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Abstract: Delivery of most drugs into the central nervous system (CNS) is restricted by the blood–
brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted
therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug
efficiency based on single measures for the rate or extent of brain penetration has led to the emergence
of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to
obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled
with ongoing development of suitable in vitro BBB models, this integrated approach promises to
reduce the incidence of costly late-stage failures in CNS drug development, and could help to
overcome some of the technical, economic and ethical issues associated with in vivo studies in animal
models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the
pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug
penetration into the brain. We also review different in vitro models with regard to their inherent
shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled
with short-lived radionuclides. In this regard, a special focus has been set on those systems that are
sufficiently well established to be used in laboratories without significant bioengineering expertise.

Keywords: BBB permeability; parallel artificial membrane permeability assay (PAMPA); immobilized
artificial membrane (IAM) chromatography; static BBB model; dynamic BBB model; microfluidic BBB
model; positron emission tomography (PET); neurotracer; monolayer; co-culture model

1. Introduction

To maintain normal brain homeostasis, the exchange of many substances between
blood and the central nervous system (CNS) is restricted by two dedicated biological
barriers, the blood–brain barrier (BBB) and the blood–cerebrospinal fluid (CSF) barrier
(BCSFB). The BBB is primarily formed by the endothelium that makes up the wall of
all brain capillaries, while the BCSFB is located at the level of the choroid plexus and is
formed by the tight epithelium lining the ventricles. With an estimated surface area of
10–20 m2 or 100–240 cm2/g brain in humans [1–6], the BBB is almost 5000-fold larger than
the BCSFB, which makes it the primary interface for exchange of compounds between
circulation and CNS [7]. Although it is crucial for import of nutrients and export of
metabolites from the CNS, the BBB also restricts delivery of most drugs to the brain [2] and
represents a significant bottleneck in the development of novel CNS-targeted therapeutics
or neurotracers for imaging techniques like positron emission tomography (PET). In vivo
studies in animal models can be used to assess drug penetration across the BBB, but they
are associated with a number of technical, economic and ethical issues, especially when
it comes to high-throughput evaluation of large compound libraries. As a consequence,
a number of in vitro approaches have been introduced to complement or replace in vivo
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studies for early estimation of brain penetration by candidate drugs. With regard to in vitro
models of the BBB, a number of excellent reviews have addressed the history, current
state and future directions of the field [8–13], but there is still uncertainty concerning their
actual value for the drug development process. For example, while estimates for the rate
of drug transport across the BBB derived from in vitro models have long been used to
identify promising candidates for development of CNS-targeted therapeutics, the rate
of BBB penetration per se is now recognized as a poor predictor for the effectiveness of
drugs that are dosed continuously [14,15]. On the other hand, in vitro approaches for
estimating the rate of BBB penetration can be very useful if the aim is to develop fast-acting
drugs like anticonvulsants or PET tracers labeled with short-lived radionuclides. Thus,
even successful CNS-targeted therapeutics with high brain penetration may be useless
for PET imaging if their transfer across the BBB is so slow that equilibration takes several
hours or days. Further complexity arises from the fact that the actual time required for
equilibration of a drug between blood and brain is not exclusively determined by the rate
of BBB penetration, and may also depend on factors such as non-specific drug binding to
brain tissue or the rate of drug delivery by cerebral blood flow (CBF). With this in mind,
the aim of the present article is two-fold: to review the pharmacokinetic parameters that
influence the rate or extent of drug penetration into the brain, and to provide an overview
of different models that can be used to study BBB penetration in vitro. To this end, Section 2
will briefly summarize current knowledge regarding BBB structure and function in vivo,
while Section 3 will describe how drug penetration into the brain can be quantified or
estimated based on a combination of in vivo, in situ and in vitro data. Finally, Section 4
will address the most common in vitro models of the BBB in terms of their advantages and
limitations. A list of all abbreviations used in the text as well as a summary of the most
important equations and parameters are provided in the Supplementary Materials.

2. Structure and Function of the BBB

The anatomical substrate of the BBB is a thin monolayer of brain microvascular en-
dothelial cells (BMECs) which form the wall of all brain capillaries and make intimate
contact with other cells of the neurovascular unit, most notably pericytes and astrocytes
(Figure 1). Pericytes are discontinuously distributed along the capillary walls and surround
the BMECs with an estimated coverage of ~30%, while the endfeet of astrocytes almost
completely envelope the abluminal side of the capillaries, with an estimated coverage of
99% [16]. Structural support and contact points for cell anchoring are provided by an inner
(vascular) and an outer (parenchymal) basement membrane (BM), which also serve as
another barrier for molecules and cells entering the CNS [17,18]. Both BMs are mainly
composed of extracellular matrix (ECM) proteins (collagen type IV, laminins, nidogen
and perlecan) that are either secreted by nearby BMECs and pericytes (vascular BM) or
by nearby astrocytes (parenchymal BM), respectively [17]. In contrast to most periph-
eral endothelial cells, BMECs lack fenestrations and show very low levels of non-specific
pinocytosis. In addition, they are closely joined together by adherens junctions (AJs), which
provide structural support; and tight junctions (TJs), which seal the intercellular cleft and
restrict paracellular permeability of the endothelium [6,19,20]. TJs are dynamic complexes
formed by interaction of integral transmembrane proteins (e.g., claudins, occludin, junc-
tional adhesion molecules) from adjacent BMECs, and are anchored to the actin cytoskele-
ton by membrane-associated cytoplasmic scaffolding proteins (mainly zonula occludens
proteins) (Figure 2) [6,21–23]. This results in a physical barrier with high transendothelial
electrical resistance (TEER) of >1000 Ω × cm2 and very low permeability to small polar
solutes like sucrose, as determined by in vivo measurements in anesthetized or conscious
rats [24–26]. The endothelium also acts as a transport and metabolic barrier, since BMECs
express various transporters and metabolic enzymes that can transform, import or export
compounds from the brain [6,7,27–29]. Most notably, multidrug resistance proteins (MRPs)
like P-glycoprotein (PGP/MDR1) or ATP-binding cassette (ABC) transporters present on
the luminal (i.e., blood-sided) membrane are responsible for efflux of many lipophilic
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xenobiotics and drugs from the CNS (Figure 2) [30,31]. In addition, BMECs are equipped
with several pathways for the import of nutrients and other compounds into the CNS [6].
This includes transport of glucose and amino acids by specific solute carriers in luminal and
abluminal (i.e., CNS-sided) membrane, of macromolecules like insulin and transferrin or
albumin by receptor- or adsorptive-mediated transcytosis [6,32,33], and of small lipophilic
molecules or gases like O2 by passive diffusion (Figure 2) [6]. The latter is usually regarded
as the most important pathway for penetration of small molecule-based drugs into the
CNS, although there is some evidence that the role of specific transporters may be more
significant than previously thought [34]. The exact tightness and transporter activity of
the BBB are highly dynamic and vary in response to local environmental and systemic
influences [35]. For example, interactions between TJs and AJs are thought to modify the
barrier properties through changes in paracellular permeability (via signaling pathways
from the cytoplasm to TJs) and BMEC transporter expression (via signaling pathways
from TJs to the cytoplasm) [21]. In addition, both pericytes and astrocytes have been
shown to regulate the phenotype of the endothelium through paracrine mechanisms and
possibly direct contact interactions [5,36,37]. Thus, astrocytes secrete a number of signal-
ing molecules like glia cell-derived neurotropic factor (GDNF), basic fibroblast growth
factor (bFGF) or transforming growth factor β (TGF-β), which have all been shown or
are thought to regulate the BBB by altering BMEC transporter expression [38–41] or the
paracellular tightness of the endothelium [42]. Soluble growth factors can also bind to
ECM proteins, which participate in their distribution, activation and presentation to cells or
directly transduce signals into the cytoplasm [43,44]. Another factor that alters the barrier
function and reduces permeability of the BBB through increased expression of transporters
and TJs in BMECs is the shear stress generated by CBF [45]. As described in Section 4, all
of these factors have important implications for the generation of reliable in vitro models
of the BBB.
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Figure 1. Anatomical structure of the blood–brain barrier (BBB). The wall of all brain capillaries is
formed by a thin monolayer of specialized brain microvascular endothelial cells joined together by
tight junctions, which act as a physical, transport and metabolic barrier. They are surrounded by a
vascular basement membrane (BM), pericytes, a parenchymal BM and astrocyte endfeet, all of which
directly or indirectly contribute to the barrier function of the BBB.
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Figure 2. Molecular structure and function of the brain microvascular endothelium. Structural support is provided by
adherens junctions (AJ), which are formed by interaction of vascular endothelial (VE)-cadherin from adjacent cells and
anchored to the actin cytoskeleton through catenins. The physical barrier function results from tight junctions (TJ), which
restrict paracellular permeability and are formed by interaction of claudins, occludin and junctional adhesion molecules like
JAM-1 from adjacent cells. Both claudins and occludin are anchored to the actin cytoskeleton through membrane-associated
zonula occludens (ZO) proteins. The transport barrier function results from export of lipophilic xenobiotics and drugs
(orange triangles) by efflux transporters (indicated in green) present in the luminal (i.e., blood-sided) membrane. Transfer of
nutrients and other compounds into the brain depends on their physicochemical and/or biological properties and can occur
through carrier-mediated import, receptor- or adsorptive-mediated transcytosis or passive diffusion. Finally, intracellular
metabolic enzymes (not shown) can metabolize compounds on their way into the brain, conferring the endothelium with an
additional, metabolic barrier function.

