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Abstract: Obstructive sleep apnea (OSA) is a highly prevalent worldwide public health problem that
is characterized by repetitive upper airway collapse leading to intermittent hypoxia, pronounced
negative intrathoracic pressures, and recurrent arousals resulting in sleep fragmentation. Obesity is
a major risk factor of OSA and both of these two closely intertwined conditions result in increased
sympathetic activity, oxidative stress, and chronic low-grade inflammation, which ultimately
contribute, among other morbidities, to metabolic dysfunction, as reflected by visceral white adipose
tissue (VWAT) insulin resistance (IR). Circulating extracellular vesicles (EVs), including exosomes,
are released by most cell types and their cargos vary greatly and reflect underlying changes in
cellular homeostasis. Thus, exosomes can provide insights into how cells and systems cope with
physiological perturbations by virtue of the identity and abundance of miRNAs, mRNAs, proteins,
and lipids that are packaged in the EVs cargo, and are secreted from the cells into bodily fluids under
normal as well as diseased states. Accordingly, exosomes represent a novel pathway via which a
cohort of biomolecules can travel long distances and result in the modulation of gene expression
in selected and targeted recipient cells. For example, exosomes secreted from macrophages play
a critical role in innate immunity and also initiate the adaptive immune response within specific
metabolic tissues such as VWAT. Under normal conditions, phagocyte-derived exosomes represent a
large portion of circulating EVs in blood, and carry a protective signature against IR that is altered
when secreting cells are exposed to altered physiological conditions such as those elicited by OSA,
leading to emergence of IR within VWAT compartment. Consequently, increased understanding of
exosome biogenesis and biology should lead to development of new diagnostic biomarker assays
and personalized therapeutic approaches. Here, the evidence on the major biological functions of
macrophages and exosomes as pathophysiological effectors of OSA-induced metabolic dysfunction
is discussed.
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1. Sleep-Disordered Breathing

Obstructive sleep apnea (OSA) is the most common form of sleep-disordered breathing and
is associated with many adverse health consequences, as well as with increased overall mortality
risk [1–5]. OSA is characterized by repetitive obstructions of the upper airway during sleep that
result in increased inspiratory efforts, sleep fragmentation (SF), and intermittent hypoxia (IH). OSA is
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particularly present among obese individuals and can affect at least 4–10% of all adults, with recent
epidemiological studies reporting much higher prevalence [6–8]. Patients with OSA are at greater risk
for metabolic dysfunction including insulin resistance, type 2 diabetes mellitus, dyslipidemia, and
display evidence of adipose tissue inflammation and dysfunction [9–15]. Of note, both IH and SF have
been independently associated with metabolic dysfunction, and acute exposures to IH were shown to
decrease insulin sensitivity in healthy human volunteers [16,17]. In addition, studies in both rodents
and humans have consistently reported that exposures to IH affects whole-body metabolic homeostasis,
but the underlying mechanism(s) and the metabolic organs involved remain unclear [18–27].

2. Obesity, OSA and Metabolic Dysfunction

The worldwide prevalence of obesity has increased rapidly in the last 30 plus years in most
Western countries. This increase has led to important changes in the pathogenesis and clinical
presentation of many common diseases [28]. Obesity is considered a major social and health problem
in both adults and children, and is viewed as a multifactorial disease caused by complex interactions
between genetic and environmental factors. Obesity is manifest as increased abdominal adiposity and
adipose tissue inflammation that are synergistically linked to an array of downstream health problems;
including insulin resistance, type 2 diabetes, dyslipidemia, fatty liver disease, neurodegenerative
disorders, and cardiovascular diseases [29,30]. Obesity is an important and major risk factor for
OSA, with 30–64% of OSA patients being obese or overweight [6]. Among the negative behavioral
factors that can facilitate the emergence of obesity, even in children, insufficient sleep due to either
lifestyle associated short sleep duration and/or poor sleep quality are emerging as important and
independent contributors [31,32]. Sleep disturbances can alter brain functions involved in the control
of appetite, which can generate overeating in the current obesogenic environment, i.e., low physical
activity and high availability of energy dense foods [33,34]. Obesity, in turn, significantly increases
the risk of developing metabolic disorders, hypertension, stroke, and several types of cancer in up to
30% of obese patients, in addition to markedly increasing the risk of OSA, the latter being recognized
as independently contributing to enhance the risk of such metabolic diseases and their deleterious
consequences [35–39].

A hallmark feature of metabolically dysfunctional obese visceral white adipose tissues (VWAT)
consists of the infiltration of immune cells, particularly macrophages [40–43]. Non-resident
macrophages are traditionally classified into two types: pro-inflammatory (M1) and anti-inflammatory
(M2), even if the distinction between these 2 sub-types is relatively artificial [44–46]. It is currently
believed that altered polarization towards a pro-inflammatory M1 phenotype within VWAT is critically
involved in cardiovascular and metabolic disease processes [43,47,48]. M1 macrophages express
the surface marker CD11c [49,50].and produce pro-inflammatory cytokines, such as tumor necrosis
factor α (TNF-α) and interferon γ (IFN) [51,52]. M2 macrophages express the surface marker CD301
and produce anti-inflammatory cytokines such as IL-10 [49]. The relative and absolute number of
M1 macrophages increases in VWAT upon the emergence of obesity, thereby promoting adipose
tissue inflammation [49]. In obese individuals adipocyte-derived exosomes have been identified as
putatively contributing to the development of insulin resistance via activation of adipose-resident
macrophages and the downstream secretion of pro-inflammatory cytokines that can foster the onset
insulin resistance [53]. Furthermore, exosomes may carry pro-inflammatory factors via the circulation
and interact with remote cell types to promote inflammation through activation of a variety of
contributory pathways [54–56]. Here, we will critically review the extant published literature on
macrophages and metabolic dysfunction in the context of obesity and diseases such as OSA, and
further attempt to provide a mechanistic link implicating exosomes in such processes.

