration parameter a (i.e., a=0.1, 1, and 10). This pa-
rameter determines how evenly the weight is spread among the different strains. If a is
small, only a few species are dominantly present. If a is large, the weight will be more
evenly spread among the different strains. Its effect on the sampled proportions for
a=0.1, 1, and 10 is illustrated using Lorenz curves. These depict the cumulative propor-
tion of abundance versus the cumulative proportion of bacterial species (see Fig. S1 in
the supplemental material).

We compared PhenoGMM with an approach that we have called PhenoGrid for this
work. The latter represents common cytometric fingerprinting approaches in microbial
ecology that employ a binning approach to one or more bivariate combinations of the
data. A GMM of K=128 mixtures or a fixed binning grid of dimensions 3� 128� 128
(i.e., number of bivariate combinations � number of intervals first channel � number
of intervals second channel) was fitted to a combined representation of the 300 com-
munities in the training set. The resulting fingerprint templates were then used to
retrieve cell counts per mixture or bin to describe each community in the test set.
a-Diversity metrics were determined based on the resulting cell count contingency
tables, as defined by the Hill numbers Dq. The sensitivity parameter q determines the
importance that is given to rare species or populations, with a low q giving more
weight to rare species. a-Diversity was determined for q=0 (richness), q= 1 (exponent
of the Shannon entropy), and q=2 (inverse Simpson index). Estimations of a-diversity
were correlated with the “true” a-diversity values, which were based on the predefined
compositions with which the communities in the training and test sets were simulated.
Correlations were quantified using Kendall’s rank correlation coefficient t B and sum-
marized in Fig. 1. PhenoGMM resulted in moderate to highly correlated a-diversity esti-
mations and showed a better correspondence to the predefined community composi-
tions compared to PhenoGrid. Estimations were just above the significance level
(P=0.05) for the latter. The performance mainly depended on the sensitivity parameter
q. Estimations resulted in higher correlations for PhenoGMM when q. 0, i.e., when
more weight was given to more abundant strains. This means that PhenoGMM cap-
tured the structure rather than the identity of a microbial community. This effect was
less clear for PhenoGrid.

We further evaluated to what extent a mixture corresponded to one or more bacte-
rial strains. To do so, we constructed a fingerprint using 20 mixtures for the setting in
which the concentration parameter of the Dirichlet distribution was set to a= 1.
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Relative cell counts per mixture were correlated with variations in individual abundan-
ces of bacterial strains (Fig. 2A). In most cases multiple mixtures were correlated with
multiple strains (Fig. 2B), which could be explained by the fact that the cytometric
characterizations of the considered bacterial strains overlapped in various degrees. At
the same time, no mixture was correlated with all bacterial strains, demonstrating that
despite the overlapping structure in a cytometric fingerprint, variations in the mixtures
could be successfully related to variations in individual strains.

To scrutinize the results and potentially facilitate future synthetic microcosm experi-
ments, we performed a predictive modeling analysis. Cytometric fingerprints from
PhenoGMM and PhenoGrid were fed to a Random Forest model in order to predict the
community structure according to which microbial communities were assembled in
the test set. Cytometric fingerprints from both approaches either resulted in compara-
ble predictions according to Kendall’s t B (Fig. 3) or were slightly in favor of PhenoGMM
according to R2 (Fig. S2). Random Forest predictions resulted in stronger correlations

FIG 2 Summary of the correspondence between individual bacterial strains and the cell counts for each Gaussian mixture. (A)
Kendall’s t B between relative cell counts per mixture (rows) and relative abundances of bacterial strains (columns). Values are
given if P is #0.05, after performing a Benjamini-Hochberg correction for multiple hypothesis testing. (B) Number of significant
correlations per bacterial strain.

FIG 1 Summary of a-diversity estimations for in silico synthetic microbial communities, quantified by Kendall’s
t B, for PhenoGMM and PhenoGrid. Both workflows were run 10 times. Kendall’s t B was calculated between true
and estimated values. Each boxplot displays the 25% and 75% quartiles of the t B, and the whiskers show the
full range of t B. Each dot represents the resulting value from an individual run. (A) a= 0.1; (B) a= 1; (C) a=10.
The dashed line indicates the strength of t B at P= 0.05.
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with the simulated community compositions compared to directly applying the Hill
numbers to the relative cell contingency table.