3. In Vivo and In Vitro Descriptors of Brain Penetration

Delivery of a given drug from blood to brain can be described in terms of its rate (i.e.,
the speed at which the drug enters the brain) and its extent (i.e., the amount of drug that
reaches the brain) [14], both of which differ in their determinants and implications for drug
development. Because they have often been used or interpreted incorrectly [14,15], a brief
recapitulation of how rate and extent of brain entry can be measured and related to each
other seems warranted. A simplified scheme of the relevant brain compartments and the
equilibria between them, blood and CSF is provided in Figure 3.

3.1. Extent of Brain Penetration

The extent of brain penetration by a given drug has traditionally been determined
by measuring the concentration of drug in brain tissue homogenate and plasma samples
obtained at different time points after administration in rodents. The concentration ratio of
drug in brain and blood can then be described by the partition coefficient Kp,brain

Kp,brain =
Ctot,brain

Ctot,plasma
(1)

where Ctot,brain and Ctot,plasma are the total drug concentrations at steady-state (after contin-
uous infusion) or areas under the concentration-time curves (after bolus injection) in brain
tissue homogenate and plasma, respectively. Provided that the drug can be radiolabeled
without altering its structure (i.e., 11C- or 18F-labeled isotopologes of the non-radioactive
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compounds), Kp,brain can also be determined from PET measurements, either by comparing
steady-state tracer concentrations in brain and plasma [46], or by compartmental model-
ing [47] or by model-independent graphical analysis [48,49]. Due to differences between
PET and standard pharmacokinetic nomenclature, the partition coefficient determined in
PET measurements is usually referred to as volume of distribution (VT) [50–52], which is
equivalent to Kp,brain and should not be confused with the unbound volume of distribution
of a drug determined in vitro in brain slices (Vu,brain), which will be described later in this
subsection.
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Figure 3. Overview of the equilibria involved in CNS penetration by drugs and their intra-brain distribution. The total
concentration of a drug in plasma (Ctot,plasma) is the sum of protein-bound and unbound drug species, of which only
the unbound fraction (fu,plasma) can penetrate the blood brain barrier (BBB) or blood cerebrospinal fluid barrier (BCSFB),
respectively. Drug transfer from blood to brain extracellular fluid (BECF) is usually driven by diffusional clearance (Clpassive)
and active uptake transporter clearance (Cluptake) of the drug across the BBB. Once it has entered the brain, the unbound
drug (middle) may bind to its target (if the target is extracellular), and/or nonspecifically bind to brain tissue (middle right)
and/or be cleared from BECF through various pathways. In particular, the unbound drug may be removed back to plasma
through diffusional clearance (Clpassive) and/or active efflux (Clefflux) across the BBB (bottom), it may be cleared due to bulk
flow of BECF (Clbulkflow) into CSF (left), and/or it may enter the brain intracellular fluid (BICF) due to uptake into cells (top).
Likewise, within BICF, the unbound drug (top middle) may bind to its target (if the target is intracellular), and/or it may
become bound to intracellular proteins (top right), and/or it may be cleared by metabolic enzymes (Clmetabolism) in the cells
(top left). Note that drug metabolism may also take place at the BBB or in BECF, which has been omitted for clarity. Because
the unbound drug fraction (fu,brain) is determined in homogenized tissue, it lumps together the unbound drug fractions in
BECF and BICF. In contrast, the unbound volume of drug distribution (Vu,brain) is determined by in vivo microdialysis or in
brain slices, so that it provides a measure for the unbound drug fraction in BECF.

Kp,brain has been widely used as a basis for in silico prediction of brain drug exposure,
usually in terms of its logarithm (logBB) [53]. However, since it is derived from the
measurement of total rather than unbound drug concentrations, Kp,brain lumps together
brain partitioning, non-specific binding of the drug to brain tissue, and protein binding
in plasma [14,15]. In addition, Kp,brain or logBB values can differ between CNS-active
drugs by a factor of up to at least 2000-fold [14], which limits their value for identification
of promising candidates. Because only the unbound drug can cross the BBB and exert
its physiological action, a much more useful measure for BBB partitioning and brain
penetration can be obtained by correcting for drug binding to proteins in plasma and
drug distribution in the brain. This is achieved by calculation of the unbound partition
coefficient Kp,uu,brain according to

Kp,uu,brain =
Kp,brain

fu,plasma ×Vu,brain
(2)
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where fu,plasma is the unbound drug fraction in plasma and Vu,brain (in mL/g brain) is the
unbound volume of distribution of the drug in brain. Vu,brain describes the relationship
between total drug concentration in brain and (unbound) drug concentration in brain
extracellular fluid (BECF) [14,54,55]. It can be determined from drug concentrations in
brain measured by in vivo microdialysis after administration in rodents according to

Vu,brain =
Atot,brain+blood −Vblood × Ctot,plasma

CBECF
(3)

where CBECF is the (by definition unbound) drug concentration in cerebral microdialysate,
Atot,brain+blood is the total amount of drug per g of brain tissue (including blood) determined
after the in vivo experiment, and Vblood is the volume of blood in the brain tissue [14,56].