3. Source of Macrophages

Macrophages are recruited from precursor monocytes in the circulation, which in turn are
derived from stem cells in the embryo and bone marrow [57]. Most tissue-resident macrophages
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are derived from embryonic precursors, however, under certain circumstances, circulating monocytes
can differentiate into self-maintaining tissue-resident macrophages that resemble their embryonic
counterparts [58]. Indeed, there are several markers that have been proposed to specifically identify
macrophages of embryonic origin versus adult bone marrow monocyte-derived macrophages [58].
The first report about macrophage precursors, existing in the yolk sac and fetal liver of the early
embryo, was published over four decades ago [59]. A few reports indicated how these cells contribute
to various adult tissue-resident macrophage populations [60,61]. While macrophage origins clearly
differ between organs, the origin of a tissue-resident macrophage does not seem to play a large role in
determining its lifespan or functions [58,62], as illustrated in Figure 1.
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Figure 1. Sources of macrophages. Macrophages are distributed in tissues throughout the body
and contribute to both homeostasis and disease. Erythro-Myeloid Progenitors (EMPs) is the source
of pre-macrophages. Adult resident tissue macrophages originate during embryonic development
rather than from circulating monocytes. During early gestation, macrophages are first observed and
expand in the extraembryonic yolk sac during what is termed primitive hematopoiesis. At this stage in
development, macrophages are the only “white blood cell” produced, because restricted progenitors in
the yolk sac give rise only to macrophages and red blood cells. Later on, bone marrow derived cells
will generate circulating monocytes and be independently recruited to the various organs and tissues.

Macrophages that reside in adult healthy tissues are either derived from circulating monocytes
or are established before birth, and are then maintained during adult life independently of
monocytes [63]. It has been reported that most of the macrophages that accumulate at diseased
sites typically derive from circulating monocytes. When a monocyte enters damaged tissue through
the endothelium of a blood vessel, a process known as leukocyte extravasation, it undergoes a
series of transformational and phenotypic changes to become a macrophage [60,64]. For example,
embryonic macrophages were identified as F4/80hiCD11blow-int cells, as opposed to F4/80int-hi CD11bhi

macrophages, which are suggested to be of bone marrow origin; however, all of these precursors
acquired a similar F4/80hiCD11bint profile upon transfer into the alveolar space [62]. Furthermore,
monocyte-derived Kupffer cells also acquired an F4/80hiCD11bint profile that is equivalent to their
embryonic counterparts [65]. In addition, TNFRSF11a was identified as a gene that is highly expressed
by embryonic macrophages, but is only minimally expressed by hematopoietic stem cells (HSCs)
and circulating monocytes. In Tnfrsf11a-Cre mice crossed with Rosa-YFP reporter mice [66], most
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tissue-resident macrophages (including alveolar macrophages and Langerhans cells) displayed a
higher level of yellow fluorescent protein (YFP), labelling them as adult circulating monocytes [67],
and therefore suggesting an almost pure embryonic origin of most tissue-resident macrophages.
However, TNFRSF11a is highly expressed by both embryonically derived and monocyte-derived
Kupffer cells, whereas it has low expression in alveolar macrophages regardless of origin [62,65].
Therefore, TNFRSF11a expression is not restricted to embryonic macrophages, and there is currently
no reliable marker to accurately distinguish between macrophages of different origins.

New evidence suggests that macrophages can originate from embryonic precursor cells
that colonized developing tissues before birth (fetal tissue macrophages) and that tissue-resident
macrophages have self-maintaining abilities in the adulthood. Murine animal models allowed the
definition of three main sources for tissue-resident macrophages: (1) The yolk sac in the embryo as
a source for progenitor cells by primitive hematopoiesis; (2) the fetal liver, where the hematopoiesis
takes places, shifting from the yolk sac; and (3) the bone marrow that becomes the major hematopoietic
center in late embryos and adult organisms [68–70]. Another scenario related to the model proposed
that resident macrophages, developing in the embryo independently of the hematopoietic stem cell
(HSC) compartment [71–73], still persist in adults, and can coexist with the so termed “passenger”
leukocytes that include monocytes and DCs, which originated from bone marrow HSCs and myeloid
progenitors [74], as shown in Figure 1.