We estimated the time to run PhenoGMM for a=1 and Dq=1 in function of the num-
ber of mixtures K. As there were 300 samples in our training set, this amounted to fit-
ting a GMM to 1.5 million cells. The time in seconds was determined in function of K
(Fig. S3A). Most importantly, the entire analysis remained under 1 h. Training a
Random Forest model on the fitted GMM resulted in an average increase of 24.4% of
the runtime for K=256 (Fig. S3B).

In order to provide guidance concerning use of the model, the most important pa-
rameters were varied one by one (i.e., the number of included detectors D, the number
of mixtures K, the number of cells sampled per file to fit a GMM denoted as
N_CELLS_MIN, the number of cells sampled per individual sample to determine the cell
counts per mixture denoted as N_CELLS_REP, a learning curve in function of
N_SAMPLES, and the TYPE of covariance matrix used to fit a GMM). The performance
was quantified using R2 (Dq=1), based on the communities for a concentration parameter
of a=1, for the same Random Forest analysis as described above (Fig. S4). The results
indicated that:

� Including additional detectors improved the performance.
� Generally, the higher the number of mixtures K, the better the performance, which
saturated after a specific threshold.

� PhenoGMMwas quite robust for the number of included cells to fit a GMM.
� PhenoGMMwas quite robust for the number of included cells per sample.
� The predictive performance did not saturate yet at after 300 samples.
� PhenoGMM was quite robust for the type of used covariance matrix, although the
“full” type (i.e., each mixture has its own covariance matrix) resulted in the best
predictions.

PhenoGMM retrieves the community structure of natural freshwater microbial
communities. In the second experiment, we evaluated whether and to what extent it
was possible to quantify the diversity of natural freshwater microbial communities
using FCM in combination with PhenoGMM. We used two data sets, of which the first
describes the dynamics of a cooling water microbiome during two surveys of a research
nuclear reactor (surveys I and II) and the second describes the microbiomes of three dif-
ferent freshwater lake systems (i.e., Michigan inland lakes [“Inland”], Lake Michigan, and
Muskegon Lake, respectively). The same approach as before was applied, and
PhenoGMM and PhenoGrid were compared. Samples were first aggregated to determine
a fingerprint template based on either a GMM or a gridded binning approach. Next, cell
counts per mixture or bin were retrieved per sample, based on which the a-diversity

FIG 3 Summary of Random Forest predictions of a-diversity for in silico synthetic microbial communities,
quantified by Kendall’s t B, for PhenoGMM and PhenoGrid. Both workflows were run 10 times. Kendall’s t B was
calculated between true and estimated values. Each boxplot displays the 25% and 75% quartiles of the t B, and
the whiskers show the full range of t B. Each dot represents the resulting value from an individual run. (A)
a= 0.1; (B) a=1; (C) a= 10. The dashed line indicates the strength of t B at P= 0.05.
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values were calculated. To estimate how well both methods were able to retrieve the
taxonomic structure of the microbial community, these values were compared with a-di-
versity estimations based on 16S rRNA gene amplicon sequencing. The correspondence
was again evaluated using Kendall’s t B and summarized in Fig. 4.

Diversity estimations were highly significant for the cooling water microbiome
for both approaches. The a-diversity of the microbial communities in Muskegon
Lake could be successfully retrieved as well. For q = 1 (the exponent of the Shannon
entropy), estimations were significant based on PhenoGrid, but not for PhenoGMM.
In most cases, PhenoGrid outperformed PhenoGMM, indicating that more mixtures
or additional detectors might be needed to make it competitive with PhenoGrid in
this setting. To summarize, PhenoGMM successfully quantified the community
structure of most considered natural communities, but its ability depended on the
ecosystem of study and its specific implementation. In the current implementation,
PhenoGrid seems to be favored, with small to moderate differences between the
two approaches.

