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Abstract 

Neuroblastoma (NB) is the most common cancer in infancy with an urgent need for more efficient targeted therapies. The development of 
no v el (combinatorial) treatment strategies relies on e xtensiv e e xplorations of signaling perturbations in neuroblastoma cell lines, using RNA- 
Seq or other high throughput technologies (e.g. phosphoproteomics). This typically requires dedicated bioinformatics support, which is not 
alw a y s a v ailable. A dditionally, while data from published studies are highly v aluable and ra w dat a (e.g . f astq files) are no w ada y s released in 
public repositories, data processing is time-consuming and again difficult without bioinformatics support. To facilitate NB research, more user- 
friendly and immediately accessible platforms are needed to explore newly generated as well as existing high throughput data. To make this 
possible, w e de v eloped an interactiv e data centralization and visualization w eb application, called CLEAN (the Cell Line Explorer w eb Application 
of Neuroblastoma dat a; https://ccgg .ugent.be/shin y/clean/). By f ocusing on the regulation of the DNA damage response, a therapeutic target of 
major interest in neuroblastoma, we demonstrate how CLEAN can be used to gain no v el mechanistic insights and identify putative drug targets 
in neuroblastoma. 

Gr aphical abstr act 

Introduction 

Neuroblastoma (NB) is the most common cancer in infancy 
and accounts for approximately 15% of pediatric cancer- 
related deaths ( 1 ). Despite initial positive treatment response, 
high-risk NB frequently leads to relapse, resulting in a sur- 
vival rate as low as 35% ( 2 ). Our groups and others have re- 
cently demonstrated in different preclinical NB animal models 
that targeting the DNA damage response (DDR) pathway is a 
promising treatment strategy for high-risk NB ( 3–6 ). 

Successful investigations of new or combinatorial drug tar- 
gets are often based on extensive in vitro experiments in cell 

lines, followed by high throughput experiments such as RNA- 
Seq and / or phosphoproteomics ( 3 , 7 , 8 ). Over the past few 

decades, generation of these types of data has become in- 
creasingly efficient, leading to a strong reduction in price as 
well as increase in accuracy. This has led to a surge in omics 
data abundance in the NB, as well as most other pre-clinical 
fields ( 9 )—a development that has brought both opportunities 
and challenges ( 10 ). While each omics study generates tens of 
thousands of data points, only a fraction of this information 

is used to draw conclusions and an even smaller proportion is 
addressed in the final manuscript of any study. A single pertur- 
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bation, even in a relatively homogenous system like immortal 
cell lines, causes major, complex downstream effects at several 
regulatory levels ( 3 ). A complete understanding of the cellular 
response is a task that goes beyond the scope of a single study. 
Providing real access to these datasets would let us deepen 

our understanding of each experiment and move the entire 
field of NB research forward substantially. Despite attempts 
to increase reproducibility, by mandating upload of raw data 
to online repositories and encouraging code sharing ( 11–13 ), 
proper accessibility to this excess information remains a prob- 
lem. 

To meet the need for more user-friendly, simpler and faster 
ways to explore and access this goldmine of experimen- 
tal data, we developed a highly interactive data centraliza- 
tion and visualization web application, called CLEAN (the 
Cell Line Explorer web Application of Neuroblastoma data; 
https:// ccgg.ugent.be/ shiny/ clean/ ). We illustrate the CLEAN 

functionality and its added value for translational NB re- 
search by providing new mechanistic insights in the DDR reg- 
ulation and identifying novel therapeutic targets for future 
studies. 

Materials and methods 

Data collection 

To find relevant RNA-Seq data for CLEAN, we selected all 
studies from the Gene Expression Omnibus ( https://www. 
ncbi.nlm.nih.gov/ geo/ ) ( 14 ) that fulfilled the following search 

criteria: ‘Neuroblastoma [Title]’, ‘Homo sapiens’, ‘Expression 

profiling by high throughput sequencing’, ‘Cell line’, ‘Sam- 
ple count from 4 to 10 000’ (implying minimally two repli- 
cates for each condition and control). The selected studies 
were manually curated and studies not focusing on NB, with 

a focus on comparing cell lines to xenografts, without any 
form of perturbation or without biological replicates were ex- 
cluded. Additionally, data from submissions with no associ- 
ated, published study were also excluded. When multiple sub- 
missions were found for a single study, data were merged. 
Samples were organized into either baseline (control) or per- 
turbation (condition), where all perturbations could be cate- 
gorized into one of the following: compound treatment (e.g. 
retinoic acid), drug inhibition, chemotherapy, knock-down, 
knock-out or overexpression. We added information about 
concentration and treatment duration if this information was 
available. 