Macrophages are present in virtually all tissues, and differentiate from circulating peripheral
blood mononuclear cells (PBMCs), which migrate into tissue in the steady state or in response to
inflammation [75]. These PBMCs can develop from a common myeloid progenitor cell in bone
marrow that is the precursor of many different cell types, including neutrophils, eosinophils, basophils,
macrophages, dendritic cells (DCs), and mast cells. During monocyte development, myeloid progenitor
cells (termed granulocyte/macrophage colony-forming units) sequentially give rise to monoblasts,
pro-monocytes, and monocytes, which are released from the bone marrow into the bloodstream [75].
Monocytes migrate from the blood into tissues to replenish long-lived tissue-specific macrophages of
the bone (osteoclasts), alveoli, central nervous system (microglial cells), connective tissue (histiocytes),
gastrointestinal tract, liver (Kupffer cells), spleen, and peritoneum [75]. In blood, monocytes are
not a homogeneous population of cells, and there is substantial debate about whether specific
monocyte populations give rise to specific tissue macrophages [76]. In adults, monocytes originate from
definitive hematopoietic stem cells (HSCs) through a characterized differentiation program involving
progressively further committed progenitors. The identification of the monocyte-macrophage dendritic
cell (DC) progenitor provided a developmental link between both DCs and monocytes within a
common differentiation pathway [74]. While monocyte heterogeneity is not fully understood, one
theory suggests that monocytes continue to develop and mature in the blood, while also being recruited
to the tissues at various points during this maturation continuum [77]. The point at which they leave
the blood may in fact define their function. In mice, two populations of monocytes from either
end of this maturation spectrum have been identified and termed as “inflammatory” and “resident”
monocytes, based primarily on the amount of time they spend in the blood before migrating into
tissues [78].

4. Functional Aspects of Macrophages

Macrophages are formed through differentiation of monocytes, and are key players in the immune
response, basically ridding the body of worn-out cells, foreign substances, microbes, in addition to
cancer cells [79]. Since macrophages possess the ability to eliminate pathogens and of recruiting and
instructing other immune cells, they play a central role in not only protecting the body, but also in
contributing to the pathogenesis of inflammatory and degenerative diseases [80]. The mononuclear
phagocyte system is particularly dynamic during inflammation or infection. Under physiological
conditions, blood monocytes are recruited into the tissues, where they separate into macrophages.
Depending on the microenvironment, macrophages can acquire distinct functional phenotypes [81].
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It has been reported that monocytes/macrophages recruitment into a tumor microenvironment is
mainly controlled by cytokines, chemokines, and growth factors produced by stromal and malignant
cells [82].

Macrophages have been categorized into two artificially distinct activation states designated as
classical (M1) and alternative (M2), even though there is a much wider spectrum of combinations of the
two putatively distinct macrophage phenotypes [83]. For example, M1 activation occurs in response to
molecules derived from bacterial infections such as lipopolysaccharide (LPS) and interferon-γ (IFN-γ).
Highly inflammatory macrophages typically express the integrin α-chain Cd11c, CD11b, and F4/80
markers in mice, and are hence “triple” positive. M2 macrophages express CD11b and F4/80, but
do not express Cd11c, hence “double” positive, and their phenotypic conversion usually occurs in
response to parasites and their associated cytokines interleukin (IL)-4 and IL-13, promoting tissue repair
and inhibiting M1 macrophages [84]. The majority of macrophages are located at strategic points and
consequently each type of macrophage has a specific name (e.g., adipose tissue macrophages Kupffer
cells in liver; alveolar macrophages in lungs; microglia in central nervous system; Hofbauer cells in
placenta; intraglomerular mesangial cells in kidney); red pulp macrophages in spleen; epithelioid cells
in granulomas; and osteoclasts in bone) [85].

In obese people, M1 and M2 macrophages induce tissue-specific metabolic responses such as
hepatocyte biosynthesis of plasma proteins. They provide an early response to infection in the
acute phase reaction, initiating features of systemic inflammation and infection such as loss of
appetite as well as catabolism [86]. Another polarized macrophage phenotype which has been
denominated tumor-associated macrophage (TAM) has been identified [87], and is often considered to
be synonymous with M2 macrophages. While TAMs have some characteristics of M2 macrophages,
they exhibit a transcriptional profile that is quite distinct from M1 and M2 [88], as shown in Figure 2A.
Macrophages isolated from various tissues display remarkable differences in gene expression
profiles, even though the circulating monocytes from which they originate are indistinguishable
until they contribute to the macrophage pools in these tissues acquire these specific gene expression
profiles [62,65,89–91].

In tumor microenvironment, macrophage polarization occurs through different ligands that
modulate their metabolism, and macrophage plasticity is essential for the establishment of anti-tumor
immune system functionality. These cells can vary from a configuration that inhibits tumor growth
and induces cell death (M1 profile) to a configuration that stimulates cancer progression and tissue
repair (M2 profile) [92], particularly important considering that macrophages are the most abundant
immune cells in the tumor microenvironment [93].

The macrophage population phenotype can change occasionally as seen for example in obesity
where there is a macrophage phenotype switch from M2 to M1 [94]. In contrast, tumor progression is
often associated with macrophage phenotype changes from classically activated (M1) to alternatively
activated (M2) [95]. There are several M2 sub-classifications. The M2a subtype is elicited by IL-4
or IL-13, the M2b subtype is elicited by IL-1 receptor ligands or exposure to immune complexes
plus lipopolysaccharide (LPS), and the M2c subtype is elicited by anti-inflammatory stimuli, such
as glucocorticoid hormones, IL-10, and transforming growth factor-β (TGF-β) [96,97] as shown in
Figure 2B.