PhenoGMM quantifies intercommunity differences.We also evaluated the possi-
bility to quantify intercommunity diversity (i.e., b-diversity) for both approaches. We
used the Bray-Curtis dissimilarity to quantify these differences based on the resulting
cell contingency tables for each data set. A Mantel test was used to calculate the cor-
relation between the dissimilarity matrix based on the cytometric fingerprints and the
one derived from the in silico synthetic microbial community composition or the com-
position based on 16S rRNA gene sequencing for the cooling water and freshwater
lake data sets. This was done for PhenoGMM and PhenoGrid (Fig. 5). Both approaches
resulted in strong correlations (P, 0.001 for all considered communities, except Lake
Michigan, for which P, 0.05). PhenoGMM-based fingerprints resulted in higher corre-
lations for the simulated synthetic microbial communities, Lake Michigan and

FIG 4 Summary of a-diversity estimations for the cooling water and freshwater lake microbiomes, evaluated
by Kendall’s t B, using PhenoGMM and PhenoGrid. Both methods were run 10 times. Kendall’s t B was calculated
between true and estimated diversity values. Each boxplot displays the 25% and 75% quartiles of the t B, and
the whiskers show the full range of t B. Each dot represents the resulting value from an individual run. (A and
B) Results for the cooling water microbiome. (A) Survey I. (B) Survey II. (C to E) Results for the freshwater lake
microbiome. (C) Inland lakes. (D) Lake Michigan. (E) Muskegon Lake. The dashed line indicates the strength of
t B at P= 0.05.
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Muskegon Lake, while PhenoGrid-based fingerprints resulted in higher correlations for
the cooling water and inland lake system microbiome.

DISCUSSION

In this paper we propose a data-driven cytometric fingerprinting strategy based on
Gaussian mixture models (GMMs), which we have called PhenoGMM. Our approach
allows the derivation of information-rich variables from microbial cytometry data in
order to describe the community structure. One of its advantages is that the method
reduces the number of community-describing variables considerably compared to tra-
ditional binning approaches. We evaluated the performance of PhenoGMM in terms of
the a-diversity, as quantified by the Hill numbers Dq for q=0, 1, and 2. These are the
equivalents of the richness, exponent of the Shannon entropy, and inverse Simpson
index. We also evaluated to what extent intercommunity differences can be quantified
to perform b-diversity estimations. Both synthetic and natural microbial communities
were considered. We compared PhenoGMM with the performance of a generic tradi-
tional binning approach that is representative for common approaches for cytometry
fingerprinting in microbial ecology, which we have called PhenoGrid for this work.

In the first part of the paper, we constructed synthetic microbial communities in sil-
ico by aggregating cytometric characterizations of individual bacterial strains accord-
ing to predefined compositions. This allowed us to simulate microbial community
compositions in a highly precise and controlled way. These predefined compositions
were used to calculate a- and b-diversity values. Cytometric diversity, based on the
resulting cell counts for PhenoGMM and PhenoGrid, was benchmarked with the
predefined values, by calculating Kendall’s rank correlation coefficient t B between
the two sets of values. Both approaches resulted in moderate to strong correlations.
PhenoGMM resulted in stronger or equally accurate estimations compared to
PhenoGrid. The exponent of the Shannon entropy (Dq=1) and the inverse Simpson
index (Dq=2) were better estimated compared to the richness of the community, indi-
cating that community structure rather than identity is captured by the fingerprints. The
total analysis time of PhenoGMM remained under 1 h for the analysis of 1.5 million cells.

In the second part, we evaluated to what extent PhenoGMM was able to retrieve
the structure of natural communities. Two types of ecosystems were considered, the
cooling water microbiome during two surveys of a research nuclear reactor and the

FIG 5 Summary of b-diversity estimations for all data sets, evaluated by rmantel, for both PhenoGMM
and PhenoGrid. Both methods were run 10 times. rmantel was calculated between the Bray-Curtis
dissimilarity matrices based on cytometric fingerprints and the simulated synthetic community
composition or 16S rRNA gene amplicon sequencing (cooling water and freshwater lake communities).
Each boxplot displays the 25% and 75% quartiles of rmantel, and the whiskers show the full range
of rmantel.
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microbiome of three freshwater lake systems. Correlations with the taxonomic diversity
based on 16S rRNA gene amplicon sequencing data have been demonstrated in previ-
ous work (13, 25) and were therefore used as a benchmark. Depending on the ecosys-
tem of study, correlations of different strengths were observed. Considering the cool-
ing water microbiome, moderate to strong correlations were reported for both
surveys. Differences between PhenoGMM and PhenoGrid were small, but results were
in favor of PhenoGrid. When considering freshwater lakes, only the data from
Muskegon Lake resulted in significant correlations for PhenoGrid. The exponent of the
Shannon entropy resulted in significant correlations as well for the other two lake sys-
tems, indicating again that cytometric fingerprinting approaches capture community
structure rather than identity.