A similar strategy was followed to find relevant phos- 
phoproteomics data in the ProteomeXchange ( https://www. 
proteomexchange.org/) ( 15 ). We applied a simple search for 
‘neuroblastoma’ and selected only studies where phosphopro- 
teomics data were utilized, making no discrimination on mass 
spectrometry method. Datasets were excluded and samples or- 
ganized in the same fashion as for RNA-Seq. 

Data processing 

W e used HISA T2 ( 16 ) to align reads from the GEO -derived 

fastq files to the GRCh38 reference genome. We excluded 

samples with an alignment rate below 75%. If this exclusion 

resulted in a lack of replicates, the study was excluded alto- 
gether. Subsequent quantification and annotation were per- 
formed with HTSeq ( 17 ) using GENCODE 29 . For normal- 
ization of counts and differential expression analysis of RNA- 
Seq, we used the DESeq2 package ( 18 ). 

Raw phosphoproteomics intensity data were quantified us- 
ing MaxQuant ( 19 ). Differential expression / phosphorylation 

was performed using the DEP package ( 20 ). 

Shiny web application and structure of CLEAN 

The current version of CLEAN runs inside a Conda environ- 
ment, on R ( 21 ) and and is built in R Shiny ( 22 ). Tables utilize 
the DT package ( 23 ), plots use ggplot2 ( 24 ) and plotly ( 25 ). 
See Supplementary file 3 for all packages and versions used for 
the Conda environment. It is hosted at a webserver at Ghent 
University. 

Gene set enrichment analysis (GSEA) 

CLEAN provides both a classical GSEA (also referred to as an 

overrepresentation analysis) and a preranked GSEA. 
The classical GSEA is performed using a one-sided Fisher’s 

exact test on a contingency table that compares the num- 
ber of genes / proteins / phosphosites below and above the user- 
defined DE / DP thresholds to their presence in a specified 

gene set. Odds ratios (OR, indicative of the extent of the en- 
richment), P values and P adj values (multiple testing correc- 
tion using the Benjamini-Hochberg method) are reported by 
CLEAN. 

Preranked GSEA was performed using the R fgsea package 
( fgseaMultilevel function, default parameters) with ranking 
based on the DESeq2 statistic for RNA-Seq data or –log 10 ( P ) 
* Sign(log 2 FC) for phosphoproteomics data. 

Relevant gene sets were derived from the Molecular Sig- 
natures Database ( MSigDB) v2023.1 ( 26 ). For phosphopro- 
teomics analyses, we also added protein kinases—phosphosite 
motif dataset. These data were derived from the supplemen- 
tary information provided by Johnson et al. ( 27 ), using the 
top 1% predicted protein kinases for each phosphomotif and 

converted protein names to gene names for both kinases and 

target sites. 

Integrated data and links 

We added links to other resources frequently used in the field: 
GeneCards ( https:// www.genecards.org/ ) for general gene in- 
formation ( 28 ), ChEMBL ( https:// www.ebi.ac.uk/ chembl/ ) 
for up-to-date, target-specific drug information ( 29 ), Ensembl 
( https:// www.ensembl.org/ ) for detailed genomic information 

( 30 ) and the R2: Genomics Analysis and Visualization Plat- 
form ( http://r2.amc.nl ) for Kaplan-Meier analysis on the Ko- 
cak cohort ( 31 ). We also downloaded the CRISPR / cas9 gener- 
ated gene scores from the DepMap database ( https://depmap. 
org/ portal/ download/ all/ , (22Q2)) and integrated them di- 
rectly in CLEAN ( 32 ). 

Results 

CLEAN is an explorable and standardized 

neuroblastoma cell line data repository. 

The aim of the CLEAN initiative is to make all experimental 
NB cell line data that involve RNA-Seq and / or phosphopro- 
teomics experiments publicly available in an easy-to-use and 

interactive format. We selected all available studies from the 
Gene Expression Omnibus (GEO) ( 14 ) and the ProteomeX- 
change (PRX) ( 15 ) that fulfilled the following inclusion crite- 
ria: (1) NB cell lines; (2) minimally two replicates per condi- 
tion and (3) some kind of experimental perturbation (e.g. gene 
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knockout, drug treatment; see Materials and methods for full 
criteria and data processing). All data were reprocessed using 
standardized pipelines, resulting in the availability of 66 RNA- 
Seq and 8 phosphoproteomics studies, with 6 chemothera- 
peutic drug treatments (chemo), 29 compound treatments, 49 

drug inhibitions, 40 gene knockdowns (KD), 15 gene knock- 
outs (KO) and 27 gene overexpressions (OE; Figure 1 ). 