However, due to several technical and methodological issues [57,58], the in vivo
approach is rarely used in the drug development setting, and Vu,brain is instead usually
determined by in vitro uptake studies in brain slices. These studies involve incubation of a
brain slice in buffer containing the drug and calculation of Vu,brain according to

Vu,brain =
Atot,slice

Cbu f f er
(4)

where Atot,slice is the total amount of drug per g of brain slice tissue measured after the incubation,
and Cbuffer is the (unbound) drug concentration in the incubation buffer [14,55,59,60]. Based on
the total volumes of BECF (~0.2 mL/g brain) and brain intracellular fluid (BICF~0.6 mL/g
brain), a Vu,brain in the order of 0.2 mL/g (~BECF) indicates that most of the drug is
unbound and present in BECF, while a value in the order of 0.8 mL/g (~BECF + BICF)
indicates that the drug distributes equally between BECF and BICF [61]. Values above
0.8 mL/g point to strong nonspecific binding of the drug to brain tissue and/or active
transport into brain cells with subsequent lysosomal trapping or sequestration into other
cell organelles [15,61].

A widely used alternative to Vu,brain is the unbound drug fraction (fu,brain), which
can be determined by equilibrium dialysis with brain tissue homogenate [60,62,63]. This
involves dilution of the brain homogenate in a buffer solution and equilibration with the
drug across a dialysis membrane, after which fu,brain can be calculated according to

fu,brain =
1/D[(

1
fu,dh

)
− 1
]
+ (1/D)

(5)

where fu,dh is the fraction of unbound drug in the diluted tissue homogenate and D is
the dilution factor. The resulting value of fu,brain can then be used to calculate Kp,uu,brain
according to the following equation

Kp,uu,brain = Kp,brain ×
fu,brain

fu,plasma
(6)

This approach has the advantage that fu,brain can be determined in a high-throughput
format and with the same equipment as that used for the determination of fu,plasma [64]. In
addition, because brain composition is highly conserved across species, fu,brain is essentially
species-independent [51,65]. On the other hand, the in vivo interpretation of Kp,uu,brain
with this method is complicated by the fact that homogenizing brain tissue destroys
most intratissue compartments, so that fu,brain does not take into account intracellular
drug distribution and mainly measures nonspecific binding [14]. As such, fu,brain only
corresponds to 1/Vu,brain if a drug shows roughly equal distribution between BECF and
BICF. One approach to overcome this limitation is based on the observation that the most
pronounced differences between fu,brain and 1/Vu,brain occur for basic compounds that
exhibit lysosomal trapping [66,67]. Provided that the pKa values of the drug and the pH
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values in the different compartments are known, the Henderson–Hasselbalch equation
can be used to correct for lysosomal trapping, in which case the fu,brain for a number of
basic compounds has been shown to be approximately equal to 1/Vu,brain within a two-fold
range [66,67].

3.2. Rate of Brain Penetration

Because the rate of drug transfer across the BBB cannot be easily distinguished from
its surface area, the BBB permeability for a given drug is instead typically described in
terms of a permeability surface area (PSin) product [68,69], which is measured in units of
flow (µL/min/g brain) [14,69]. PSin is equivalent to the net influx clearance (Clin), which
can in turn be regarded as the sum of diffusional clearance (Clpassive) and active uptake
transporter clearance (Cluptake) of drug across the BBB [70] (Figure 3). It is opposed by the
net efflux clearance (Clout), which is the sum of diffusional clearance (Clpassive) and efflux
transporter clearance (Clefflux) across the BBB, clearance due to drug metabolism at the BBB
or in the brain (Clmetabolism) and clearance due to bulk flow of BECF into CSF (Clbulkflow) [70].
The unbound partition coefficient for a given drug at steady-state is entirely determined by
the net influx and efflux clearances. If a constant drug concentration in blood is maintained
by, e.g., continuous infusion or repeated dosing until the drug has equilibrated across the
BBB, Clin and Clout can therefore be related to Kp,uu,brain as follows:

Kp,uu,brain =
Clin
Clout

=
Clpassive + Cluptake

CLpassive + Cle f f lux + Clmetabolism + Clbulk f low
(7)

It can be seen from Equation (7) that the extent of BBB penetration by a drug at
steady-state is dominated by active efflux if Kp,uu,brain < 1 (Clout > Clin), by active influx
if Kp,uu,brain > 1 (Clout < Clin), and by passive transport in both directions if Kp,uu,brain is
close to unity (Clout~Clin) [71–74]. Provided that active uptake (i.e., Cluptake), cerebral drug
metabolism (i.e., Clmetabolism) and drug clearance due to bulk flow of BECF (i.e., Clbulkflow)
are insignificant compared to passive diffusion (i.e., Cldiffusion), which is often the case for
CNS drugs, Equation (7) can be simplified to

Kp,uu,brain =
1

1 + Cle f f lux/Cldi f f usion
(8)

In this situation, a high diffusional permeability is desirable to offset the impact of
active efflux transport on Kp,uu,brain, as can be seen from the above equation.

There are a number of in vivo or in situ methods that can be used to obtain a measure
for the rate of drug transfer from blood to brain [25,48,52,54,57,58,75–80] or from brain to
blood [54,55,73,81–88] respectively (for reviews see [52,68,89,90]). For example, provided
that imaging is paralleled by measurement of radioactivity in plasma, PET measurements
and kinetic modeling allow for determination of the parameter K1 (in mL/min/cm3), which
corresponds to the rate constant for drug transfer from arterial plasma to the brain [52].
This parameter is similar to the unidirectional transfer constant Kin (in mL/min/g brain)
for the initial rate of brain entry, which relates the amount of drug in brain at a given time
point after in situ perfusion or in vivo administration in rodents to the amount of plasma
exposure up to this point and is calculated according to

Kin =
Atot,brain

Ctot,per f × T
=

Atot,brain

Ctot,plasma × fu,plasma
(9)

where Atot,brain is the total amount of drug per g of brain tissue (corrected for remaining
drug in the vasculature), Ctot,perf and T are the concentration of drug in the perfusate and
the net perfusion time (for in situ techniques), and Ctot,plasma and fu,plasma are the area under
the drug concentration-time curve and the unbound drug fraction in plasma (for in vivo
techniques) [61,68,91].
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PSin can be calculated from Kin or K1 based on the basic principles of the capillary
flow model using the Renkin–Crone equation [92,93]

PSin = −F× ln
(

1− Kin
F

)
= −F× ln

(
1− K1

F

)
(10)

where F is the rate of perfusion (for in situ techniques) or CBF (for in vivo techniques) [61,91].
For most CNS drugs, F is much larger than PSin (F > 5 × PSin), so that CBF is not rate-
limiting and Kin or K1 equal PSin with less than 10% error. If PSin is much larger than F
(PSin > 2.3 × F) on the other hand, CBF becomes rate-limiting for drug delivery into the
brain and Kin or K1 equal F with less than 10% error [91].

Provided that CBF is not rate-limiting, PSin gives a measure for the initial rate of drug
transfer across the BBB, but the actual time required for full equilibration of various drugs
between blood and brain has been shown to also depend on their tendency for non-specific
binding to brain tissue [15,51,63,94]. Based on experimental data and pharmacokinetic
modeling, the time to achieve brain equilibrium has therefore been described in terms of
an intrinsic brain equilibrium half-time t1/2eq,in

t1/2eq,in =
ln2×Vb

PSin × fu,brain
(11)

where Vb is the physiological volume of brain tissue [94]. Since Vb is a constant, Equation (11)
indicates that not the rate of BBB penetration per se but rather the product of PSin and
fu,brain for a compound determines the time to reach brain equilibrium, which is supported
by a number of theoretical calculations and experimental findings [63,72,94,95]. Thus, as
described in more detail elsewhere [72,94], lipophilic compounds often show high rates of
passive transfer across the BBB but also a high degree of non-specific binding, so that their
t1/2eq,in may be very similar to that of less lipophilic compounds with low rates of passive
transfer and a low degree of non-specific binding.