Note that we do not expect to find a “perfect” correlation between the cytometric
and taxonomic diversity. Besides the fact that 16S rRNA gene amplicon sequencing is
subject to a number of biases (35, 36), microbial FCM is sensitive to both taxonomic
and physiological changes. Therefore, the strength of the correspondence between
cytometric and taxonomic diversity will vary from experiment to experiment and from
system to system, with multiple factors affecting the strength of the correspondence.
First, the freshwater lake microbiome displays larger values in richness and evenness
compared to the cooling water microbiome (25). Second, the levels of trophicity differ
between the considered data sets, which could be affecting the estimations. Third, the
sampling coverage is different between the data sets. The cooling water microbiome
contains many measurements over a few days in a highly dynamic system, compared
to the freshwater lake microbiome that contains samples spanning a much larger
range in time (years) and space (multiple locations).

Estimations of b-diversity (i.e., intercommunity diversity) could be successfully
quantified as well, by calculating Bray-Curtis dissimilarities between the cytometric fin-
gerprints of different communities. A Mantel test demonstrated that correlations were
significant for all data sets and strong in most cases, indicating that in some cases it
could be more worthwhile to investigate inter- rather than intracommunity differences.

Few reports exist that quantitatively evaluate fingerprinting approaches for the
analysis of microbial cytometry data. Most fingerprinting strategies make use of man-
ual annotation of clusters or of fixed binning approaches (see, e.g., the report by Koch
et al. [14] which qualitatively discusses different existing methods). In almost all cases,
only bivariate interactions are inspected. PhenoGMM allows modeling the full parame-
ter space at once. This is interesting, because although it is difficult to develop multi-
color approaches for bacterial analyses, these are possible (see, e.g., the work by
Barbesti et al. [37]). In addition, our research group has demonstrated that additional
detectors that capture signals due to spillover can assist in the discrimination between
bacterial species (38). Therefore, the parameter space in which bacterial cells can be
described is increasing, and PhenoGMM is able to model this straightforwardly.
Because it is an adaptive strategy as well, by defining small clusters in regions of high
density and vice versa, it reduces the number of sample-describing variables consider-
ably compared to fixed binning approaches. In that sense, it shares some properties
with FlowFP. This is an adaptive binning approach, in which bins are smaller when the
density of the data is higher and vice versa. However, the bins are still hyperrectangu-
lar in shape, while PhenoGMM allows clusters to be of any shape. Other adaptive bin-
ning strategies have been proposed for microbial FCM data as well (24); however,
these are still limited to bivariate interactions.

Our approach comes with a number of caveats. First, PhenoGMM fits a fingerprint
template based on the concatenation of measured samples. New samples are charac-
terized based on this template. In the case that multiple samples diverge considerably
from those that were used to determine the template (for example, in the case that an
experiment was conducted under different conditions), we recommend refitting the
model. Second, we overcluster the data to model the multiple and potentially overlap-
ping cell distributions due to the differences in physiology and the many species that
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can be present in a microbial community. This makes it difficult to determine the exact
number of mixtures. As the number of mixtures K increases, the performance saturates
gradually, and more mixtures will not improve estimations. Therefore, K should be cho-
sen high enough but might differ from experiment to experiment. PhenoGMM can
also be tailored toward the identification of separated cell populations, for example, to
identify phytoplankton populations (33), for the identification of so-called high- and
low-nucleic-acid groups (39), or to identify distinct bacterial populations when the re-
solution of the data is high enough (34). In this case, if the number of populations is
known beforehand, K can be chosen accordingly; if this is not known, one can use deci-
sion rules such as the Bayesian information criterion (BIC) to determine the optimal
number of mixtures (34). Third, due to overclustering of the data, mixtures can be
highly correlated with each other.

Our in silico benchmark study made use of cytometric characterizations of individ-
ual bacterial strains. Individual cultures are known to exhibit considerable heterogene-
ity due to cell size diversity and cell cycle variations (40). Our research group has
recently shown that the cytometric diversity of an individual culture reduces when it is
part of a coculture (21). Therefore, data used for the in silico community creation setup
cannot be used to study environmental samples, as we hypothesize that members of
natural communities will have a different cytometric fingerprint from strains that were
grown and measured individually. Yet, we believe that our in silico community assem-
bly approach is useful, as it allows a precise simulation of variations in cytometric com-
munity structure.