Signaling and communication between endothelial cells and monocytes/macrophages play a
critical role in cardiovascular homeostasis and the pathogenesis of atherosclerosis [98]. In addition to
adipocyte-derived factors, increased release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6),
monocyte chemoattractant protein-1 (MCP-1), and additional products of macrophages and other cells
that populate adipose tissue also plays a role in the development of cardiovascular and metabolic risk
including insulin resistance [99,100]. As mentioned above, during obesity, macrophages accumulate
in visceral white adipose tissue (vWAT), where they promote chronic low-grade inflammation. It is
well established that this inflammation is causally associated with insulin resistance. Two models
have been proposed to explain the increase in the number of M1 macrophages in vWAT upon obesity:
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(a) Circulating monocytes are recruited to vWAT, where they differentiate into M1 macrophages, and
(b) obesity induces the proliferation of resident macrophages in vWAT [101,102].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 24 
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Figure 2. Effects of OSA on macrophages derived from adipose tissues and tumors. Tissue macrophages
are composed of different subpopulations exerting different physiological properties. The two
well-known subtypes are: M1 (classically activated macrophages) with pro-inflammatory properties,
and M2 (alternatively activated macrophages) with anti-inflammatory properties. Macrophages are
capable of dynamic inter-conversion depending on the immediate environment in which they evolve,
and obesity or OSA increases tissue infiltration of macrophages and polarization towards the M1
phenotype (A). During tumor progression, circulating monocytes and macrophages are actively
recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression.
The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor
immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing,
and pro-tumorigenic properties (B).

5. Macrophage and Metabolic Dysfunction

Obesity and metabolic syndrome are becoming increasingly prevalent, and raise the risk of type
2-diabetes (T2D) cardiovascular diseases and cancer. Activation of leukocytes and inflammation of
adipose tissue are established links between obesity and development of metabolic dysfunction [27,103].
It has been indicated that metabolic dysfunction and insulin resistance can shift the balance between
numerous pro and anti-inflammatory regulators of macrophages, while also having the ability to create
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a feed-forward loop of increasing inflammatory macrophage activation. These processes ultimately
worsen adipocyte dysfunction [41]. Adipose tissue macrophages (ATMs) are the predominant
leukocyte in lean, metabolically healthy adipose tissues, and accumulate in obese individuals to
constitute up to 40% of the stromal vascular cell fraction [104]. It has been reported that obesity-related
changes in adipose tissue leukocytes, in particular ATMs and dendritic cells (ATDCs), are implicated
in metabolic inflammation, insulin resistance, and altered regulation of adipocyte function [105–108].

As mentioned, OSA is a common condition across the life spectrum, and many cross-sectional
and longitudinal studies have now clearly established OSA as an independent risk factor for the
development of a variety of adverse metabolic disease states, including hypertension, insulin
resistance, (T2D), nonalcoholic fatty liver disease, dyslipidemia, and atherosclerosis [109–111]. We
have previously shown that mice exposed to long-term SF develop increased body weight and
adipose tissue mass, along with mobilization and differentiation of adipocyte precursors, as well
as adipose tissue inflammation [12,112–114]. This contrasts with mice exposed to chronic IH who
display reductions in body weight, along with increased visceral fat inflammation [9,26,115,116].
However, despite their divergent effects on adipose tissues, these two hallmark characteristics of OSA
induce metabolic dysfunction and insulin resistance, suggesting that in the context of OSA, excessive
body weight may potentiate the effects of obesity. vWAT has emerged as an attractive effector of
these adverse consequences, given the strong link between OSA and obesity. In obese individuals,
adipocyte-derived exosomes have been implicated to the development of insulin resistance, via
activation of adipose-resident macrophages and secretion of pro-inflammatory cytokines that can
result in insulin resistance [53,117,118]. However, exosomes may also carry pro-inflammatory factors
via the circulation and interact with remote cell types to promote inflammation through activation
of contributory pathways [54–56]. ATMs play pivotal roles in the establishment of the chronic
inflammatory state and metabolic dysfunctions such as T2D and IR [119,120]. In addition, either
genetic or diet-induced adipocyte expansion promotes the accumulation of macrophages in vWAT in
mice, and the majority of obese patients [51,121].

The interaction between adipocytes and macrophages aggravates the chronic inflammation
in obese vWAT [122]. Furthermore, atherosclerosis is a chronic inflammatory disease driven by
an imbalance in lipid metabolism and a maladaptive immune response [123]. In vivo, several
studies have shown macrophage heterogeneity within the atherosclerotic plaque in response to the
exposure to lipids and their oxidized derivatives [124]. de Gaetano et al. [125] observed a marked
difference in a macrophage subset between symptomatic and asymptomatic plaque [125]. Moreover, in
murine models, it has been demonstrated that in the regressing plaque a decrease in the number
of macrophages occurs and, in some, a switch of their phenotypic characteristics occurs along
with enrichment in M2-like phenotype, suggesting that this is a common signature of regressing
plaques [126].