An alternative, minimally invasive method for in vivo assessment of BBB permeabil-
ity in animal models is based on laser-scanning multiphoton fluorescence microscopy of
the cerebral microcirculation through a thinned section of the skull bone [96–98]. This
approach involves infusion of fluorescent solutes into the cerebral circulation and simul-
taneous collection of temporal images to quantify their rate of tissue accumulation and
radial concentration gradient around individual microvessels [96]. Using a suitable math-
ematical model and taking into account the influence of solvent drag and other factors,
these parameters can be used to directly derive the apparent in vivo permeability P (in
cm/s) for transfer of the test compound from vessel lumen to brain as well as its effective
diffusion coefficient Deff (in cm2/s) in brain tissue [96,99]. Another distinct advantage of
this technique over most alternative approaches is that it provides subcellular level details
and allows for in vivo studies on region-specific differences in BBB permeability under
physiological conditions, which are likely to exist but still poorly characterized [100].

Nevertheless, due to the time-intensive and costly nature of in vivo or in situ methods
for determination of P or PSin, BBB penetration rates of candidate drugs are much more
frequently measured in in vitro models of the BBB [90]. To this end, the drug of interest is
added to one of two compartments separated by the model BBB on a special membrane
(for details see Section 4), its concentration in both compartments is repeatedly measured
over time and used to calculate the incremental clearance volume ∆VCL for each time point
according to

∆VCL =
Creceiver ×Vreceiver

Cdonor
(12)

where Cdonor is the concentration in the compartment to which the drug has been added
while Creceiver and Vreceiver are the concentration in and volume of the compartment into
which the drug is cleared respectively. Provided that drug concentrations in the receiver
compartment remain small and ∆VCL increases in a linear fashion, the slope of the line
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obtained by plotting ∆VCL as a function of time provides a measure of the total PS product
PSt (in µL/min) for unidirectional transfer across the model system (i.e., endothelium
and cell-free membrane). It can be converted to the PS product PSe (also in µL/min) for
unidirectional transfer across the endothelium according to

1
PSe

=
1

PSt
− 1

PSm
(13)

where PSm (in µL/min) is the PS product for transfer across the cell-free membrane that
separates the two compartments. Finally, PSe can be converted to the in vitro permeability
coefficient Pe (in cm/min) according to

Pe =
PSe

S
(14)

where S is the known exchange surface area of the model BBB (in cm2).
Alternatively, an apparent in vitro permeability coefficient Papp (in cm/s) is often

calculated according to

Papp =
J

Cdonor(o) × S
(15)

where J is the rate of appearance of the drug in the receiver compartment (in s−1) and
Cdonor(0) is the drug concentration in the donor compartment at the start of the experiment
(in mL−1). Because Papp reflects the combined permeability across the endothelium and the
cell-free membrane, it is related to Pe according to

1
Papp

=
1
Pe
− 1

Pm
(16)

where Pm is the permeability coefficient across the cell-free membrane.
Finally, because in vitro models allow for measurement of BBB transfer into both

directions, they can also be used to determine a bi-directional efflux ratio (ER) according to

ER =
Pe(AL)

Pe(LA)
=

Papp(AL)

Papp(LA)
(17)

where Pe(AL) and Papp(AL) are the permeability coefficient and apparent permeability coef-
ficient for unidirectional transfer from abluminal to luminal compartment (i.e., “brain to
blood”) and Pe(LA) and Papp(LA) are the permeability coefficient and apparent permeability
coefficient for unidirectional transfer from luminal to abluminal compartment (i.e., “blood
to brain”), respectively (unless stated otherwise, the terms Pe and Papp in the rest of this arti-
cle will refer to Pe(LA) and Papp(LA)). For a perfect in vitro model that accurately reproduces
all passive and active transport properties of the BBB in vivo and also takes into account
metabolism and elimination via BECF bulk flow, ER should correspond to 1/Kp,uu,brain.
However, as described in the following sections, such models do neither exist, nor are they
likely to become available in the near future, so that reliable prediction of Kp,uu,brain from
in vitro determined efflux ratios is not feasible.

3.3. Implications for CNS Drug and Neurotracer Development

Taken together, the extent of drug entry into the brain can be affected by drug binding
to plasma proteins, by the distribution of the drug in the brain, by passive and active
transport processes at the BBB and by clearance of the drug via metabolism or bulk flow of
BECF into CSF (Figure 3). In contrast, the rate of brain entry is either determined by the rate
of BBB penetration (i.e., the sum of passive drug diffusion and active drug uptake across
the BBB) or by drug delivery via CBF, with the slower process being rate limiting. Finally,
the time required for complete drug equilibration between blood and brain depends not
only on the rate of brain entry, but also on the degree of non-specific drug binding to brain
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tissue. As such, a comprehensive description of drug delivery to and distribution within
the brain requires knowledge of at least three parameters, namely, Kp,uu,brain, PSin, Vu,brain
and/or fu,brain.

With regard to drugs that are dosed continuously, the extent of brain penetration (i.e.,
Kp,uu,brain) is now generally regarded as the most important parameter for identification of
successful CNS-targeted therapeutics, while PSin seems to be much less important and can
differ between CNS-active drugs by a factor of up to at least 20,000-fold [14]. This range is
several orders of magnitude larger than that for Kp,uu,brain, which only differs by a factor
of up to 150-fold [14], making it a much better descriptor of drug delivery to the brain.
Preferably, the Kp,uu,brain for a CNS-targeted drug should be close to unity, since plasma
and brain concentration-time profiles for such compounds tend to run in parallel and
unbound brain concentrations are equal to the product of fu,plasma and Kp,uu,brain. Likewise,
compounds with ER values below 2.5–3.0 and ideally around unity are generally regarded
as promising candidates for further evaluation [61,101–103]. However, one should keep in
mind that ER values are derived from in vitro models, which are still most frequently based
on non-BBB cells transfected with the major efflux transporter MDR1 (see Section 4.2.1).
As even more complex in vitro models invariably fail to reproduce all transport properties
of the BBB in vivo (see Section 4), ER values can at best provide an upper limit for the
true value of 1/Kp,uu,brain. Thus, while a high ER points to active efflux of drug across
the BBB, which will most likely also reduce brain penetration in vivo, a low ER may
simply reflect the fact that the BBB model used lacks the relevant efflux transporter. As
such, current in vitro models have limited value for predicting the actual extent of brain
penetration in vivo, but they can facilitate early identification of substrates for important
efflux transporters, at least if these transporters are expressed in the particular model
system used [61,89,102].