To conclude, PhenoGMM can be used to derive information-rich variables from mi-
crobial FCM measurements. Microbial community structure can be quantified by com-
puting cytometric diversity metrics based on the PhenoGMM-based fingerprints. The
method has a number of advantages compared to traditional cytometric fingerprinting
approaches. To facilitate its use by the scientific community, it has been integrated in
the R package PhenoFlow (13). Technological advancements have enabled an auto-
mated data acquisition, resulting in a detailed characterization of the microbial com-
munity online (i.e., samples are measured at routine intervals between 5 and 15min)
or in real time (i.e., near-continuous measurements) (41, 42). Therefore, we see great
potential to use FCM as a monitoring technique to rapidly and frequently investigate
microbial community dynamics, which can be supported by PhenoGMM. It has to be
noted that quantification of diversity should serve as a starting point to test ecological
hypotheses rather than as a final outcome of an experiment (43). Microbial FCM, in
combination with PhenoGMM, has the potential to be an effective strategy to serve
this research line in microbial ecology.

MATERIALS ANDMETHODS
Methodology. In this work, multiple data sets were analyzed. Each data set contained multiple FCM

samples, either individual bacterial strains or natural communities. Bacterial cells were described by scat-
ter and fluorescence signals, for which the latter resulted from the use of a nucleic acid stain (SYBR green
I). Experimental details per data set are laid out in detail below. We first describe the methodology of
PhenoGMM.

Preprocessing. Two preprocessing steps are applied to all cytometry samples before further analysis
of the data. First, all individual FCM channels are transformed by f(x) = asinh(x). Next, background due to
debris and noise is removed using a fixed digital gating strategy (13, 44). In other words, a single gate is
applied to separate bacterial cells from background and is used for all samples. This gate is fixed within
a specific experiment but can differ from data set to data set.

Cytometric fingerprinting using Gaussian mixture models.When the preprocessing is completed,
a fingerprint template or model needs to be determined that is able to describe all the samples within
an experiment. Therefore, samples are first subsampled to the same number of cells per sample
(N_CELLS_MIN), in order to not bias the Gaussian mixture model (GMM) toward a specific sample, and
concatenated in a training set. This number can be either the lowest number of cells present in one sam-
ple or a number of choice. A rough guideline can be to not let the training set be larger than 1� 106

cells, but this depends on computational resources. If n denotes the total number of samples, then the
total number of cells (N_CELLS) in the training set will be determined as N_CELLS = n � N_REP �
N_CELLS_MIN, in which N_REP denotes the number of technical replicates of a specific sample.
Typically, forward (FSC) and side (SSC) scatter channels are included, along with one or more targeted
fluorescence channels (denoted as FLX, in which X indicates the number of a specific fluorescence
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detector). Unless noted otherwise, channels FSC-H, SSC-H, and FL1-H (530/30 nm) are included for data
analysis.

Once this training set is created, a GMM of K mixtures is fitted to the data. If X denotes the entire
data matrix or training set containing N cells, then X consists of cells written as x1, . . ., xN, of which each
cell is described by D variables (i.e., the number of signals collected from the flow cytometer). Cell i is
described as xi ¼ fxi1; . . . ; xiDg. A GMM consists of a superposition of normal distributions N, of which
each distribution has its own mean m and covariance matrix R. Each mixture has a mixing coefficient or
weight p , which represents the fraction of data each mixture is describing. The distribution p can be
written as follows:

pðXÞ ¼
XK

k¼1

pkNðXjlk;RkÞ: (1)

The set of parameters H ¼ ½p k ;lk;Rk �Kk¼1 is estimated by the expectation-maximization (EM) algo-
rithm (45). Once a GMM has been trained on the concatenated data, the fingerprint template is deter-
mined and one can assign all cells per sample to the mixture for which it has the highest posterior prob-
ability. This time, replicate samples are subsampled to a specific number of cells or the lowest number
of cells of the replicates that are part of that specific sample and pooled. This number is denoted as

