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Abstract

The protracted nature of development makes the cerebellum vulnerable to a broad spectrum of 

pathologic conditions, especially during the early fetal period. This study aims to characterize 

normal cerebellar growth in human fetuses during the early second trimester. We manually 

segmented the fetal cerebellum using 7.0-T high-resolution MR images obtained in 35 specimens 

with gestational ages ranging from 15 to 22 weeks. Volume measurements and shape analysis 

were performed to quantitatively evaluate global and regional cerebellar growth. The absolute 

volume of the fetal cerebellum showed a quadratic growth with increasing gestational age, while 

the pattern of relative volume changes revealed that the cerebellum grew at a greater pace than the 

cerebrum after 17 gestational weeks. Shape analysis was used to examine the distinctive 

development of subregions of the cerebellum. The extreme lateral portions of both cerebellar 

hemispheres showed the lowest rate of growth. The anterior lobe grew faster than most of the 

posterior lobe. These findings expand our understanding of the early growth pattern of the human 

cerebellum and could be further used to assess the developmental conditions of the fetal brain.
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1. Introduction

The cerebellum has been increasingly recognized for its prominent role in brain 

development in recent years (Wang et al., 2014; D’Mello and Stoodley, 2015; 

Limperopoulos et al., 2010). In addition to well-established functions such as posture, 

balance, and motor coordination, the cerebellum has also been implicated in higher cognitive 

processes including executive control, language, and social emotion (Schmahmann and 

Sherman, 1997; Koziol et al., 2012; O’Halloran et al., 2012). Cerebellar dysfunction is 

associated with wide-ranging and long-term motor deficits, including Dandy-Walker 

symptom and Arnold-Chiari malformation (ten Donkelaar et al., 2003; Altman et al., 1992), 

as well as affective disorders, such as autism and schizophrenia (Allen et al., 2004; 

Hoppenbrouwers et al., 2008).

The development of the cerebellum spans a long period beginning in approximately the 

fourth week of gestation and lasting through the first postnatal year and follows a highly 

orchestrated process (ten Donkelaar et al., 2003). The basic morphology of the cerebellum, 

which results from neuronal proliferation, directional migration, and differentiation, is 

established around the 20th week of gestation (Rakic and Sidman, 1970; Leto et al., 2016). 

In the subsequent period up to 40 weeks of gestation, the cerebellum undergoes more rapid 

increases in volume and surface foliation than other cerebral structures (Limperopoulos et 

al., 2005; Clouchoux et al., 2012). Neuronal differentiation and white matter myelination of 

the cerebellum continue after birth (Yakovlev and Lecours, 1967). Its high complexity and 

protracted development makes the cerebellum particularly vulnerable to a wide range of 

developmental disorders, especially during the prenatal period (Poretti et al., 2016; 

Iruretagoyena et al., 2010).

However, little is known about cerebellar development during the early fetal developmental 

period because MR scans are not usually performed until the 19th gestational week (GW) in 

a clinical setting (Bendersky et al., 2008). The detailed anatomic delineation of the 

developing cerebellum is complicated to characterize, even when using 3.0-T MR in vivo, 

due to limited resolution, the small size of the cerebellum, frequent fetal movement, and the 

pulse of the maternal artery. The developmental differences between cerebellar subregions, 

which have distinct characteristics with regard to their embryological sources, phylogenetic 

histories, anatomical connections with the cerebral cortex, and functions (Ramnani, 2006), 

are thus difficult to distinguish. Postmortem fetal MR, on the other hand, offers advantages 

as an imaging modality by using high-field strength magnets, increasing acquisition times, 

and reducing slice thickness, thus providing value in studies of the developing fetal brain 

(Rados et al., 2006; Whitby et al., 2006; Kinoshita et al., 2001).

Quantitative measurements of the cerebellum, including its volume, the transverse cerebellar 

diameter, and the height and anterior-posterior diameter of the vermis, have been obtained in 

fetal, neonatal, and childhood populations (Hata et al., 2007; Zwicker et al., 2016; Tiemeier 
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et al., 2010). Quadratic growth was reported for both linear dimensions and the cerebellar 

volume in healthy fetuses (Triulzi et al., 2005; Hatab et al., 2008; Liu et al., 2011). The 

cerebellum also undergoes a dramatic change in its surface during the fetal period. Shape 

analysis provides enhanced sensitivity in reflecting local structural changes during 

development and has been widely used in the biomedical field to study various structures of 

interest, such as the hippocampus, thalamus, and corpus callosum (Thompson et al., 2004; 

Coscia et al., 2009; Joshi et al., 2013). Cerebellar regional differences in surface curvature 

were found in healthy fetuses aged 20–31 weeks of gestation (Scott et al., 2012). In 

particular, the apex of the vermis and the inferior-posterior lobe of the hemispheres 

increased in convexity, whereas the inferior surface of the vermis and the anterior lobe 

facing the brainstem increased in concavity. However, very few studies have applied shape 

analysis to evaluate the developing human cerebellum before 20 weeks of gestation.