The distribution of drug in brain is best described by Vu,brain, which should be in
the order of 0.2 mL/g if the drug target is accessible from BECF, or not much larger than
0.8 mL/g if the drug target is accessible from BICF [15]. If the aim is to develop fast-
acting CNS drugs or neurotracers labeled with short-lived radionuclides, the rate of brain
entry becomes important as well. Since determination of in vivo or in situ PSin values is
time-intensive and costly, BBB permeability measurements are often performed in vitro.
Provided that CBF is not rate-limiting for drug delivery and active uptake of drug into the
brain can be neglected, the initial rate of brain penetration should be entirely determined
by passive diffusion across the BBB. In this case, permeability estimates obtained in in vitro
BBB models with adequate physical barrier properties should be much less prone to error
than ER values, even if the model used fails to reproduce all active transport processes
of the BBB in vivo. If active drug transport from blood to brain cannot be excluded,
in vitro permeabilities should still provide a lower limit that, at the worst, underestimates
the true rate of BBB penetration in vivo. In general, compounds exhibiting in vitro Papp
values of at least 0.5–1.0 × 10−5 cm/s (again most commonly measured using models
based on non-BBB cells transfected with the efflux transporter MDR1, see Section 4.2.1)
are regarded as promising candidates for fast acting drugs or neurotracers [61,101–103].
However, because the time to brain equilibration as well as the usefulness of a compound
for PET imaging are also determined by non-specific brain tissue binding, fu,brain for a
fast-acting CNS drug or neurotracer should be sufficiently high (>0.05 and preferably
>0.15) as well, while Vu,brain should not exceed 0.2–0.8 mL/g (depending on the drug
target as described above), in which case, even compounds with a low BBB permeability
can be useful candidates. With regard to receptor-targeted neurotracers, the maximum
concentration of binding sites (Bmax) in the brain and tracer affinity for these sites (Kd),
which can be determined by saturation binding assays or in vitro autoradiography studies,
are additional design criteria, since imaging of targets with a low Bmax requires ligands with
a higher affinity (i.e., lower Kd) [103]. In general, the ratio of these parameters (Bmax/Kd) for
successful neurotracers should be≥10, which means that ligands with sufficient affinity for
a target with low expression level (Bmax < 1 nM) can be challenging to identify, because they
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should also be selective for the target (preferably >30–100×) and comply with the other
criteria for fast-acting drugs [103,104]. Likewise, receptor-targeted neurotracers should
either be metabolically stable or their metabolism should be confined to the periphery and
any radiometabolites formed should be unable to cross the BBB, as separation of brain
radioactivity arising from a parent compound and its metabolites is usually very difficult if
not impossible to achieve [105].

Finally, in closing this section, it should be noted that a number of (experimentally
determined or more commonly calculated) physicochemical properties have been shown
or are thought to correlate with BBB permeability and/or the non-specific binding behavior
of CNS drugs, so that they are frequently used for a first in silico ranking of candidate
compounds, especially if pre-existing in vitro or in vivo data is lacking [53,106]. These
properties most commonly comprise the logarithm of the calculated or measured partition
coefficient between octan-1-ol and water (clogP or logP), the logarithm of the calculated or
measured distribution coefficient between octan-1-ol and a buffer—usually, 0.1 M sodium
phosphate buffer—at pH 7.4 (clogD or logD), the molecular weight (MW), the topolog-
ical polar surface area (TPSA), the ionization constant of the most basic center (pKa),
and the number of hydrogen bond donor atoms (HBD). As described in more detail else-
where [103,107,108], multi-parameter optimization (MPO) approaches can be used to obtain
a single weighted score (CNS MPO or CNS PET MPO score) that incorporates all of these
physicochemical properties. If compared to predictions based on individual parameter
values, CNS MPO scores ≥ 4.0 or CNS PET MPO scores ≥ 3.0 have been demonstrated
to increase the probability of identifying compounds that combine suitable values of Papp,
ER and fu,brain and to provide improved differentiation between successful and failed CNS
drugs or neurotracers, respectively [103,106–109].

In addition, some groups have employed empirical in silico models based on large
compound libraries for early estimation of Papp, ER and fu,brain during ligand design and
lead prioritization [103,109,110]. The reliability of such estimates will obviously depend on
the structural similarity between a candidate drug or neurotracer and compounds included
in the training data for the model. Especially if experimental values for a sufficient number
of compounds from the same chemical series are available, it may therefore be worthwhile
to use them as a basis for model-based in silico lead prioritization during the development
of novel CNS therapeutics or neurotracers.

4. In Vitro Models of the BBB

Since the first isolation of brain capillaries in the early 1970s, a number of in vitro BBB
models with variable complexity have been developed. Not least due to the highly dynamic
nature of the BBB, which is still incompletely understood, none of these models exactly
mimics the in vivo conditions, and all of them suffer from certain limitations and drawbacks.
As such, the choice of a model should be closely matched to the exact requirements of a
given study and any findings should be interpreted in view of these limitations. In general,
because current in vitro models invariably overestimate the permeability of the BBB in vivo,
they seem to be most useful for early identification of poorly BBB penetrating compounds
and (for models that incorporate efflux transporters like PGP/MDR1) compounds that are
likely to be subject to active efflux. The following sections will provide an overview of the
advantages and limitations of the most commonly used BBB models, which can be roughly
classified into cell-free, cell-based static and cell-based dynamic approaches.

4.1. Cell-Free Model Systems

A frequently used cell-free approach to evaluate the passive diffusion properties of
CNS-targeted drugs in the pharmaceutical industry is the parallel artificial membrane
permeability assay (PAMPA), which was originally developed to predict drug uptake in
the gastrointestinal tract [111]. For this technique, a filter-supported artificial membrane
that can be composed of a variety of phospholipid mixtures is used to separate two buffer-
containing compartments, the drug is dissolved into one of the compartments and then
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allowed to permeate through the artificial membrane. PAMPA models based either on
porcine brain lipid extract dissolved in n-dodecane (PAMPA-BBB) or on black lipid mem-
branes (PAMPA-BLM) have been shown to appropriately identify a number of structurally
diverse drugs as either BBB permeable or non-permeable [112–116]. Importantly, many of
these drugs have also been shown to be roughly 1–2 orders of magnitude less permeable in
PAMPA models with phospholipid mixtures that match the composition of human BMEC
membranes, suggesting that species-specific lipid models are preferable for passive perme-
ability assays [117]. Major advantages of PAMPA-based models are their very low cost and
technical simplicity, a high degree of reproducibility and the fact that they can be performed
in multi-well plates and used for high-throughput screenings [111,112]. The most obvious
disadvantage is a complete lack of BBB-specific transporters, so that these models are only
useful to evaluate the passive permeation properties of CNS-targeted drugs.

Another cell-free approach for rapid assessment of passive permeation properties is
immobilized artificial membrane (IAM) chromatography, which involves covalent bonding
of synthetic lipid analogs to the surface of silica particles, which are then used as packing
material for a high-performance liquid chromatography (HPLC) column [118–120]. The
idea behind this technique is that drug permeation across the cell membrane is limited by
the drugs ability to partition into the lipid domain. Because drugs which interact with the
lipid phase have longer retention in the IAM column, large capacity factors are regarded as
an index for good permeability across lipid bilayers. Although the retention times obtained
by IAM chromatography do not reflect actual drug passage across a membrane, they have
been shown to generate reasonable predictions of passive membrane permeability [121,122].
The advantages and disadvantages of IAM chromatography are similar to those of PAMPA-
based approaches: the technique is rapid, cost efficient and technically simple but only
provides information about passive transport processes.