FIG 6 Illustration of PhenoGMM for two channels (FL1-H and FSC-H) using K= 100 mixtures. (A) The analysis starts from cytometric
measurements of three bacterial communities of interest, noted as “ORANGE” (S= 6), “GREEN” (S= 8), and “BLUE” (S= 15). (B) Data for
the three communities are concatenated into one data frame, to which a GMM with (in this case) K= 100 mixtures is fitted. This
results in a fingerprint template, which is depicted on the right. (C) The fingerprint template is used to derive relative cell counts per
cluster and per bacterial community. (D) This results in a “count” table, which can be used to rapidly quantify the cytometric
diversity based on equations 2 to 4 (in this case D2).
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N_CELLS_REP. After clustering, the number of cells per mixture is counted, after which the relative num-
ber of cells per mixture and sample is retrieved, further defined as the cytometric fingerprints. An illus-
tration of PhenoGMM can be seen in Fig. 6.

We used the GAUSSIANMIXTURE() function of the scikit-learn machine learning library to implement our
method (46). This function contains four different ways to estimate the covariance matrix of each
mixture:

� diag: each mixture has its own diagonal covariance matrix.
� full: each mixture has its own general covariance matrix.
� spherical: each mixture has its own single variance. (Note this is not the same as k-means
clustering. In this case, all mixtures would share the same single variance.)

� tied: all mixtures share the same general covariance matrix.

Unless otherwise noted, we let each mixture have its own general covariance matrix (full). mClust
was used to integrate PhenoGMM in the R package PhenoFlow (47).

Defining cytometric diversity. Cytometric fingerprints allow definition of the cytometric diversity
of a microbial community (13, 18). If one considers each predefined gate or mixture as a phenotypic
unit, one can calculate both intra- and intercommunity diversity metrics, also known as a- and b-diver-
sity. The first quantifies the diversity within a sample, and the latter quantifies the diversity between
samples. Various diversity metrics exist in ecology to calculate a-diversity. In this work, we apply the Hill
numbers Dq(p) to quantify community diversity (48), as proposed by Leinster and Cobbold (49) and Daly
et al. (50). If we let p = p1, . . ., pS represent the vector of relative abundances, describing the abundance
of S bacterial species or populations, then we can define the richness (Dq=0) and evenness (Dq=1, Dq=2) of
a microbial community as follows:

Dq¼0ðpÞ ¼ S; (2)

Dq¼1ðpÞ ¼ expð2
XS

i¼1

pi ln piÞ; (3)

Dq¼2ðpÞ ¼ 1
XS

i¼1

p2i

: (4)

q denotes the order of the Hill-number, which is part of a general family that can be denoted as
Dq(p), and expresses the weight that is given to more abundant species. Dq=1 is the equivalent of the ex-
ponential of the Shannon entropy, and Dq=2 is the equivalent of the inverse Simpson index (50).

b-Diversity metrics quantify the difference in compositions between different communities. We
quantify the dissimilarity between samples using the Bray-Curtis dissimilarity (51). If we let BCAB denote
the dissimilarity between communities A and B, BCAB is calculated using the following equation:

BCAB ¼

XS

i¼1

jpA;i 2 pB;ij

XS

i¼1

jpA;i 1 pB;ij
(5)

Predictive modeling. FCM fingerprints can be used as input variables to train a machine learning
model. We use Random Forest regression (52), an ensemble of decision trees, to predict a-diversity val-
ues, based on the in silico assembling strategy to estimate the structure of synthetic microbial commun-
ities (see below). A randomized grid search is performed to search for an optimal hyperparameter com-
bination (53). This means that a number of random combinations of hyperparameter values were
evaluated. The maximum number of variables that are considered at an individual split for a decision
tree is randomly drawn from {1, . . ., K}, and the minimum number of samples for a specific leaf is ran-
domly drawn between {1, . . ., 5}. One hundred different combinations were evaluated using 5-fold
cross-validation, and predictions were reported for a separate test set.

Data sets. (i) In silico synthetic bacterial communities. Data from 20 individual bacterial strains,
which were grown in the laboratory and measured by FCM, were collected from reference 10. In brief,
individual bacterial cultures were sampled after 24 h of incubation and stained with SYBR green I, and
two technical replicates per strain were measured on an Accuri C6 (BD Biosciences). Fluorescence was
measured by the targeted detector (FL1, 530/30 nm) and three additional detectors, next to forward
(FSC) and side (SSC) scatter. After background removal, additional automated denoising was performed
using the FlowAI package (v1.4.4., default settings; target channel, FL1; changepoint detection, 150 [54]).
A full experimental overview can be found in reference 10. The lowest number of cells collected after
background removal amounted to 13,166 cells. The data are available via FlowRepository (accession ID:
FR-FCM-ZZSH).