6. Exosome Biogenesis

Extracellular vesicles (EVs), are membrane-contained vesicles originating from the endocytic
pathway or from the cell plasma membrane. They are released into the extracellular space by
virtually all cells, playing an important role in intercellular communication during physiological
and pathological processes. In particular, exosomes, a sub-class of EVs (30−120 nm), have generated
considerable attention as intercellular signal transmitters [109,127]. Exosomes have been described
in cell culture supernatants as well as plasma, serum, and virtually all bodily fluids [128,129], and
serve as intercellular communication vehicles through delivery of proteins, lipids, nucleic acids, or
other components in or within their lipid bilayer membrane to neighboring or distant cells. Exosome
biogenesis consists of two steps, the inward budding of membranous vesicles of endosomes and
their release into a structure known as a multi-vesicular body (MVB). The formation of MVBs occurs
during the maturation of early endosomes into late endosomes with the accumulation of intraluminal
vesicles [130,131]. After maturation, MVBs are directed for fusion with either the lysosome, where
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their cargo will undergo lysosomal degradation, or to the plasma membrane, where their contents will
be released into the extracellular space [132].

7. Exosomes Isolation and Characterization

Exosome isolation approaches are variable among different research groups and also depend
on the sample source from which they are obtained [56,127,128]. Therefore, exosome isolation and
purification need to be standardized to ensure that delineation of exosome populations and their
functional analysis is reproducible and comparable across different research groups. Among the
multitude of techniques for the isolation of exosomes, specific feature of exosomes are used, such as
shape, density, size, and surface protein markers, as shown in Figure 3.

Ultracentrifugation methods use high speed centrifugation to pellet vesicles, while polymer-based
reagents are added to the sample to facilitate vesicle precipitation using lower speeds. Ultrafiltration
involves the concentration of vesicles from a large volume of biological fluid using a centrifugal
filter unit. Size exclusion chromatography and density gradient separation are both designed to
allow the separation of vesicles from other nonvesicular debris. Immunoaffinity capture methods
use antibody-coated beads to selectively isolate vesicles displaying a surface marker of interest.
Eventually, the choice of purification method for an individual experiment is influenced by time, cost,
and equipment considerations, as well as the sample requirements for any downstream analyses.
Regardless of which protocol is ultimately used, the cellular source(s) of exosomes must be identified.
Both concentration and composition of exosomes can vary significantly during disease. Isolation and
characterization of exosomes can provide important information for early disease detection, monitoring
disease status, and the development of effective treatments. We should remark that determining the
size distribution of exosomes is a critical step for exosomes studies. Size distribution measurement
technologies include electron microscopy (EM), nanoparticle tracking analysis, resistive pulse sensing,
and atomic force microscopy (AFM). Transmission EM (TEM) has been so far the preferred technique
for direct observation of the size and morphology of exosomes [133]. A device allowing Nanoparticle
Tracking Analysis (NTA) has been developed to measure the size distribution and concentration of
nanoparticles [134]. More recently, faster and most sensitive antibody-based methods to quantify
exosomes have been based on standard curves of known exosomes that include EXOELISA-ULTRA,
EXOELISA, EXOCET, FLUOROCET provided by commercial sources (https://www.systembio.com;
https://www.biovision.com) (Figure 3).
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8. Exosome Cargo

According to the most recent version of the exosome content database, ExoCarta (http://www.
exocarta.org), exosomes from various organisms and various cell types have been characterized as
potentially containing 9769 proteins, 1116 lipids, 3408 mRNAs, and 2838 miRNAs [135]. The protein
content largely depends on the exosome cellular origin, and is generally enriched for certain molecules,
including targeting and fusion proteins (e.g., tetraspanins, lactadherin, and integrins), cytoplasmic
enzymes (e.g., GAPDH, peroxidases, pyruvate kinases, and lactate dehydrogenase), chaperones (e.g.,
heat shock proteins Hsp60, Hsp70, Hsp90, and the small HSPs), membrane trafficking proteins (e.g.,
Rab proteins, ARF GTPases, and annexins), proteins involved in MVB formation (e.g., ALIX, TSG101,
and clathrin), cytoskeletal proteins (e.g., actin and tubulin), and signal transduction proteins (e.g.,
protein kinases and heterotrimeric G proteins) [129]. Several studies have shown that besides proteins,
exosomes also carry certain types of lipids, which play an important role in maintaining the biological
activity of exosomes [136,137].

In addition to proteins and lipids, exosomes also contain nucleic acids including mRNAs and
other non-coding RNAs such as miRNAs and lncRNAs, and these exosomal RNAs, in particular
the miRNAs have been shown to be functionally important in the recipient cells [138–140]. Mature
miRNAs identify target mRNAs and regulate post-transcriptional gene expression [141]. Exosomes
protect miRNAs from degradation induced by RNA enzymes in body fluids. They also transport
miRNAs to recipient cells, where they participate in gene expression and signal transduction playing a
key role in the processes of various diseases. There is growing evidence that the maturation process
of miRNAs is linked to the formation and maturation of exosomes, and exosomal miRNAs play
important roles in metabolic diseases, where they can be regarded as biomarkers and targets for
correcting metabolism disturbances [142,143].