Interactively exploring high throughput data 

derived from neuroblastoma cell lines using CLEAN 

The CLEAN web application contains three main tabs: a 
search tab and two data tabs (i.e. RNA-Seq and Phosphopro- 
teomics ). Each tab contains a side bar on the left that accepts 
user input to query studies and data and a main panel on the 
right containing a series of downloadable tables and related 

interactive plots (Figure 1 ). 
The search tab can be used to quickly check (1) whether 

RNA-Seq or phosphoproteomics data are available for a spec- 
ified cell line and / or perturbation / treatment of interest (us- 
ing a studies overview table in the main panel); (2) which 

previous studies contain significantly up- or downregulated 

genes / phosphosites, based on user-defined search criteria (i.e. 
log 2 foldchange (FC) and P value ; Sidebar: Search for DE / DP 

Genes / PP-Sites ); (3) which previous studies contain specific 
enrichments of user defined gene sets ( Sidebar: GSEA ). 

The two data tabs have identical features and functionality. 
They all take user-specified inputs, either indirectly from the 
search tab or directly after selecting the data of interest in the 
sidebar (i.e. which studies, cell line, condition, time point and 

gene(s) of interest). Based on these inputs, standardized differ- 
ential gene / protein expression information is provided for all 
studies (i.e. log 2 FC and P values), both in an easily searchable 
data table format and an interactive volcano plot. The data 
table contains gene-specific links to complementary resources, 
such as GeneCards ( 28 ), ChEMBL ( 29 ), Ensembl ( 30 ) and the 
R2: Genomics Analysis and Visualization Platform . Relatedly, 
all findings can be easily correlated to CRISPR / cas9 generated 

gene effect scores from the DepMap database ( 32 ), potentiat- 
ing the identification of essential genes affected by the selected 

perturbation easy (Figure 1 ). 

CLEAN provides different forms of existing and 

user defined gene set enrichment functionality 

CLEAN also contains extensive GSEA functionalities, both 

in the form of a preranked GSEA and an overrepresentation 

analysis. The former first ranks the genes based on their P 

values and considers the type of differential expression (up- 
or downregulated) and the enrichment results (i.e. normalized 

enrichment scores and P values) are then visualized in an in- 
teractive volcano plot at the dataset level, dynamically linked 

with a running score plot at the individual gene set level. The 
latter, overrepresentation analysis is performed using Fisher’s 
exact test, considering a set of genes that are defined based 

on user-determined cut-off criteria for differential expression. 
Enrichment results (i.e. odds ratios and P values) are again 

visualized in tables and volcano plots. CLEAN also allows 
the direct cross-study and -condition comparisons of up to 4 

different studies using interactive Venn diagram, allowing for 
quick enrichment analyses on intersecting or unique gene sets. 

The most common gene sets from MSigDB are available 
( 26 ) and a user also has the option to upload any custom 

gene set of interest. For phosphoproteomics data analysis, a 

protein kinase data set from the recently published atlas of 
serine / threonine substrate specificities is provided ( 27 ). 

Searching the CLEAN repository for previous 

experiments that altered the DDR pathway in 

neuroblastoma cell lines 

Given the emerging evidence of a therapeutically targetable 
role of the DDR in NB (e.g. using AURKA, ATR or CHK1 in- 
hibitors) ( 3 , 5 , 33 ), we used the CLEAN search tab (available at 
the home page) to identify other known drugs that inhibit the 
DDR and could be used as putative combinatorial treatments. 

