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Abstract: Background: The microbiota composition is now considered as one of the main modifiable
risk factors for health. No controlled study has been performed on the association between microbiota
composition and renal function. We applied Mendelian randomization (MR) to estimate the casual
impact of eight microbiota genera on renal function and the risk of chronic kidney disease (CKD).
Methods: MR was implemented by using summary-level data from the largest-ever genome-wide
association studies (GWAS) conducted on microbiota genera, CKD and renal function parameters.
The inverse-variance weighted method (IVW), weighted median (WM)-based method, MR-Egger,
MR-Robust Adjusted Profile Score (RAPS), MR-Pleiotropy RESidual Sum and Outlier (PRESSO)
were applied. A sensitivity analysis was conducted using the leave-one-out method. Results:
The Anaerostipes genus was associated with higher estimated glomerular filtration rate (eGFR) in
the overall population (IVW: β = 0.003, p = 0.021) and non-diabetes mellitus (DM) subgroup (IVW:
β = 0.003, p = 0.033), while it had a non-significant association with the risk of CKD and eGFR in
DM patients. Subjects with higher abundance of Desulfovibrio spp. had a significantly lower level of
eGFR (IVW: β = −0.001, p = 0.035); the same results were observed in non-DM (IVW: β = −0.001,
p = 0.007) subjects. Acidaminococcus, Bacteroides, Bifidobacterium, Faecalibacterium, Lactobacillus and
Megamonas had no significant association with eGFR in the overall population, DM and non-DM
subgroups (IVW: p > 0.105 for all groups); they also presented no significant association with the
risk of CKD (IVW: p > 0.201 for all groups). Analyses of MR-PRESSO did not highlight any outlier.
The pleiotropy test, with very negligible intercept and insignificant p-value, also indicated no chance
of pleiotropy for all estimations. The leave-one-out method demonstrated that the observed links
were not driven by single single-nucleotide polymorphism. Conclusions: Our results suggest an
adverse association of Desulfovibrio spp. and a beneficial association of Anaerostipes spp. with eGFR.
Further studies using multiple robust instruments are needed to confirm these results.
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1. Introduction

In humans, up to 100 trillion bacterial cells from approximately 500 distinct species are present,
and the gastrointestinal (GI) tract is the main habitat for >70% of those microbes [1,2]. Importantly, the
microbiome can influence human health and well-being, with the potential to affect human physiology
both in health and in disease [1]. A healthy gut microbiota exerts positive effects by contributing
to energy metabolism [3] and micronutrient homeostasis and by synthesizing vitamins and amino
acids [4,5]. A disturbed composition of the gut microbiome has been associated with the pathogenesis
of diseases such as inflammatory bowel disease, chronic inflammation, dyslipidemia, diabetes mellitus
(DM), atopic disorders, cardiovascular disease (CVD), neoplasms and obesity [6–10].

Evidence of a link between the gut microbiota and renal function is rare; however, very recently,
the role of the gut microbiota in renal physiology and pathophysiology has been investigated [11–13].
The normal gut microbiota plays an important role in the protection of the kidney, while gut dysbiosis
might lead to the development of chronic kidney disease (CKD) [14]. The gut microbiome composition
is considerably changed in CKD [15], promoting bacterial families that possess urease, uricase, indole
and p-cresol-forming enzymes [16–19]. A cascade of abnormalities occurs owing to gut dysbiosis,
such as accumulation of uremic toxins, systemic inflammation and infection, which play a role in the
development of CKD and the deterioration of the renal function [20–25].

It has been reported that gut dysbiosis in CKD includes an increase in the species of Entrobacteraceae
and Pseudomonadaceae genera of the phyla Proteobacteria, Bacteroidaceae and Clostridiaceae and a
decrease in species of Lactobacillaceae, Prevotellaceae and Bifidobacteriaceae [15]. In end-stage
kidney disease (ESKD), a total of 190 bacterial operational taxonomic units (OTU)— phyla Firmicutes,
Actinobacteria and Proteobacteria—are increased [15]. Moreover, a growing number of studies support
that probiotics such as Lactobacillus and Bifidobacterium in patients with CKD may lead to a decrease in
uric acid, blood urea nitrogen (BUN) [26,27], serum creatinine [26] and estimated glomerular filtration
rate (eGFR) [28].