4.2. Cell-Based Static Models

Owing to their relatively low cost and technical simplicity, static BBB models that
do not imitate the shear stress generated by CBF remain the most widely used cell-based
systems. For these models, a monolayer of cells is grown on the upper side of a microporous
(0.2–0.4 µm pore size) semipermeable membrane-based cell culture (Transwell®) insert
that allows exchange of small molecules but prevents cell migration. The insert mimics
the blood (luminal) side of the BBB and is placed into a cell culture well that mimics the
parenchymal (abluminal) side (Figure 4A). Monolayer tightness can be quantified in terms
of the TEER and/or the permeability to different paracellular permeability markers, which
are small polar molecules that lack measurable active transport and typically comprise
(radiolabeled) sugars like sucrose (MW 342, r 4.6 Å) or mannitol (MW 182, r 3.6 Å), and
fluorescent dyes like sodium fluorescein (MW 376, r 4.5 Å) or Lucifer Yellow (MW 443,
r 4.2 Å) [10]. Although TEERs can be affected by a number of factors and direct comparison
between different studies is difficult (for reviews see [123,124]), a value of 150–200 Ω × cm2

is generally regarded as the lower limit for useful in vitro models [125]. Likewise, in vitro
permeability for the small polar tracer molecules described above should be within a factor
of 100 of the in vivo range, which does not usually exceed values corresponding to a Papp
of roughly 1.4 × 10−7 cm/s [24–26]. While these parameters provide a measure for the
physical barrier properties of a model, assessment of its ability to reproduce active transport
processes of the BBB in vivo requires detailed analysis of transporter expression levels and
is highly dependent on the drugs of interest. Due to a lack of standardization with regard
to cell isolation and culture conditions, transporter expression levels may significantly
vary between studies, even if the same model system and cell types are used. For this
reason, they will not be covered in detail in the present article, which will instead provide a
general overview of the different cell-based BBB models. As described below, static models
range from simple approaches based on genetically-modified epithelial cell lines for use in
high-throughput screenings to more elaborate co-culture systems that incorporate multiple,
CNS-derived primary or immortalized cell types to more closely recapitulate the unique
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barrier properties of the BBB in vivo. Another potential source of BMECs and other CNS
cells for use in in vitro BBB models that has been reviewed in detail elsewhere are human
pluripotent stem-cells [126–130].
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Figure 4. Static in vitro models of the blood-brain-barrier (BBB). (A) Simple static models are typically
either based non-BBB epithelial cell lines (ECLs) that may be transfected with BBB-specific efflux
transporters or on primary/immortalized brain microvascular endothelial cells (BMECs). The cells
are grown as a monolayer on microporous, semipermeable membrane-based cell culture inserts that
separate a cell culture well into luminal and abluminal compartment for permeability assays. (B) For
static non-contact co-culture models, astrocytes or, less frequently, pericytes are grown on the bottom
of the cell culture well to allow for indirect cell-to-cell communication with the BMECs via secreted
soluble factors. (C) Static contact co-culture models are similar to non-contact models, except that the
second cell type is grown on the underside of the cell culture insert and thus in close proximity of
the BMECs. (D) For static triple co-culture models, pericytes are grown on the underside of the cell
culture insert while astrocytes are grown on the bottom of the culture well in order to more closely
resemble the multicellular nature of the BBB in vivo.

4.2.1. Monolayer Models Based on Non-BBB Cells

In their simplest form, static monolayer BBB models may be based on an immortalized
epithelial cell line overexpressing one or more of the transporters found in BMECs. For
example, one of the first and most widely used models for high-throughput ranking of
BBB permeability in the pharmaceutical industry is based on the Madin–Darby Canine
Kidney (MDCK) cell line [63,102,131], which was originally derived from the kidney of
an adult female cocker spaniel. Especially if transfected with MDR1, an efflux pump
known to be highly active at the BBB in vivo [63], MDCK cells form a tight monolayer with
permeability values for various compounds that are in reasonable agreement with in vivo
brain permeation, even though TEERs do not usually exceed 200–300 Ω × cm2 (Table 1). In
addition, assays with MDCK cells can be easily automated and used for rapid generation
of permeability data for a large number of compounds.

Another widely used cell line is Caco-2, an intestinal epithelial cell line derived
from a human colon adenocarcinoma. Although primarily used for the prediction of
small intestine drug absorption [132], Caco-2 cells have been shown to give acceptable
predictions of BBB penetration for passive diffusion compounds [9,133] and, if treated
with vinblastine, to increase MDR1 expression (VB-Caco-2 [134]), also for ligands of this
efflux transporter [133]. In most studies with Caco-2 cells, TEERs were in the order of
250–500 Ω × cm2, but values as low as 86 Ω × cm2 and as high as 800 Ω × cm2 have
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been reported as well (Figure 5, Table 1), possibly reflecting differences in measurement
technique, passage number, culture conditions and/or other factors. Likewise, Papp values
for penetration of small polar solutes (usually mannitol) through Caco-2 monolayers
obtained in different laboratories cover a relatively broad range (Table 1), complicating
strict comparisons between studies.

Table 1. Range of reported TEERs and paracellular permeabilities of different in vitro BBB models.

Cell Type and Culture
Conditions a

TEER
(Ω × cm2)

Paracellular Permeability b
ReferencesPe (×10−3 cm/min) Papp (×10−6 cm/s)

Non-BBB cells
MDCK cells 72–300 - 1–3 [135–137]
Caco-2 cells 86–854 - 0.18–22.1 [137–159]

Human hCMEC/D3 cells
Monoculture 2–100 1.3–1.6 9.3–22 [137,151,160–171]

Double co-culture 20–140 - 7 [165,167,172,173]
Triple co-culture 40 - - [174]

Dynamic co-culture 1000 - - [172]
Microfluidic system 30–1200 - 1.6 [151,164,175]

Rat RBE4 cells - - -
Monoculture 64–120 0.5–2.5 27–214 [137,176–180]

Double co-culture 200–510 0.2–1.5 - [174,177,180]
Triple co-culture 300 0.2–1.5 - [177]

Mouse bEnd.3 cells
Monoculture 25–105 - - [181–186]

Double co-culture 20–130 - 16–23 [181,182,187,188]
Dynamic co-culture 250–300 - - [181,187]
Microfluidic system 1000 - - [189]

Rodent primary cells
Monoculture 10–200 0.7 8–19 [151,190–201]

Double co-culture 20–780 0.3–0.4 2–9 [190–196,198,199,202–207]
Triple co-culture 170–400 0.03 0.8–6 [151,194,196,198,208–211]

Microfluidic system 600–1300 - 1.15 [151,192]
Porcine primary cells

Monoculture 400–800 - 0.6–8 [212–214]
Double co-culture 700–1200 - 0.2–0.3 [191,212]

Bovine primary cells
Monoculture 60–800 1.9 6-11 [215–221]

Double co-culture 130–2500 0.5–0.7 1–6 [215,218,220,222–228]
Triple co-culture - 0.3–0.5 - [229]

a in order to facilitate comparison between the different culture conditions, articles using medium supplemented with hydrocortisone
have not been included owing to its strong effect on TEERs/permeabilities; b permeabilities for commonly used paracellular permeability
markers (sucrose, mannitol, sodium salt of fluorescein and/or Lucifer Yellow).

Given the structural and functional differences between epithelial and endothelial
cells and the complete lack of a BBB microenvironment however, it is evident that models
based on non-BBB cells have little value for accurate prediction of in vivo net transport
rates into the CNS. Nevertheless, they represent very attractive systems for a first, rapid
and cost-efficient ranking of large compound libraries with regard to passive diffusion
properties (and MDR1-mediated efflux), not least because their tightness is usually superior
if compared to simple monolayer models based on primary or immortalized BMECs
(Figure 5, see also Section 4.2.2). As described in the following subsections, subsequent
validation of promising compounds in co-culture models based on BMECs is still advisable,
since these models typically outperform non-BBB cell-based models for several reasons.
Since even the most complex models currently available invariably fail to accurately
reproduce all active transport processes at the BBB in vivo, compounds with promising
diffusion properties may be further evaluated using cells expressing particular transporters
or any other suitable assay for identification of efflux transporter substrates.
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hydrocortisone to increase TEERs have been excluded to facilitate comparison between the different species/cell types.

4.2.2. Monolayer Models Based on BMECs

To more closely recapitulate the unique barrier properties of the BBB, a number of studies
have used monolayer models based on primary or low passage number BMECs obtained from
mouse [199–201,205], rat [190,194–198], porcine [212–214] or bovine [215–220,223,230–232]
brain. Due to the restricted availability of human material for cell isolation, only a few studies
have been performed with primary BMECs of human origin [216,233–235].