We employed a curated set of 276 DDR-related genes de- 
rived from Knijnenburg et al. ( 34 ) and uploaded these genes 
as a custom gene set in CLEAN ( Search tab, Sidebar: GSEA ). 
Querying the CLEAN repository for enrichments of these 
DDR genes in significantly downregulated genes (default set- 
tings: log 2 FC < –1.5 at 5% FDR) resulted in several RNA- 
Seq studies with significant ( P adj < 0.05) enrichments. As ex- 
pected, DDR enrichments were found after treating NB cells 
with the ATR inhibitor elimusertib (CLB-GE cells, 48 h treat- 
ment; P adj = 3.1e-14). Interestingly and in line with our re- 
cent experimental findings ( 6 ), strong enrichments were also 

observed after treating NB cells for 24h with the ALK in- 
hibitor lorlatinib (NB1 cells; P adj = 7.1e-14), for 48h with the 
PI3K / mTOR inhibitor dactolisib (NB1 cells; P adj = 1.2e-13) 
or for 24 h with the MDM2 inhibitor idasanutlin (NB1691 

cells; P adj = 1.1e-30). Background information on all these 
studies is available in CLEAN and after selecting the latter 
study ( 35 ) for further exploration, CLEAN redirects the user 
to the RNA-Seq tab. 

A more detailed differential gene expression analysis of 
the selected study in the RNA-Seq tab indeed confirms a 
strong DDR signature ( P = 1.1e-25), characterized by a down- 
regulation of RRM1 / 2 , EXO1 , BRCA1 , FANCI , BRIP1 , 
CDC25A, POLQ, CHEK1 and many other genes (Figure 
2 A, B, Supplementary file 1 ). We then used the Venn dia- 
gram functionality in CLEAN to determine where the down- 
stream signaling pathways upon ATR inhibition (elimusertib), 
ALK inhibition (lorlatinib), PI3K inhibition (dactolisib) and 

MDM2 inhibition (idasanutlin) converge. We found 109 com- 
monly downregulated genes that were strongly enriched for 
the DDR (as expected) and many cell cycle-related processes 
such as G2M checkpoints and E2F targets, as can be observed 

when selecting the Canonical Pathways as a data resource 
for the GSEA (Figure 2 C, D). While some of these genes (e.g. 
RRM2, AURKB, CDK2 ) have previously been shown to have 
potential as a drug target in neuroblastoma ( 33 , 36 , 37 ), many 
of them are currently underexplored and could serve as an 

interesting source of further research. 

Motif enrichment analyses on previously published 

phosphoproteomics studies suggest a role for 
ribosomal S6 kinases in mediating ALK and ATR 

inhibition 

Apart from the large amount of RNA-Seq data, CLEAN con- 
tains phosphoproteomics data that have been previously gen- 
erated upon drug treatment of NB cell lines (accessible via 
the phosphoproteomics tab ). In contrast to RNA-Seq, phos- 
phoproteomics data provide information on earlier and more 
upstream signal transduction pathways in response to differ- 
ent stimuli. Using this technology, we previously demonstrated 

that elimusertib-induced ATR inhibition results in an expected 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad062#supplementary-data
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Figure 1. Ov ervie w of data processing and a v ailability in CLEAN. Ov ervie w of def ault data processing in CLEAN (lef t). Pie c hart showing the different 
experimental perturbations that are currently implemented in CLEAN with precise number of studies indicated between parentheses (top-mid). CLEAN 

screenshot of the default RNA-Seq tab, indicating the 3 main components: (1) the sidebar takes user input and updates what’s in the main panel; (2) a 
searchable table with detailed differential gene expression or related information and (3) an interactive plot (bottom-right). External data sources that are 
directly (left) or indirectly (via hyperlinks) (top-right), integrated in CLEAN. 

Figure 2. CLEAN-based identification of previously studied drugs that result in a reduced DNA Damage Response transcriptomic signature in 
neuroblastoma. CLEAN was used to search for previous studies that resulted in significantly downregulated genes (default settings; i.e. logFC < –1.5 at 
5% FDR) that were enriched (at 5% FDR) for a custom DNA Damage Response (DDR) gene set (276 genes, as described by Knijnenburg et al. ( 34 )). 
Four retrie v ed studies w ere then further e xplored in the RNA-Seq tab. R unning score ( A ) and v olcano plot ( B ) f or the DDR gene set in the study of Chen 
et al, 2019 ( 35 ). DDR genes indicated in blue in the volcano plot with labelling of genes that are discussed in the main text. ( C ) Venn diagram showing 
the number of unique and intersecting genes between the 4 selected studies. ( D ) A GSEA using canonical pathways was then performed in the 109 
common genes. Bar plots indicate –log 10 ( P adj ) values for a selection of enriched pathways as indicated. All plots were generated based on downloaded 
data from CLEAN. See Supplementary file 1 for an illustration of this use case. 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad062#supplementary-data
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dephosphorylation of ATR targets and an increased, compen- 
satory phosphorylation response of ATM targets ( 3 ), in keep- 
ing with the observations of others ( 38 ). Like the RNA-Seq 

functionality, these data are easily explorable using available 
interactive tables and volcano plots in CLEAN. 