While epidemiological studies are limited because they are not able to rule out the chance of
residual bias, confounding factors and reverse causation, Mendelian Randomization (MR) analysis is
able to compensate for these limitations, when applied to both phenotypes and genotypes [29]. A recent
study reported that the levels of Desulfovibrionaceae, Bacteroidaceae, Alcaligenaceae, Pseudomonadaceae,
and Pasteurellaceae (producing urease) were much lower in ESKD patients than in normal individuals,
while Bacteroidaceae relative abundance was higher in these patients [30]. Reports based on a Chinese
population with CKD revealed that the amount of Bacteroides was positively correlated with the level
of creatinine and dominant in ESKD patients [30], whereas Faecalibacterium was positively associated
with eGFR and dominant in controls [30]. Moreover, Bifidobacterium was negatively associated with
BUN and creatinine [30]. These limited and mainly small observational studies, however, are difficult
to interpret because they are influenced by confounding factors, such as diet, which may affect the gut
microbiota and health, and by changes in the gut microbiota in response to illness. A recent animal
study reported that increased urea concentration may be a leading contributor to dysbiosis changes in
CKD and that both serum creatinine and BUN increased around 2.5-fold in animals with CKD [31].
Furthermore, the CKD group exhibited a considerably lower relative abundance of Anaerostipes spp.,
as well as an increased relative abundance of Akkermansia spp. and Lactobacillus spp. [31].

Taking the abovementioned factors into account, we conducted an MR analysis. This method
is able to circumvent the limitations of observational studies [29] by using genetic variants that are
associated with a type of exposure (here, microbiota genera) as instruments to test for associations
with an outcome (here, risk of CKD and renal dysfunction); further genetic endowment is randomly
allocated at conception, analogous to the randomization in randomized controlled trial (RCT) [29].
To the best of our knowledge, this is the first MR study on the role of the gut microbiota in renal
function. We performed MR based on genome-wide association studies (GWAS) predicting eight
genera applied to large extensively genotyped studies of risk of CKD and renal function to identify
genera associated with these outcomes.
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2. Methods

2.1. Study Design

A two-sample MR study design was used. Summary statistics were obtained from the largest
GWAS on microbiota and outcomes of interest. We applied methods to estimate the unbiased effect
of eight microbiome genera on the risk of CKD and renal function parameters (eGFR) separately in
non-DM and DM participants.

2.2. Genetic Predictors of Exposures

From all GWAS, published on different microbiota genera, we used data for genera which had ≥2
single-nucleotide polymorphisms (SNPs): Acidaminococcus [32], Anaerostipes [33,34], Bacteroides [34],
Bifidobacterium [33,34], Desulfovibrio [32], Faecalibacterium [32,34], Lactobacillus [32], Megamonas [32].
More information can be found elsewhere [32–34].

2.3. Genetic Predictors of Outcomes

Genetic associations with renal function were obtained from the largest available extensively
genotyped study based on a meta-analysis (133,413 individuals with replication in up to
42,166 individuals) [35]. eGFR was estimated using the 4-variable Modification of Diet in Renal
Disease Study Equation [35]. CKD was defined as eGFR < 60 mL/min/1.73 m2. DM was defined as
fasting glucose ≥126 mg/dl, with pharmacologic treatment for DM or self-reported treatment [35]. In all
studies, DM and kidney function were assessed at the same time point [35]. For genome-wide association
analysis, a centralized analysis plan was followed; each study regressed sex- and age-adjusted residuals
of the logarithm of eGFR on SNP dosage levels [35]. Logistic regression of CKD status was performed
on SNP dosage levels adjusting for sex and age. For all traits, adjustment for appropriate study-specific
features, including study site and genetic principal components, was included in the regression,
and family-based studies appropriately accounted for relatedness [35]. An SNP, highly correlated
(R2 > 0.99) with the original SNP, was used as proxy when the original SNP was not available
for outcomes.