(ii) Cooling water microbiome. Data were used as presented in reference 13. Samples were col-
lected from the cooling water of a discontinuously operated research nuclear reactor. This reactor under-
went four phases: control, startup, operational, and shutdown. Samples were taken from two surveys in
time (surveys I and II) and analyzed via FCM and 16S rRNA gene amplicon sequencing (nsurvey I = 36 and
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nsurvey II = 31). The procedure and data preprocessing are described in reference 13. In brief, samples
were stained with SYBR green I, and three technical replicates were analyzed using an Accuri C6 (BD
Biosciences). Fluorescence was measured by the targeted detector (FL1, 530/30 nm) and three additional
detectors, next to forward (FSC) and side (SSC) scatter. The data are available via FlowRepository (acces-
sion ID: FR-FCM-ZZNA). The lowest number of cells collected after background removal amounted to
10,565 cells. Taxonomic identification of microbial communities was done at the operational taxonomic
unit (OTU) level at 97% similarity after preprocessing. All the samples were subsampled down to the
minimum sequencing depth and normalized afterward. Sequences are available from the NCBI
Sequence Read Archive (SRA) under accession ID SRP066190.

(iii) Freshwater lake microbiome. Data were collected as presented in reference 55. A total of 173
samples, from three types of freshwater lake systems, were analyzed through 16S rRNA gene amplicon
sequencing and FCM. Samples originated from three different freshwater lake systems: (i) 49 samples
from Lake Michigan (2013 and 2015), (ii) 62 samples from Muskegon Lake (2013 to 2015; one of Lake
Michigan’s estuaries); and (iii) 62 samples from 12 inland lakes in southeastern Michigan (2014 to 2015).
Field sampling, DNA extraction, DNA sequencing, and processing are described in reference 56. Fastq
files were submitted to NCBI SRA under BioProject accession numbers PRJNA412984 and PRJNA414423.
Taxonomic identification of microbial communities was done for each of the three lake data sets sepa-
rately and treated with a minimum OTU abundance threshold cutoff of one sequence in 3% of the sam-
ples. Sequences were clustered into OTUs at 97% similarity. Each of the three data sets was rarefied to
an even sequencing depth, which was 4,491 sequences for Muskegon Lake samples, 5,724 sequences
for the Lake Michigan samples, and 9,037 sequences for the inland lake samples. The relative abundance
at the OTU level was calculated by taking the count value and dividing it by the sequencing depth of
the sample. Flow cytometry procedures are described in reference 25. In brief, samples were stained
with SYBR green I, and three technical replicates were measured on an Accuri C6 (BD Biosciences).
Fluorescence was measured by the targeted detector (FL1, 530/30 nm) and three additional detectors,
next to forward (FSC) and side (SSC) scatter. FCM data are available via FlowRepository (accession IDs: FR
-FCM-ZY9J and FR-FCM-ZYZN). The lowest number of cells collected after denoising amounted to 2,342
cells.

Method evaluation. Our proposed fingerprinting approach based on GMMs was compared to a
generic fixed binning approach, which we have called PhenoGrid. In brief, we implemented a binning
grid of L= 128� 128 for each bivariate FCM channel combination, after which cell fractions per bin were
determined. The resulting cell fractions were next vectorized, concatenated, and normalized. Both
PhenoGMM and PhenoGrid result in multiple variables that describe relative cell counts, either per mix-
ture or per bin. These methods were evaluated to estimate the structure of both synthetic and natural
communities.

(i) a-Diversity estimations of in silico synthetic microbial communities. In the first setup, we
assessed how well PhenoGMM was able to capture variations in the structure of synthetic microbial
communities. To do so, we first performed an in silico community assembly strategy. In other words,
cytometric characterizations of individual bacterial strains were artificially aggregated according to
simulated compositions (10). These compositions were determined according to the following
strategy:

1. Sample at random a number S9i that represents the number of different members that will
constitute the microbial community i. S9i lies between two and 20 (the total number of strains
that are available).