Regardless of the exact species used, a major disadvantage of primary cells that has
prevented their routine application in the drug development setting is that isolation of
BMECs is technically challenging and associated with a high risk for contamination by
mural cells [10,236]. In addition, BMECs account for only 0.1% (v/v) of the brain, so that a
large number of animals may be required to obtain a sufficient number of cells, especially in
the case of rodent studies [130]. The latter can be partly overcome by the use of BMECs from
larger species, which has the added advantage that TEERs are usually higher (Figure 5)
but precludes the use of genetically modified animals. Finally, primary BMECs may show
considerable batch to batch variations [9,224] and can only be cultured for a limited time,
during which the lack of in vivo environmental cues may result in uncontrolled changes of
transporter expression and/or tightness of the endothelium. Thus, while the expression
pattern of freshly isolated primary cells typically closely matches the unique phenotype
of BMECs in vivo, this conformity quickly diminishes over time in culture [9,237]. As
such, considerable research efforts have been devoted to the establishment of suitable
immortalized BMEC cell lines, which are often more stable in their endothelial traits and
could significantly reduce the cost and technical expertise required to establish in vitro BBB
models [237,238].

At present, at least 36 different immortalized BMEC lines have been described and used
for in vitro BBB models (reviewed in [238]), with the most common ones being the human
hCMEC/D3, the rat RBE4 and the mouse bEnd.3 cell line. The latter three cell lines are
relatively well characterized and have been shown to retain important BBB characteristics,
such as the expression of TJs and certain efflux transporters [161,176,182,238–241].

However, as illustrated in Figure 5 and Table 1, TEER values for static monolayer
models with immortalized BMEC lines are usually much lower than those obtained
with epithelial cell lines, while the permeability for common tracer molecules is often
higher [172,176,182,238,242,243]. This may in part reflect the lack of input from other CNS
cell types, since monolayer models based on primary BMECs from the same species typ-
ically show similar TEERs (Figure 5) and apparent permeabilities (Table 1). In general,
somewhat higher TEERs can be achieved in models based on primary porcine or bovine
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BMECs, which has been proposed to reflect differences in cell size and/or the complexity
of TJ organization [191]. Another potential explanation is that contamination by mural
cells, which can adversely affect monolayer tightness, is simply more difficult to avoid
when BMECs are isolated from a small species like mouse or rat. Interestingly however,
a similar variation between species has not always been observed with regard to Papp
values for permeability markers like mannitol, suggesting that differences in TEER may
not necessarily translate to differences in permeability of the endothelial monolayers [191].

Approaches to overcome the limitations of monolayer models with a single cell type
include the use of serum-free, astrocyte-conditioned medium, addition of BBB modulating
compounds like glucocorticoids and coating of the culture surfaces with ECM compo-
nents like collagen or laminin to obtain tighter endothelial phenotypes [213,216,244,245].
These techniques may partly substitute for the lack of cell-to-cell communication, and
especially the addition of compounds like hydrocortisone has in some cases been reported
to result in TEERs as high as 600–1000 Ω × cm2 and sucrose permeabilities as low as
3 × 10−7 cm/s [216,245]. However, the absence of other CNS cell types can also adversely
affect the performance of monolayer cultures through factors that depend on physicochem-
ical properties of the tested drugs. This has recently been illustrated by comparison of the
in vitro permeabilities of 27 marketed CNS drugs, as determined in a bovine monolayer
model, with the corresponding permeabilities determined in vivo [246]. While there was a
strong correlation for hydrophilic compounds with low brain tissue binding, the correla-
tion for lipophilic compounds with high brain tissue binding was poor [246]. Co-culture
with glial cells to mimic brain tissue and incorporation of binding to these cells in the
in vitro calculations on the other hand resulted in a strong correlation between in vitro and
in vivo permeabilities for the whole set of compounds [246]. These results are in line with
previous findings that the time to brain equilibration by lipophilic drugs can be strongly
affected by their ability to bind to brain tissue [51,63,72,94,95]. Monolayer models based
on BMECs as the only cell type may therefore be of limited value for prediction of in vivo
BBB penetration by lipophilic compounds, which represent the majority of CNS-penetrant
drugs. Better results may be obtained with systems that are based on co-culture of BMECs
with other CNS cells, as described in the next section.

4.2.3. Co-Culture Models Based on BMECs

Based on recognition that other CNS cell types are critically involved in the mainte-
nance and regulation of BBB function in vivo [5,36,42,199,244,247], a number of co-culture
BBB models have been established. They can be roughly classified into (i) non-contact
double co-culture models, where another type of CNS cells (astrocytes or less frequently
pericytes) is grown on the bottom of the culture well (Figure 4B) [190,193,194,212,248–251],
(ii) contact double co-culture models, where the other type of CNS cells is grown on the
underside of the insert (Figure 4C) [193,194,212,218,220,251], and (iii) triple co-culture
models, where pericytes are grown on the underside of the insert and astrocytes are grown
on the bottom of the culture well (Figure 4D) [173,194,196,229,252].

While the cost and technical expertise required for double or triple co-culture models
are higher than for the simpler monolayer approach, the ability for indirect cell-to-cell
communication via secreted soluble factors has been shown to promote an endothelial
phenotype that much more closely resembles the BBB in vivo, primarily by inducing cell
polarity in BMECs and increasing the expression of transporters and TJs [194,196]. Thus,
TEERs achieved with double or triple co-culture models based on primary cells can be as
high as 780 Ω × cm2 for rodent BMECs (Figure 6, Table 1) or 2500 Ω × cm2 for BMECs from
larger species respectively (Table 1). Likewise, the permeability towards common paracel-
lular permeability markers has been shown to be reduced if compared to simple monolayer
models (Table 1). In addition, comparison of in vitro data for a number of compounds
obtained in different co-culture models with in vivo data obtained using PET imaging
revealed good to excellent correlations, while there was no correlation of the in vivo results
with in vitro data obtained using Caco-2 cells or with various physicochemical properties
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(for details see Table A1 in Appendix A) [253–255]. Finally, routine application of these
models is facilitated by the commercial availability of ready-to-use solutions like the BBB
Kit™ triple co-culture system [256], which offers the choice between primary cells from
a range of species. As such, they represent useful systems for small- to moderate-scale
studies on BBB penetration that are much less cost- and labor-intensive than most of the
dynamic BBB models described in the following subsections. Even though the true rate of
brain entry may still be overestimated by these models, they could facilitate early detection
of slowly penetrating compounds that are unlikely to be useful as fast-acting drugs or
imaging probes.
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Figure 6. Effect of culture conditions on reported TEER values for static BBB models based on rat
primary cells. Shown are individual values taken from the literature (open circles, for references
see Table 1) and boxplots constructed from the median value, upper and lower quartiles (box) and
minimum and maximum values (whiskers). As described in more detail in the main text, TEER
values reported for non-contact co-cultures of rat brain microvascular endothelial cell (BMECs)
with astrocytes or pericytes are usually about two-fold higher than the corresponding values for
monolayer cultures of BMECs grown in the absence of other BBB cells. Even higher TEERs may be
achieved by contact co-culture with either astrocytes or pericytes or by co-culture of all three cell
types. Note that data from publications using hydrocortisone to increase TEERs have been excluded
to facilitate comparison between the different culture conditions.