2.4. MR Analysis

We combined the effect of 3 instruments using the inverse-variance weighted (IVW) method
as implemented in the TwoSampleMR package running under R. We assessed heterogeneity using
the Q value for the IVW method. To address the potential effect of pleiotropic variants on the final
effect estimate, we conducted sensitivity analysis including weighted median (WM) and MR-Egger.
Sensitivity analysis was conducted using the leave-one-out method. WM estimate, as the weighted
median of the SNP-specific estimates, provides correct estimates as long as SNPs accounting for ≥50%
of the weight are valid instruments. WM MR allows some variants to be invalid instruments provided
at least half are valid instruments. It uses IVW and bootstrapping to estimate confidence intervals
(CIs) [36]. MR-Egger has the ability to make estimates by the assumption that all SNPs are invalid
instruments as long as the assumption of instrument strength independent of direct effect (InSIDE) is
satisfied [36]. MR-Egger allows free estimation of the intercept, although further assumptions, such as
the independence between instrument strength and direct effects, cannot be easily verified. Average
directional pleiotropy across genetic variants was assessed from the p-value of the intercept term from
MR-Egger [36]. Causal estimates in MR-Egger are less precise than those obtained by using IVW
MR [37]. Analysis using MR-Egger has a lower false positive rate but a higher false negative rate than
IVW [38].

Further, to assess heterogeneity between individual genetic variant estimates, we used the Q’
heterogeneity statistic [39] and the MR pleiotropy residual sum and outlier (MR-PRESSO) test [39].
The Q’ statistic uses modified 2nd-order weights that are a derivation of a Taylor series expansion and
take into account uncertainty in both numerator and denominator of the instrumental variable ratio
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(this eases the no-measurement-error [NOME] assumption) [39]. The MR-PRESSO framework relies
on the regression of variant–outcome associations on variant–exposure associations and implements a
global heterogeneity test by comparing the observed distance (residual sums of squares) of all variants
to the regression line with the distance expected under the hypothesis of no pleiotropy [40,41]. In case
of evidence of horizontal pleiotropy, the test compares individual variants expected and observed
distributions to identify outlier variants. We also applied the MR-Robust Adjusted Profile Score
(RAPS), which allows correcting for pleiotropy using robust adjusted profile scores. We considered
as results causal estimates that agreed in direction and magnitude across MR methods, passed
nominal significance in IVW MR, and did not show evidence of bias from horizontal pleiotropy using
heterogeneity tests. We used R (version 3.4.2 R Core Team, 2017).

2.5. Ethics

This investigation used published or publicly available summary data with no identification of
the participants. No original data were collected for this manuscript. Ethical approval for each of the
studies included in the investigation can be found in the original publications (including informed
consent from each subject). The study conforms to the ethical guidelines of the 1975 Declaration
of Helsinki.

3. Results

Instruments have F statistics higher than threshold, so that significant bias due to the use of
weak instruments is unlikely [42]. Based on the data of two SNPs from different GWAS, Anaerostipes
was associated with a higher eGFR in the overall population (IVW: β = 0.003, p = 0.021, Table 1)
and non-DM subgroup (IVW: β = 0.003, p = 0.033, Table 1), while it appeared to have no significant
effect on the risk of CKD (IVW: β = 0.009, p = 0.672, Table 1) and on eGFR in DM subjects (IVW:
β = 0.005, p = 0.312, Table 1). With regard to Desulfovibrio, on the basis of two uncorrelated SNPs
from the same GWAS, the analysis of the total population with higher abundance of the Desulfovibrio
showed significant negative association with eGFR (IVW: β = −0.001, p = 0.035, Table 1); the same
was found in non-DM subjects (IVW: β = −0.001, p = 0.007, Table 1), while we found no significant
association between Desulfovibrio and risk of CKD (IVW =, β = 0.016, p = 0.191, Table 1) and eGFR
value in DM subjects (IVW =, β = 0.0042, p = 0.157, Table 1). The results of heterogeneity are shown in
Table 1. We found that none of the estimated associations was subjected to a significant level of the
heterogeneity (for all IVW, p > 0.110, Table 1). The results of MR-RAPS were identical with the IVW
estimates, which indicted no chance of pleiotropy (Table 1).
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Table 1. Results of mendelian randomization analysis for all exposures.