To maximize the efficacy of CLEAN in integrating phos- 
phoproteomics datasets we have implemented a feature based 

on the recently published atlas of substrate specificities for the 
human serine / threonine kinome ( Sidebar: GSEA Settings—
S / T-Kinases ) ( 27 ). This feature allows the analysis of pro- 
tein kinase enrichments based on differentially phosphory- 
lated phosphosite motifs within the proteins of interest. When 

performing this analysis on elimusertib-treated NB cells ( 3 ), 
we could indeed confirm a (non-significant) decreased activ- 
ity of ATR (NES = –1.2, P adj = 0.12) and a strong signifi- 
cant increase in ATM activity (NES = 2, P adj = 4.1e-9) upon 

treatment (Figure 3 A). Additionally, this feature identified de- 
creased activity of the related kinases CHEK1, CHEK2 and 

AURKA. Given the higher described DDR inhibition upon 

treatment with lorlatinib, we then hypothesized that lorla- 
tinib would result in similar protein kinase responses. Using 
the search tab ( Studies table—condition column, search: Lor- 
latinib ), CLEAN was able to identify two studies that previ- 
ously explored the phosphoproteomic response to lorlatinib 

treatment: Emdal et al. (NB1 cells) ( 39 ) and Van den Eynden 

et al. (CLB-BAR cells) ( 40 ). While a motif enrichment analysis 
did not indicate any significant enrichment for ATM and ATR 

itself in any of those studies, reduced protein kinase activity 
was predicted in both studies for the ATR target CHEK1, in 

agreement with our recent wet-lab experimental findings ( 6 ), 
as well as the ATM target CHEK2 and AURKA (Figure 3 B). 
Strikingly, mirrored responses were observed upon stimula- 
tion of NB1 cells with the ALK ligand ALKAL2 (study of 
Borenäs et al. ( 41 )), strongly suggesting that these responses 
are ALK-specific (Figure 3 B, Supplementary file 2 ). 

The strongest reductions in predicted protein kinase activity 
upon ATR or ALK inhibition were found for several members 
of the Ribosomal S6 kinases: RPS6KA2, RPS6KA4, RPS6KA6 

(also known as R SK4), P90R SK (also known as MAPKAPK1), 
MAPKAPK2 and P70S6K (Figure 3 A-B, Supplementary file 2 ). 
Several of these kinases are activated by the MAPK / ERK 

pathway ( 42 ), and phosphorylate the ribosome protein S6 

(RPS6) ( 43 ). Further exploration in CLEAN indicates that 
this protein is indeed strongly dephosphorylated upon lorla- 
tinib treatment, mainly at S235 ( P adj = 4.2e-05; log 2 FC = –
1.3). Strikingly, this protein is also highly essential for NB cell 
lines, as can be observed from the very low DepMap gene ef- 
fect scores (gene effect score in NB1 cells = –2.47). Interest- 
ingly, using the links provided to the R2: Genomics Analysis 
and Visualization Platform , it can be easily shown that high 

RPS6KA6 expression is strongly correlated with worse sur- 
vival in neuroblastoma patients ( P = 2.07e-12). 

Discussion 

CLEAN aims to centralize all available RNA-Seq and phos- 
phoproteomics data derived from NB cell line experiments in 

a standardized and easily accessible format. It is an ongoing 
open data science initiative that was developed by a multidis- 
ciplinary group of scientists with experience in computational 
biology, NB and signal transduction. We are planning regular 
updates (every 3 months) of the available cell line and related 

gene set data. Additionally, extensions are foreseen for data 

generated from organoids or NB model organisms (e.g. mouse 
models). New data sets will be selected from literature or at 
a user’s request (a contact tab is included in the application). 
While the CLEAN scope is restricted to NB, its functionality 
can also be used for other (cancer) cell lines. To facilitate this 
broader applicability, an option is provided for users to up- 
load other (unpublished) DE analysis results and use all the 
features provided by CLEAN and compare with other avail- 
able data. These data are not saved and are deleted after the 
user session expires. 