The objective of this study was to quantify the development of the human cerebellum using 

7.0-T high-resolution MR images obtained in 35 fetal specimens between 15 and 22 GW. 

The absolute and relative volumes of the cerebellum were both calculated to describe its 

developmental trajectory. Shape analysis was performed using our novel curvature-driven 

surface mapping algorithm, the Riemannian metric optimization on surfaces (RMOS) 

method (Gahm et al., 2018), to characterize the regional growth patterns of the fetal 

cerebellum. These results may be helpful for understanding the development of the 

cerebellum during the early second trimester and provide an anatomical reference for future 

cerebellar studies.

2. Materials and methods

2.1. Fetal specimens

Thirty-five normal human fetal specimens at 15–22 GW, which were partially or totally used 

to study fetal cerebral cortex, subcortical brain structures, the fetal brain template and the 

hippocampal formation in our previous publications (Zhang et al., 2013; Meng et al., 2012; 

Zhan et al., 2013; Ge et al., 2015), constituted the database for this study. They were 

collected in hospitals in Shandong Province, China. Some specimens were acquired 

following medically indicated abortions caused by teratogenesis infection, stressful 

intrauterine conditions, or unknown reasons related to malformation outside of the brain. 

The others were collected from spontaneous abortions attributed to maternal systemic 

infection, pregnancy-induced hypertension syndrome, severe uterine trauma caused by an 

accident, or uterine myoma. All specimens were first examined using ultrasound and 3.0-T 

MR prescans to ensure that the fetal brain was anatomically normal based on the size of the 

cerebrum and the developmental status of sulci, the lateral ventricle, and the corpus 

callosum. Maternal pregnancy records indicated no documented history of fetal 

chromosomal abnormality, maternal genetic disease, excessive alcohol intake, smoking, 

severe undernutrition, or eclampsia seizures.

Demographic information for the fetal specimens is provided in Table 1. The GW of the 

fetuses was estimated based on crown-rump length, head circumference, foot length, and/or 

pregnancy records and was expressed in weeks from the last menstrual period (Guihard-

Costa et al., 2002). The specimens were kept immersed in 10% formalin for preservation 
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without extracting the brain. The time interval between the collection of specimens and 

scanning was less than two months. The formalin fixation time (in days) reported for each 

specimen is listed in Table 1. The time-length of formalin fixation had little impact on signal 

intensities in T2 images after 3–4 weeks (Tovi and Ericsson, 1992; Boyko et al., 1994), 

which was the minimum fixation time in our study to ensure tissue stability and 

comparability among subjects. This study was approved and controlled by the Internal 

Review Board of the Ethical Committee at the School of Medicine, Shandong University. 

Consent for postmortem examination was obtained from each parent.

2.2. MRI data acquisition

The specimens were scanned by a 7.0-T Micro-MR scanner with a maximum gradient of 

360 mT (70/16 pharmaScan, Bruker Biospin GmbH, Germany) using a rat body coil with an 

inner diameter of 60 mm. 2D T2-weighted slice images were acquired in the axial plane 

with the following parameters: slice thickness, 0.5 mm (with no gap); TR/TE, 12,000/50 ms; 

field of view (FOV), 4.0 × 4.0 cm/5.0 × 5.0 cm/6.0 × 6.0 cm; matrix, 256 × 256; and NEX, 

4. The acquisition time was 28 m 15 s.

2.3. Segmentation of the cerebellum

Based on prior studies (Hatab et al., 2008; Liu et al., 2011; Scott et al., 2012) and the ‘Atlas 

of Human Central Nervous System Development’ (Bayer and Altman, 2005), the anatomic 

boundaries of the cerebellum were manually delineated using ITK-SNAP software, a 

semiautomatic open source application with active contour evolution (Yushkevich et al., 

2006). The segmentation was performed in the axial plane and confirmed in the sagittal and 

coronal planes. In the axial plane, the lateral hemispheres were clearly distinguished by the 

presence of cerebrospinal fluid (CSF) (Fig. 1A). The pontocerebellar angle was used to 

separate the cerebellar hemispheres from the pons. The major fissures of the cerebellum 

were easily observed on the sagittal plane (Fig. 1B). The first fissure to appear was the 

posterolateral fissure as early as 12–13 GW (Rakic and Sidman, 1970). The primary fissure, 

which divided the cerebellar anterior and posterior lobes, could be detected at 15 GW and 

was deepest in the midline (Fig. 1B). The cerebellar peduncles, brainstem, and the roof of 

the fourth ventricle were the main landmarks that defined the cerebellar anterior boundary. 