Exposures
MR Heterogeneity

Method Beta SE p Method Q p

Anaerostipes

CKD
IVW 0.009 0.022 0.672

IVW 0.237 0.626RAPS 0.009 0.022 0.681

eGFR
IVW 0.003 0.002 0.021

IVW 2.548 0.110RAPS 0.003 0.001 0.032

eGFR (Non-DM) IVW 0.003 0.001 0.033
IVW 1.895 0.168RAPS 0.003 0.001 0.015

eGFR (DM) IVW 0.005 0.005 0.312
IVW 0.256 0.612RAPS 0.005 0.005 0.329

Desulfovibrio

CKD
IVW 0.016 0.012 0.191

IVW 0.007 0.931RAPS 0.016 0.013 0.208

eGFR
IVW −0.001 0.0007 0.035

IVW 0.168 0.681RAPS −0.001 0.0007 0.047

eGFR (Non-DM) IVW −0.001 0.0007 0.007
IVW 0.077 0.780RAPS −0.002 0.0008 0.013

eGFR (DM) IVW 0.0042 0.0029 0.157
IVW 0.792 0.373RAPS 0.0042 0.0031 0.172

Inverse-variance weighted, IVW, RAPS, Robust Adjusted Profile Score, SE, standard error, beta, beta-coefficients, MR, Mendelian randomization, Q, Q value for heterogeneity statistic,
CKD, chronic kidney disease, eGFR, estimated glomerular filtration rate, DM, diabetes mellitus.
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We also evaluated the impact of Acidaminococcus, Bacteroides, Bifidobacterium, Faecalibacterium,
Lactobacillus and Megamonas on eGFR and risk of the CKD and showed no significant effect on renal
function in the total population, DM and non-DM subgroups (for all IVW: p > 0.105); they had also no
significant effect on the risk of CKD (IVW: p > 0.201 for all).

The results of heterogeneity indicated no chance of heterogeneity (p > 0.322 for all comparisons).
The analysis of MR-PRESSO did not highlight any outlier for all estimates. The pleiotropy test (for
those genera with more than two SNPs), with very negligible intercept and insignificant p-value,
also indicated no chance of pleiotropy for all our estimations (p > 0.253 for all). The results of
MR-RAPS were identical with the IVW estimates, which again indicated no chance of pleiotropy.
The leave-one-out method demonstrated that the links were not driven by a single SNP.

4. Discussion

We conducted an MR analysis to evaluate the association of different microbiota genera with renal
function and risk of CKD. Our results highlighted that subjects with genetically higher level of the
Anaerostipes genus had a higher eGFR and better kidney function, while those with higher abundance
of the Desulfovibrio genus has a lower eGFR. There was no evidence that pleiotropy, heterogeneity or
outliers had biased these results.

Alterations of the intestinal barrier and change in the composition of the gut microbiota are leading
factors contributing to intestinal dysbiosis [43,44]. Several alterations of the intestinal microbiota have
been reported in CKD/ESKD, such as increased number of aerobic microorganisms as well as aerobic
bacterial overgrowth (Proteobacteria and Actinobacteria) and the overgrowth of anaerobic bacteria,
including Firmicutes [15,45].