2. The Dirichlet distribution can be used to model the joint distribution of individual fractions of
multiple species (57). We applied the Dirichlet distribution to randomly simulate the composition
of microbial community i. The evenness of the composition depends on the concentration
parameter a of the Dirichlet distribution, which determines how evenly the weight will be spread
over multiple community members. If a is low, only a few members will make up a large part of
the community (low evenness). If a is high, the fraction of each member contributing to the
community composition will be close to equal (high evenness).

Four hundred community compositions (300 training and 100 test communities) were simulated for
three different values of a= 0.1, 1, and 10. The simulated compositions were visualized using Lorenz
curves (see Fig. S1 in the supplemental material). Next, in silico synthetic bacterial communities were
assembled by aggregating the cytometric characterizations of individual bacterial strains according to
these simulated compositions. Diversity values could be calculated with high accuracy based on the
simulated compositions by calculating the Hill numbers for q= 0, 1, and 2 and Bray-Curtis dissimilarities
for these compositions. These were then correlated with the relative cell abundances that resulted from
PhenoGMM and PhenoGrid. The strength of the correlation was assessed using Kendall’s t B and a
Mantel test. The Random Forest prediction experiment was additionally evaluated using the R2 (see
below).

(ii) a-Diversity estimations of natural microbial communities. Cytometric diversity estimations
for natural communities (i.e., the cooling water and freshwater lake microbiome) were evaluated in a dif-
ferent way. To benchmark PhenoGMM, these values were correlated with a- and b-diversity values
based on 16S rRNA gene amplicon sequencing, motivated by previous reported correlations between
the cytometric and taxonomic diversity (13, 25). The strength of the correlation was assessed using
Kendall’s t B and a Mantel test (see below).
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(iii) Performance evaluation.

� a-Diversity estimations were quantified by calculating Kendall’s rank correlation coefficient t B

between the true and estimated values. The t B implementation, which is able to deal with ties, was
calculated as follows:

sB ¼ Nc 2NdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNc 1Nd 1NtÞ � ðNc 1Nd 1NuÞ
p : (6)

Nc denotes the number of concordant pairs between true and predicted values, Nd the number of
discordant pairs, Nt the number of ties in the true values, and Nu the number of ties in the predicted
values. Values range from 21 (perfect negative association) to 11 (perfect positive association),
and a value of 0 indicates the absence of an association. This was done using the KENDALLTAU()
function in Scipy (v1.0.0) (59).

� Random Forest predictions were evaluated by calculating the R2 between true (y = {y1, . . ., yn}) and
predicted (ŷ = {ŷ1, . . ., ŷn}) values:

R2ðy; ŷÞ ¼ 12

Xn21

i¼0

ðyi 2 ŷ iÞ2

Xn21

i¼0

ðyi 2 yÞ2
; (7)

in which y denotes the average value of y. If R2 = 1, predictions are correctly estimated. If R2 , 0,
predictions are worse than random guessing. The R2_SCORE()-function from the scikit-learn machine
learning library was used (46).

� b-Diversity estimations were evaluated by calculating the correlation between Bray-Curtis
dissimilarity matrices (BC) based on FCM and 16S rRNA gene sequencing data using a Mantel test
(58). This test assesses the alternative hypothesis that the distances between samples based on
cytometry data are linearly correlated with those based on 16S rRNA gene sequencing data. It makes
use of the cross-product term ZM across the twomatrices for each element ij:

ZM ¼
Xn

i¼1

Xn

j¼1

BCFCM
ij � BC16S

ij : (8)

� The test statistic ZM is normalized and then compared to a null distribution, based on 1,000
permutations.

Code and data availability. All code and data supporting this article are freely available on GitHub
at https://github.com/prubbens/PhenoGMM. The functionality of PhenoGMM has been incorporated in
the R package PhenoFlow: https://github.com/CMET-UGent/Phenoflow_package. Raw flow cytometry
data are freely available on FlowRepository (accession numbers FR-FCM-ZZSH, FR-FCM-ZZNA, FR-FCM
-ZY9J, and FR-FCM-ZYZN). Raw sequences are available via the NCBI Sequence Read Archive (accession
numbers SRP066190, PRJNA412984, and PRJNA414423).
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