9. Exosome Internalization

While the important roles of exosomes in many physiological and pathological processes are
being revealed, the mechanism of exosome-cell interactions remains unclear. Exosomes can deliver
their cargo to recipient cells through direct interactions between the exosomes and the cell membrane.
Cargo delivery was demonstrated by independent studies focusing on the exosomal shuttle of cell type
specific or specie-specific proteins and RNAs. Direct visualization of stained exosomes by fluorescent
microscopy has further provided evidence for exosome-cell interactions [56,144,145]. It is reported
that the uptake of exosomes by target cells may occur through three different mechanisms: (i) Simple
fusion of the exosome with the cellular membrane, directly releasing the content of vesicles into the
cytoplasm; (ii) exosome uptake by endocytosis; and (iii) uptake dependent on the presence of distinct
receptor proteins that enable binding of exosomes to target cells [146–148]. It is generally accepted that
the cell of origin and secretion conditions of exosomes seem to determine their cell surface content,
and consequently the cell-type-specific adhesion molecules, targeting exosomes to specific cells [149].
Nevertheless, exosomes contain many different cell surface molecules and one single exosome is able
to engage many different cell receptors [149].

We and other have investigated cell uptake in several cell lines [150–153]. Several methods were
used to study exosomal uptake in vitro and in vivo. For examples, exosomes were labeled using
different commercially available dyes including PKH26 Red and PKH67 Green Fluorescent Cell Linker
Kit for General Cell Membrane Labeling [152,154–156]. Treatment of exosomes with proteinase K
significantly reduced uptake by ovarian cancer cells. These results indicate that surface proteins on
exosomes may serve as receptors for uptake [157]. The uptake of tumor-derived exosomes seems to
be mediated by surface phosphatidylserine, which can be blocked with diannexin [158]. Moreover,
exosome internalization could be inhibited by the knockdown of dynamin 2, which is necessary
for clathrin and caveolin-dependent endocytosis [159]. To improve exosome uptake, [160] we have
proposed to combine cationic lipids and a pH-sensitive fusogenic-GALA peptide, increasing exosome
binding at the plasma membrane, and improving uptake via the endocytic pathway. Interestingly,

http://www.exocarta.org
http://www.exocarta.org


Int. J. Mol. Sci. 2018, 19, 3383 10 of 25

heparin blocks both binding to the membrane of recipient cells and uptake of glioblastoma-derived
exosomes by human endothelial cells ([161].

10. Exosomal Function

The presence of exosomes in healthy body fluids advocates a role of these vesicles in the
normal physiology of the body, including communication in the immune system, tissue repair,
and communication within the nervous system [162,163]. Originally, exosomes were described
as a mechanism for elimination of excessive proteins or undesirable molecules from the cell [164].
However, we now have evidence that exosomes control both normal physiological processes, such
as immune responses and lactation [165], and the expansion and progression of diseases, such as
neurodegenerative diseases and especially cancer [166,167]. Exosomes carry out a diverse range of
functions and sometimes have opposing effects on the recipient cells depending on their tissue of origin
and molecular content [168]. Thus, they may serve as invaluable biomarkers for disease diagnosis,
prognosis, and therapy [166]. By delivering nucleic acids such as miRNAs or mRNAs to target cells,
exosomes can exchange genetic information between cells. For example, exosomes from a mouse and a
human mast cell line (MC/9 and HMC-1, respectively) and from primary bone marrow-derived mouse
mast cells were shown to contain RNA [140]. In vitro studies showed that, after transfer of mouse
exosomal RNA to human mast cells, new mouse proteins were detected in the recipient cells, indicating
that transferred exosomal mRNA was translated after entering the cell. Additional studies supported
exosomes-mediated functional delivery of mRNA [169] and small RNAs [144,170] to acceptor cells.
Furthermore, exosomes derived from either the lung or liver entered bone marrow cells in vitro and
induced expression of proteins specific for the originating lung or liver tissues [171]. These findings
indicate that exosomes have the capacity to change the phenotype of neighboring cells [109,128].

11. Exosomes and Macrophages

In both human and murine models, exosomes released by B lymphocytes have the capacity
to stimulate specific CD4+ T cell clones in vitro, suggesting a possible role of exosomes as vehicles
for major histocompatibility complex (MHC) class II—peptide complexes between immune system
cells. These potential roles as mediators of immune responses, and the suggestion of a possible use
of exosomes as immunotherapeutic agents, has led to a myriad of articles related to the immune
function of exosomes in vitro and in vivo [172]. A number of studies indicated that cardiovascular
system–related cells, including platelets, erythrocytes, endothelial cells, leukocytes, monocytes,
macrophages, and smooth muscle cells, release EVs that play biological and/or pathological roles in
cardiovascular disease, primarily by altering immune function [173–175].

Macrophage-derived exosomes represent a large portion of the circulating microvesicles in
blood [176]. Exosomes from cells infected with intracellular pathogens stimulate a Toll-like
receptor-dependent inflammatory response in recipient cells, while dendritic cell (DC)-derived
exosomes suppress the onset of murine collagen-induced arthritis and reduce its severity [177,178]. It is
also reported that inflammatory stroke can induce extracellular vesicles macrophage activation [179],
and these EVs can act as messengers of macrophages sensing atherogenic stimuli [180]. Furthermore,
endothelial EVs can modulate the macrophage phenotype with potential implications to atherosclerosis
in patients [181]. Conversely, macrophage-derived exosomes induce inflammatory factors in
endothelial cells under hypertensive conditions [182], while macrophage-secreted exosomes can
deliver an miRNA-21 inhibitor to regulate BGC-823 cell proliferation of gastric cancer cells [183].