Some important pathophysiological hypotheses have evolved with regard to the relationship
between microbiota and renal dysfunction [23]. As an example, production and accumulation of
toxic end products derived from bacterial fermentation and translocation of endotoxins and bacteria
from the gut lumen into the blood stream can trigger chronic inflammation and worsen uremia
toxicity [23]. Uric acid is excreted in the urine via a complex interplay of glomerular filtration and
tubular reabsorption and secretion [46,47]. Moreover, as diet has an important role in the composition
of the gut microbiota, a strict restriction of fruits and vegetables consumption (that is routinely
prescribed for subjects with renal dysfunction) due to their potassium and oxalate content could
deteriorate the structure or metabolism of the gut microbiota [15]. Further, long-term consumption
of phosphate-binding agents by advanced CKD patients can change the luminal milieu of the gut;
in turn, the abundance of the resident gut microbiota can be affected [15]. The use of antibiotics by
CKD patients is a major factor modifying the composition and function of the gut microbiota [15].

Recent studies have reported the detrimental effects of uremia on the gut barrier structure and
function [48–50]. Urea accumulation is one of the main factors in CKD, leading to increase urea influx
into the intestinal lumen. Microbial urease hydrolyses urea to ammonia—ammonium hydroxide—
which enhances the influx of inflammatory leukocytes leading to the production of local cytokines that
induce retraction and endocytosis of transcellular tight junction proteins (claudins and occludin) [51,52].
Vaziri et al. found differences in the intestinal microbiota between uremic and non-uremic patients and
reported that uremia contributed to this by increasing intestinal disease-causing bacteria [15]. Studies
show that the gut microbiome community is considerably changed in CKD [15], because there is a
dominance of bacterial families that possess urease, uricase, indole and p-cresol-forming enzymes [16].
Of note, ESKD patients show decreased numbers of bacteria producing short-chain fatty acid (SCFAs).
It has been speculated that SCFA have an anti-inflammatory role [16]. On the other hand, gut-derived
uremic toxins such as indoxyl sulfate and p-cresyl sulfate induce pro-inflammatory responses and
promote leukocyte stimulation [53,54], and these metabolites are associated with increased levels of
inflammatory markers (e.g., interleukin-6 and glutathione peroxidase) in CKD patients [55,56]. It is
known that inflammation is one of the main factors initiating renal dysfunction. Animal studies
showed that there was a significant difference between nephrectomised rats and healthy ones, and it
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was found that 175 operational taxonomic units differed between the two groups; changes included a
lower abundance of Bacteroidetes and Firmicutes, especially Lactobacillaceae and Prevotellaceae [15].

Anaerostipes are Gram-variable, obligate anaerobes producing acetate and butyrate [57]. Increased
abundance of Anaerostipes may result in the increased production of SCFAs as well as in the decrease
of branched-chain fatty acids in the gut and subsequently in the blood [58]. Bacteria producing
SCFAs, especially butyrate, are decreased in ESKD patients [30]. Bacteroidetes (40%), Firmicutes
(40%) and Proteobacteria (10%) are the predominant phyla in healthy individuals compared with
CKD patients [30,59]. Butyrate produced from microbial fermentation plays an important role in the
adjustment of the body reactions to inflammation [60]. Bacteria producing butyrate were negatively
associated with inflammatory factors such as C-reactive protein (CRP) and renal function markers [30].
It has also been reported that SCFAs might decrease the chance of acute renal dysfunction by reducing
inflammation [61]. There is no human study on the link between Anearostipes and eGFR; only one
animal study is available [31]. C57BI/6J mice (with surgically induced CKD) underwent either a
sham operation (Sham) or unilateral nephrectomy with simultaneous ipsilateral upper pole cautery
resection (NPX) at eight weeks of age (n = 10 mice per group). Both serum creatinine and BUN
increased around 2.5-fold in the NPX group compared with the Sham group [31]. The diversity of
the microbial communities between these groups showed that NPX mice had lower abundance of
Anearostipes spp. [31]. NPX mice with low abundance of Anaerostipes showed negative effects on
kidneys parameters (BUN and creatinine) [31]. Furthermore, both urea supplementation and the
experimental CKD model resulted in decreased relative abundance of Anearostipes [31]. The results of
this study are somewhat consistent with those of our study, which showed that Anearostipes led to
increased eGFR and improvement in renal function.