The available data in CLEAN were reprocessed using state- 
of-the-art methods. While this standardized approach makes 
the data highly comparable and results were mostly identi- 
cal to the original studies, differences with the originally used 

methods (e.g. aligners, genome annotations, differential ex- 
pression methods, …) could result in deviations from the orig- 
inal findings. While we experienced no bottlenecks in down- 
loading, processing or data storage, the manual curation of 
the metadata was a time-consuming task. This is illustrated 

by reference samples originally annotated as ‘untreated’, ‘con- 
trol’, ‘DMSO’, ‘empty vector’, ‘timepoint 0’ or simply as ‘sam- 
ple 1’, sometimes with little to no further explanation in the 
manuscript and lack of source code, rendering automation 

of this curation step impossible. Open data initiatives like 
CLEAN as well as research reproducibility in general would 

strongly benefit from mandating of code sharing for any data 
processing, showing how the researcher started at a and ended 

at z and / or stricter guidelines for annotation of uploaded data 
in public repositories ( 11–13 ). 

CLEAN potentiates the interactive exploration of previous 
studies using datasets that were generated at later time points. 
As we have demonstrated with the 2 use cases, this functional- 
ity can be employed to directly compare the findings of differ- 
ent studies or to perform GSEA using gene sets that that were 
published later. Recent studies, as well as our ongoing work, 
suggest that genomic alterations in MYCN and ALK , which 

are characteristic for high-risk NB, result in specific vulnera- 
bilities to DDR inhibition ( 3 ,5 ). Using CLEAN we identified 

several drugs (i.e. lorlatinib, dactolisib and elumusertib) with 

different targets that resulted in 109 commonly differentially 
expressed genes in different NB cell lines. The identification 

of lorlatinib is in agreement with our recent wet lab exper- 
iments ( 6 ). Further, several of these genes have been previ- 
ously investigated as putative therapeutic targets (e.g. RRM2, 
CDK2, CHEK1 ( 33 ,36 ) ) , illustrating how CLEAN can be used 

to identify novel targets that can be selected for further exper- 
imental validation. 

We further illustrated the strength of CLEAN in apply- 
ing newly published GSEA datasets on older studies by per- 
forming a protein kinase S / T phosphosite GSEA on existing 
phosphoproteomics datasets, using the recently published at- 
las of substrate specificities for the human serine / threonine ki- 
nome ( 27 ). This analysis confirmed a previously suggested and 

strong compensatory activity of ATM upon ATR inhibition 

( 3 , 6 , 38 ). Furthermore, a role for several Ribosome S6 Kinase 
(RSK) proteins was suggested in mediating the effects of both 

ATR and ALK inhibition. Interestingly, RSK has been previ- 
ously demonstrated to suppress ATM activity ( 43 ). As phos- 
phomotifs of protein kinases from similar phylogenies are 
highly similar, there’s a risk of mispredictions for related pro- 
tein kinases. This could explain why the reduced ATR activity 
upon ATR inhibition was rather weak and non-significant (i.e. 
overlapping hyperphosphorylated ATM S / TQ sites weaken 

https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad062#supplementary-data
https://academic.oup.com/narcancer/article-lookup/doi/10.1093/narcan/zcad062#supplementary-data
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Figure 3. Comparison of phosphomotif-based protein kinase enrichments after ATR and ALK inhibition and / or stimulation. Four studies were selected in 
CLEAN that had a v ailable phosphoproteomics data after drug treatment with elimusertib, lorlatinib or the ALK ligand ALKAL2. The preranked GSEA 

functionality was then used to search for protein kinase enrichments and results were downloaded. ( A ) Volcano plot showing protein kinase enrichment 
results after elimusertib treatment in the study of Szydzik et al. ( 3 ). Protein kinases that are discussed in the main text are labelled. ( B ) Heatmap showing 
normalized enrichment scores (color scale) and P values (size) of the four selected studies as indicated on the bottom. See Supplementary file 2 for an 
illustration of this use case. NES, normalized enrichment scores. 

the signal) and also makes it hard to distinguish between the 
different RSKs based on these results. 

In conclusion, CLEAN is a highly interactive and easy to use 
web application that centralizes all NB cell line data in a stan- 
dardized format, providing a rich resource for future preclin- 
ical neuroblastoma research. We demonstrated with two use 
cases that CLEAN can be used to independently generate new 

hypothesis and identify novel putative drug targets. Addition- 
ally, CLEAN is also suitable to orthogonally validate findings 
derived from newly developed computational approaches, as 
an alternative to costly and time-consuming wet-lab experi- 
mental validation experiments. 

Data availability 

All results provided in this manuscript are based on previously 
published, publicly available data. All these data are accessible 
in CLEAN at https:// ccgg.ugent.be/ shiny/ clean/ . 
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