4.3. Cell-Based Dynamic Models

Dynamic BBB models derive their name from the fact that they incorporate shear stress
to simulate the effects of CBF, which further improves barrier function, reduces permeability
and results in an endothelium that more closely resembles the in vivo properties of the BBB.
As described in the following subsections, these models can be further separated into the
cone-plate BBB apparatus, conventional dynamic and microfluidic-based dynamic models.

4.3.1. The Cone-Plate BBB Apparatus

One early approach that can be used to simulate the effects of CBF in models based
on monolayer cultures of BMECs involves application of the cone-plate BBB apparatus,
a device with a rotating cone used to produce shear forces that reach the endothelial
cells through the medium (Figure 7) [257,258]. The level of shear stress thus produced is
determined by cone angle and angular velocity, while its nature (i.e., laminar or pulsatile)
depends on the exact mode of operation. However, this approach has limited reliability
and is not widely used for BBB studies, since the resulting shear stress is not uniformly
dispersed along the radius of the monolayer and differs markedly from the shear stress
produced by CBF in vivo [8,259].
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Figure 7. The cone–plate blood–brain barrier (BBB) apparatus. As a simple approach to simulate
the effects of cerebral blood flow in static monolayer models, the cone-plate BBB apparatus uses a
rotating cone to produce shear forces that reach the endothelial cells through the culture medium.
This technique has limited reliability and is not widely used for BBB studies.

4.3.2. Dynamic in Vitro (DIV) Models

Most dynamic in vitro (DIV) BBB models are instead based on co-culture of BMCEs
and astrocytes in the inner (luminal) and outer (abluminal) sides of microporous hollow
fibers (Figure 8), which may optionally feature transmural microholes for transmigration
or trafficking studies [172,181,187,260–262]. To simulate CBF, a variable-speed pulsatile
pump connected to the system by gas-permeable tubing (for exchange of O2 and CO2) is
used to push the culture medium through the hollow fibers, which results in intraluminal
pressures and shear stress very similar to those under physiological conditions. Due to
their experimental nature and limited commercial availability (however, see [263]), the
number of studies performed with these systems is still small when compared to static
BBB models (Table 1). The potential importance of shear stress for accurate reproduction of
the in vivo properties of the BBB is illustrated by the fact that co-culture of hCMEC/D3
cells with astrocytes in a dynamic model gave TEERs in the order of 1000 Ω × cm2, while
the TEERs obtained by co-culture of the same cells in a static system only amounted to
70 Ω × cm2 [172]. Nevertheless, the requirement for a much larger number of cells (>1016)
when compared to static co-culture models and the elaborate setup required for these
models render their application for high-throughput screening unfeasible. In addition,
the time required for steady-state TEERs to be reached (9–12 days) [172,181,187,260–262]
is usually longer than that for static monolayer models (3–4 days) [190,194–201,205]. As
briefly described in the following subsection, the development of microfluidic-based
systems that also produce shear stress to simulate the effects of CBF and are suitable for
high-throughput screens could represent an important step towards the more widespread
use of dynamic BBB models for drug development purposes.
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4.3.3. Microfluidic-Based Dynamic Models

Microfluidic-based BBB models are similar to DIV BBB models in that they simulate
the shear forces generated by CBF in vivo, but they have several potential advantages
that could facilitate their use in high-throughput screenings. Although the exact design of
microfluidic models can vary, they are typically composed of two small channels for co-
culture of BMECs and astrocytes or pericytes that are separated by a polycarbonate porous
membrane placed over their intersection [151,164,189,192,264] (Figure 9). The much smaller
size of the channels compared to the porous hollow fibers used in classic dynamic models
not only better replicates the in vivo microcirculatory system, but also significantly reduces
the number of cells required, allows for more precise measurement of TEERs, and reduces
the time to reach steady-state TEERs to 3–4 days [151,164,189,192,264]. In general, TEERs
in the order of 600–1000 Ω × cm2 have been reported for rodent primary BMECs [151,192]
as well as for immortalized mouse bEnd.3 [189] or human hCMEC/D3 [175] cells grown
in microfluidic systems, although much lower values were observed in some other stud-
ies [151,164] (Table 1). The latter could in part be related to the use of different systems
and/or culture conditions, or to the fact that only two types of cells can be co-cultured in
most (but not all) current microfluidic-based BBB models. In any case, with a few excep-
tions (like the SynVivo platform [265]), current microfluidic models are not commercially
available, and the inherent complexity of fabricating and operating these systems restricts
their use to laboratories with significant bioengineering expertise. Given further refinement
and better commercial availability of these models, however, it seems likely that they could
become the systems of choice for high-throughput studies on BBB permeability of drugs
and imaging probes.
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5. Conclusions

Taken together, a number of in vivo, in situ and in vitro techniques have been used
to measure or predict drug penetration across the BBB. Although robust estimates for
the rate of BBB penetration can often be obtained with suitable in vitro BBB models,
they are now recognized as poor predictors for the success of CNS drugs that are dosed
continuously. However, they remain useful measures for the development of fast-acting
drugs or neurotracers, especially if they are complemented with data on non-specific drug
binding to brain tissue. In many cases, in vitro models can also be used to screen for
drugs that are subject to active transport (i.e., influx or efflux) across the BBB, although
their predictive value in this regard is much less robust and can be highly dependent
on the drugs of interest. Thus, despite significant progress in the understanding of BBB
structure, function and regulation, current in vitro models invariably fail to accurately
reproduce all active transport properties of the BBB in vivo. Whereas microfluidic-based
dynamic models promise to more closely reflect the in vivo microcirculatory system, most
of these models are still in the proof-of-principle phase and their application is limited to
laboratories with significant bioengineering expertise. The same applies to more complex
three-dimensional models of the brain microvasculature, which are still in development and
have not been addressed in the present article, but could once allow for in vitro studies on
BBB permeability under pathophysiological conditions that are difficult to reproduce with
current models (for review see [266]). Nevertheless, even simple, commercially available
static systems can be very useful in small- to moderate-scale pre-clinical studies to facilitate
early identification of slowly BBB penetrating compounds and/or substrates for the most
important efflux transporters.
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Appendix A

Table A1. Results from studies comparing in vitro permeabilities in static co-culture models with PET-based in vivo data.

Permeability Measure
Compounds Results Ref.

In Vitro In Vivo (PET)

PSe in a non-contact
co-culture model with

human primary BMECs
and astrocytes

PSin calculated from K1
in rats using the

Renkin–Crone equation

11 fluoropyridinyl
derivatives including

[N′-aromatic and
aliphatic]-thioureas, -ureas

and -amides

Significant correlation between
PSin and PSe (r2 = 0.985,
p < 0.001), no correlation

between PSin and logD or MW

[254]

Papp(LA)/Papp(AL) (=1/ER)
in a non-contact

co-culture model with
human primary BMECs

and astrocytes or in
Caco-2 cells

K1/k2 in humans, where
k2 is the rate constant for
drug transfer from brain

to arterial plasma

fluorodeoxyglucose,
fluoro-L-DOPA,

fluoro-A85380, befloxatone,
flumazenil,
raclopride

Significant correlation between
K1/k2 and 1/ER in the double

co-culture model (r2 = 0.90,
p < 0.001), no correlation

between K1/k2 and 1/ER in
Caco-2 cells

[253]

Papp in a non-contact
co-culture model with
human iPSC-derived

BMECs and rat primary
glial cells

K1 in humans
determined in previous

PET studies

loperamide, erlotinib,
buprenorphine,
fluoro-A85380,

befloxatone,
flumazenil, raclopride,

verapamil

Significant correlation between
K1 and Papp (r2 = 0.83, p = 0.008),
only major discrepancy observed

for erlotinib (high Papp vs.
low K1)

[255]
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