The Desulfovibrio genus includes sulfate-metabolizing bacteria that reduce the sulfites and sulfates
obtained from the diet and the sulfated mucopolysaccharides found in mucin, leading to the generation
of hydrogen sulfide, a cytotoxic compound [62]. A recent study involving 52 ESKD patients (mean age
51.6± 18 years) and 60 healthy individuals (mean age 52.5± 14 years) that evaluated the alteration of the
gut microbiota in a Chinese population revealed that Desulfovibrio spp. produced urease, whose relative
abundance was much lower in ESKD patients than in the control group [30]. It was further reported
that Desulfovibrio spp. clearly flourish in an inflammatory environment [62], and harmful effects of
inflammatory factors on the progression of renal dysfunction have been discussed [63–65].

Several mechanisms have been proposed for the detrimental effect of Desulfovibrio spp. on
kidney function. The main theory centres on the fact that SCFAs such as butyrate are metabolized by
Desulfovibrio. Then, Desulfovibrio uses sulfites and sulfates as terminal metabolic electron acceptors,
leading to the generation of hydrogen sulfide, which has a wide range of cytotoxic effects. Among these,
hydrogen sulfide is a potent inhibitor of the oxidation of SCFAs in cells, thereby completing a vicious
circle of mutually exclusive metabolic interactions between host and this bacterium [62].

With regard to diabetic populations, we did not find an association of Desulfovibrio and Anearostipes
with eGFR and CKD. It should be noted that different mechanisms and factors in diabetic and
non-diabetic individuals may explain why we did not find any association in the diabetic subgroup [7].
Oxidative stress and inflammatory markers are suggested to be associated with macrovascular and
microvascular complications of diabetes [8]. CKD as one of the long-term complications of diabetes
is related to oxidative stress [7]. It could be hypothesized that high levels of oxidative stress and
inflammatory markers in diabetic patients might be confounding factors affecting any association.
Also, there are other factors which we did not consider in our study. We can only make assumptions
in explaining our findings; the exact mechanisms are unknown, and more studies considering more
confounding factors are required.

Our analysis has strengths and limitations. MR is a powerful tool for the detection of causal
impacts, which is an advantage with respect to observational studies. Moreover, we benefited from the
largest GWAS on exposure and outcomes. However, the MR analysis has limited statistical power.
Therefore, a lack of findings in our analysis might be due to small causal effects that were not detectable
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in our study. Our study used genetic instruments and estimation of genetic associations using GWAS
that were mainly based on a sample of European ancestry. It is known that the microbiota genera
vary by ethnicity and other factors. Therefore, our results cannot be extrapolated to other ethnicities.
We could not test for subgroup analysis (e.g., by age and sex) and diet–microbiome interactions,
but causal effects should be generally consistent. Second, the 16S ribosomal RNA gene sequencing
used by most microbiota GWAS usually only permits resolution at the genus level rather than at
a more specific level, so we cannot rule out the possibility that some specific species or strains are
associated with renal function. Moreover, for future studies, it is important to consider the ratio
between two taxa or dysbiosis of the gut microbiota. Additionally, the gut microbiota may also
be influenced by other factors, such as age and season. However, the gut microbiota is thought to
be stable especially after early childhood, and the main force determining its composition consists
of long-term dietary habits. As such, our findings may be more relevant to the effects of the gut
microbiota in adolescence or adulthood. We would like to call for more GWAS with greater sample
size to include other bacterial genera (we understand that the validity of SNPs might be low because
of the nature of the original GWASs). Our study is also limited by the current understanding of the
gut microbiota. A hypothesis-driven study testing epidemiologically established associations would
have been preferable. However, this was precluded by the lack of knowledge as to the function
of each microbiome constituent and the lack of large epidemiological studies. However, for both
genera which had an effect on renal function, there were experimental studies enabling us to discuss
possible mechanisms.

In conclusion, our study highlighted the association of Desulfovibrio and Anearostipes spp. on
renal function markers. Further studies using multiple robust instruments are needed to confirm
these results.
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