In the coronal plane, the caudal-most aspect of the hypothalamus was used to demarcate the 

superior border of the cerebellum (Fig. 1C).

To check the reproducibility of the manual segmentation protocol, ten specimens were 

chosen at random and resegmented by the same person at least one month later. The results 

of segmentation were checked and confirmed by two experienced anatomists. The intraclass 

correlation coefficient was measured with the strength of the agreement scale (Brennan and 

Silman, 1992).

2.4. Volume analysis

The segmentation of supratentorial brain was first accomplished using the methods 

described in our previous publication (Zhan et al., 2013). The supratentorial volumes (STV) 

included the entire cerebrum (telencephalon and diencephalon) but excluded the brainstem 

and cerebellum.
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The absolute cerebellar volume and STV were calculated. The relative volume of the 

cerebellum was defined as the ratio of cerebellar absolute volume to the sum of the 

cerebellar and supratentorial volumes (Vrelative = Vabsolute/(Vabsolute + STV)).

2.5. Template construction

To improve the accuracy of the registration step of the shape analysis, a template of the fetal 

cerebellum was first constructed using the optimal template construction function of 

Advanced Normalization Tools (ANTs) (Avants et al., 2009). The script 

buildtemplateparallel. sh (Avants and Gee, 2004) was run for all specimens using the default 

setting in ANTs. Specifically, we used symmetric diffeomorphic normalization (SyN) energy 

terms, which performed image normalization by minimizing image similarity and the 

diffeomorphism length of the diffeomorphic transformations (Avants et al., 2008). The 

ANTs-SyN approach was defined by the minimum shape and appearance distance on the 

image. It maintained symmetry when using pairwise mapping. The process was iteratively 

repeated, and the final template was constructed at the minimum energy level.

2.6. Shape analysis

A previously validated shape analysis approach (Ge et al., 2015) was used to measure 

cerebellar local changes. To perform surface mapping, the binary masks of each subject and 

the template were first converted to triangular meshes. The spurious features caused by 

segmentation artifacts were detected and removed using iterated Laplace–Beltrami (LB) 

eigen-projection and boundary deformation (Shi et al., 2010). The resulting surface meshes, 

which represented the correct topology of the cerebellum, were remeshed to obtain 3000 

uniformly distributed vertices (Fig. 2B). The number of vertices (3000) was determined 

according to the size of the cerebellum during the early second trimester.

Each individual triangulated mesh was then registered to our constructed cerebellar template 

mesh using the novel curvature-driven surface mapping algorithm, Riemannian metric 

optimization on surfaces (RMOS), which incorporated both geometric and anatomical 

features to guide surface mapping in the LB embedding space (Gahm et al., 2018). For the 

cerebellum, the mean curvature feature was used to drive the surface mapping process. For 

each triangular mesh, the Riemannian metric was denoted as a set of weights defined on all 

edges and fully determined the heat kernel on the mesh (Zeng et al., 2012; Goes et al., 

2014). The RMOS approach can be used to iteratively optimize the Riemannian metric to 

match the curvature feature and realize surface mapping in the LB embedding space (Gahm 

et al., 2018). As a result, all surfaces were represented with the same triangulation, and the 

vertices were in one-to-one correspondence. To quantify the local rate of growth of the 

cerebellum, similar to methods used for shape analysis of the hippocampus (Shi et al., 

2009), the thickness measured at each vertex of the mapped surfaces was defined as the 

distance from the vertex to the medial core of the cerebellum.

2.7. Statistical analysis

Polynomial regression analysis was performed to determine the best-fit model using 

gestational weeks as the independent variable and absolute cerebellum volumes as the 

dependent variable. The R2 value was calculated. To model the local development of the 
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fetal cerebellum, the thicknesses associated with increasing gestational age were measured 

by linear regression analysis. The p-value and regression coefficient were calculated. 

Correction for multiple comparisons was performed using a false discovery rate (FDR) at q 

value of 0.05.

3. Results

3.1. Segmentation reliability

The average intraclass correlation coefficient was 0.9639, indicating our segmentation 

method showed good reproducibility.

3.2. Volume analysis

As shown in Fig. 3A, the absolute volume of the cerebellum increased approximately 5.3-

fold from 0.3 to 1.6 cm3 across the selected GW range. The growth rate steadily increased, 

and the second polynomial model (R2 = 0.9475) better fit the growth trajectory than a linear 

model (R2 = 0.9181).