Exosomes released from monocytes/macrophages can exert several different functions. For
example, these exosomes were shown to cause inflammation-induced programmed cell death in
vascular smooth muscle cells via transfer of functional pyroptotic caspase-1 [184]. Macrophage-derived
exosomes induced differentiation of naïve monocyte recipient cells to macrophages [185]. The
macrophage-derived vesicles contained high levels of the miRNA molecule miR-223, which is an
important regulator of myeloid cell proliferation and differentiation. In addition, EVs released by
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macrophages contain MHC class II and costimulatory molecules, and similar to DC-derived EVs,
can play a role in antigen presentation [186,187].

12. Exosomes and Metabolic Dysfunction

Circulating exosomes have been linked to macrovascular and microvascular dysfunction in
human metabolic syndrome and diabetes. For example, patients with metabolic diseases, in particular
insulin resistance and type 2 diabetes mellitus, are likely to develop cardiovascular disease including
atherosclerosis, stroke, and coronary artery disease [188]. Furthermore, increased EVs are a hallmark of
CVD including atherosclerosis, hypertension, and following stroke or myocardial infarction [189,190].
Several studies have examined the role that exosomes play in modulating insulin signaling in mouse
models and in vitro studies [191,192]; however, a few studies examine EVs in type 2 diabetes using
human cohorts [193]. Clinical studies support the hypothesis that exosomes released from various cell
types play roles in the progression of metabolic disorders including type 2 diabetes in both in vitro
and in vivo [194]. In type 2 diabetes mellitus (T2DM), exosomes secreted from skeletal muscle [195],
vWAT [196], and hepatocytes [197] can transfer both functional proteins and RNA species that regulate
the metabolic function of both remote tissues and of adjacent cells.

Exosomes are released by most of the cells into the circulation and bodily fluids display different
protein and RNA contents in healthy subjects and patients with different diseases, which can be
measured as potential diagnostic markers [198,199]. Several studies have examined circulating
exosomes in human obesity and metabolic syndrome [200–203]. Obesity and other associated metabolic
disorders induce increased secretion of vesicles incorporating specific RNAs and proteins as observed
in both rodents and humans [204,205]. The current interest in exosomes derives not only from their
great potential as novel biomarkers, but also as a new way to deliver innovative therapies to specific
target cells. It has been suggested that exosomes possess therapeutic potential through reprogramming
of target cells, affording modulation of cellular processes and secretomes—the molecules secreted by
cells—and eventually favoring tissue repair after reprogramming of target cells [203]. In addition, there
is a possibility that source-cleared exosomes could become a valid marker or therapeutic tool for obesity
by decreasing the release of exosomes. Also, these exosomes can be loaded with designed contents
(specific proteins, miRNAs, or even chemical medicines) which can be transferred automatically to the
target cells to activate intracellular signal pathways to achieve a therapeutic effect [203]. Circulating
exosomal miRNAs are currently explored and potentially represent novel biomarkers for metabolic
syndrome [206]. For example, Karolina et al. compared exosomes based circulating miRNAs between
patients with metabolic syndrome, hypertension, and healthy controls. Results showed that circulating
levels of miRNA-17, miRNA-197, miRNA-509-5p, miRNA-92a and miRNA-320a significantly increased
in metabolic syndrome patients [207]. The importance of exosomes is now further highlighted by the
evidence that they can also be considered as disease biomarkers, as well as possible drug, vaccine, or
gene vector delivery tools with potential therapeutic applications [208–212].

Studies in the db/db diabetic mouse model demonstrated that exosomes from adipose tissues
activate macrophages and promote expression of IL-6 and TNF-α, suggesting that EVs from diabetic
mice may convey inflammatory signals [53]. Exosomes derived from insulin resistant mice modulate
insulin signaling in skeletal muscle and pancreatic β-cells further suggesting a role for EVs in
insulin signaling in mice [191,213]. Recent evidence shows that ATM-derived exosomes may
modulate insulin resistance in mice through transfer of specific miRNAs [214]. Exosomes from
human adipocyte-explants have been shown to modulate the release of inflammatory cytokines in
macrophages [200,215], and as a possible mediator of inflammation and immune crosstalk in diabetic
murine models and insulin resistant tissue [53,200,215]. Specifically, adipose tissue-derived exosomes
from both mouse and human explants increased IL-6 production in macrophages [200,215]. In addition,
two recent studies have reported the presence of an association between exosomes and metabolic
dysfunction, and such work could inferentially be adapted to study the impact of OSA on metabolic
function. One such study showed that ob/ob mice display elevated numbers of exosomes compared
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to wild-type mice [216]. The second study demonstrated that exosome levels bearing cystatin C
were positively related to metabolic complications of obesity in patients with clinically vascular
diseases [200]. These findings uncover a potential role of exosomes in the pathogenesis of metabolic
diseases. Several other studies have identified exosomes in the culture supernatants of mouse adipose
tissues [53], rat primary adipocytes [217], and mouse adipocyte cell line 3T3-L1 [218] that exhibit
biological activity. For example, exosomes isolated from the culture supernatant of visceral adipose
tissue excised from mice showed that injection of the exosomes derived from diet-induced or genetically
(leptin-deficient (ob/ob) obese mice into wild-type lean mice results in macrophage activation and
insulin resistance [53]. Additionally, isolated exosomes from the supernatants of differentiated 3T3-L1
cells under hypoxic conditions are enriched in enzymes related to lipogenesis and promote lipid
accumulation in recipient 3T3-L1 adipocytes [218].

The pathogenic mechanisms resulting in monocyte recruitment to adipocytes in OSA and other
sleep disorders are under intense investigation and remain incompletely understood. We have recently
demonstrated that circulating exosomes from patients suffering from the obesity hypoventilation
syndrome (OHS), the most severe form of OSA, or from mice exposed to either long-term IH or
SF, promote reduced insulin sensitivity in naïve adipocytes in vitro, and that the exosome cargo
biological effects are attenuated when exosomes are obtained after adherent and effective treatment
with continuous positive pressure ventilation (CPAP) [11]. Of note, the beneficial effects of CPAP
on exosome cargo properties are undetectable among OSA patients who opted not to receive any
treatment [11]. EVs have also been studied as potential biomarkers and effector in CVD risk of OSA,
and plasma concentrations of exosome subtypes may serve as markers of endothelial dysfunction
in CVD [128,219–221]. Figure 4 shows the effects of OSA on metabolic dysfunction including
endothelial and adipose tissues in relation to atherosclerosis. Under pathological conditions such as
IH, exosomes could contribute to the establishment of a pro-inflammatory phenotype that leads to
endothelial dysfunction and promotes atherogenesis [222]. In a murine model of persistent pulmonary
hypertension, it was shown that exosomes suppressed the infiltration of macrophages and the release
of pro-inflammatory and pro-proliferative mediators, including monocyte chemoattractant protein-1
and hypoxia-inducible mitogenic factor. The improvement of microenvironment by exosomes was
mediated by miRNAs. MiRNA-204 was inhibited by STAT3 under pathological conditions such
as chronic hypoxia, but this inhibitory effect was reversed by exosomes. On the other hand, the
pro-proliferative miRNA-17 was induced by hypoxia, but inhibited by exosomes [223]. Furthermore,
the effect of exosomes on ischemic reperfusion injury (IR) in mice was reported [224]. In a murine
model of persistent pulmonary hypertension, it was shown that exosomes suppressed the infiltration
of macrophages and the release of pro-inflammatory and pro-proliferative mediators, including
monocyte chemoattractant protein-1 and hypoxia-inducible mitogenic factor. The improvement of
microenvironment by exosomes was mediated by miRNAs. MiRNA-204 was inhibited by STAT3
under pathological conditions such as chronic hypoxia, but this inhibitory effect was reversed by
exosomes. On the other hand, the pro-proliferative miRNA-17 was induced by hypoxia, but inhibited
by exosomes [223]. Furthermore, the effect of exosomes on ischemic reperfusion injury (IR) in mice
was reported [224].
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13. Conclusions

Metabolic homeostasis emerges from the complex, multidirectional crosstalk between key
metabolic tissues including adipose tissues, liver, and skeletal muscle. The pathophysiological effects of
exosomes and their influence on target cells, depend on the condition in which they are released. In this
context, OSA is a highly prevalent disease that carries an independent risk of facilitating metabolic
diseases such as atherosclerosis and insulin resistance, ultimately leading to increased overall mortality.

Exosomes are multifunctional biological entities that are secreted from many mammalian cells
and underlie regulation of immune responses and transfer of bioactive molecules between cells.
Exosomes are implicated in a growing range of human diseases, including the spectrum of conditions
associated with obesity and the metabolic syndrome. In this setting, dysfunction of endothelial cells and
recruitment of infiltrating monocytes/macrophages orchestrate complex signaling and communication
in the initiation and development of atherosclerosis, and these processes are generally achieved by
direct cell-cell contact or transfer of secreted paracrine molecules. However, circulating exosomes
containing proteins and nucleic acids can interact with and modify local and distant cellular targets,
and as such modulate the initiation and progression of atherosclerosis. Similarly, exosomes from
multiple cellular and tissue sources, including macrophages, can foster the development of insulin
resistance and metabolic dysfunction, and are emerging as critical mediators of these morbidities in
the context of OSA.

Owing to their ubiquitous presence and stability in various human fluids, and because their
contents reflect the characteristics of the parent cell, circulating exosomes, and their constituent
miRNAs have been explored as a readily accessible source of novel diagnostic and prognostic
biomarkers in metabolic disease, as well as in the prediction of OSA morbid phenotypic expression.

Taking advantage of exosome properties and their ubiquity, bioengineered exosomes enriched
with miRNA, lipids, or drugs may be potentially used in therapy to accurately deliver desirable
information to a tissue or cell target. For example, exosomes can mediate the cross talk between adipose
tissues and macrophages that facilitates the deregulation of immune and metabolic homeostasis in
vWAT, raising the potential opportunity for exosome-based therapeutics in obesity, diabetes, or
in OSA-induced metabolic disease. The potential aspirations and ultimately impact of Precision
Medicine initiatives warrant a systematic undertaking to develop new methods to interrogate exosomes
populations across biological fluids and to foster their therapeutic potential.
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