The relative volume curve of the cerebellum remained nearly horizontal from 15 to 17 GW 

and began to gradually increased after 17 GW (Fig. 3B). This curve suggested that the 

cerebellum had a growth rate similar to that of the supratentorial brain before 17 GW and 

outstripped it after 17 GW.

3.3. Shape analysis

The results of the shape analysis were mapped onto the template surface of the cerebellum, 

as shown in Fig. 4. The cerebellar template was dumbbell-shaped with two lateral 

hemispheres and a relatively thin vermis. The regression coefficients represented the growth 

rate of the local cerebellum, and p-values were calculated from linear regression of the 

corresponding thickness of 3000 vertices.

From 15 to 22 GW, thickness increased significantly throughout nearly the whole 

cerebellum, except for the extreme lateral portions of both hemispheres (Fig. 4A). The 

central part of the anterior cerebellar surface adjacent to the brainstem grew more slowly 

than its surroundings. For the posterior surface of the cerebellum, the degree of increase for 

the two hemispheres was high. The apex of the vermis increased at a faster rate than the 

adjacent parts of the hemispheres in the cerebellar superior surface, whereas the inferior–

posterior surface of the vermis grew comparatively slowly. Overall, the cerebellar anterior 

lobe had a faster rate of growth than most of the posterior lobe, and the subregions of the 

posterior lobe increased in a nonhomogeneous manner (Fig. 4B).

4. Discussion

We calculated the absolute and relative volumes of the fetal cerebellum and investigated its 

regional growth patterns during the early second trimester. The absolute volume of the fetal 

cerebellum followed a quadratic growth trajectory, while the relative volume tendency 

suggested faster growth than the cerebrum after 17 GW. Shape analysis demonstrated that 

both extreme lateral portions of the cerebellar hemispheres had a significantly lower rate of 
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growth compared with the other regions, and the anterior lobe grew faster than most of the 

posterior lobe during the period from 15 to 22 GW.

4.1. Volume analysis

In the current study, the growth trajectory of the cerebellar absolute volume during the early 

second trimester was best fitted by the second-order polynomial regression curve (Fig. 3A). 

The result was in good agreement with previous ultrasound and MRI studies of fetuses 

ranging in age from 16 to 40 GW (Chang et al., 2000; Hatab et al., 2008; Vatansever et al., 

2013). The quadratic growth pattern indicated that the pattern of cerebellar volume growth 

accelerated over the prenatal period. However, some studies have conducted linear 

regression analyses of cerebellar volume growth in fetuses and preterm infants 

(Limperopoulos et al., 2005; Clouchoux et al., 2012). The differences in volume calculations 

among these studies may have resulted from the use of different anisotropic resolutions, 

segmentation protocols, and gestational age estimation methods. We reported that the 

absolute volume of the fetal cerebellum showed a 5.3-fold increase (from 0.3 to 1.6 cm3) 

during the gestational period between 15 and 22 weeks. A 14-fold increase (from1.6 to 22.9 

cm3) in cerebellar volume was observed from 21.71 to 38.89 GW based on in vivo MRI 

(Vatansever et al., 2013). Therefore, the cerebellum maintains a rapid rate of growth in 

volume during the second and third trimesters.

We found that the growth rate of the cerebellum exceeded that of the cerebrum after 17 GW 

(Fig. 3B). As assessed by 3-D MRI and ultrasound, the cerebellum increased in volume 

more rapidly than the cerebrum did from 20 to 44 GW (Limperopoulos et al., 2005; Scott et 

al., 2012; Kyriakopoulou et al., 2017). According to weight measurements, the proportion of 

the cerebellum to the total brain steadily increased after 19 GW (Guihard-Costa and 

Larroche, 1990). During the development of the cerebral cortex, neurons were generated in 

the ventricular and subventricular zones and migrated outwards to the pial surface, whereas 

cerebellar growth was marked by the inward migration of cells from the external to the 

internal granular layers (Sidman and Rakic, 1973). Beginning around the 16th GW, the 

postmitotic granule cells from the external granular layer migrated inwards, and the Purkinje 

cells enlarged in size and developed apical dendritic trees (ten Donkelaar et al., 2003; 

Sidman and Rakic, 1973). These cellular developments may be related to the faster growth 

of the cerebellum. In addition, the relative volume of the cerebellum showed a more 

prominent increase during the postnatal period. The total brain volume increased by 101% in 

the first year, whereas the cerebellar volume showed a significantly greater increase of 240% 

(Knickmeyer et al., 2008). Taken together, the greater growth pattern of the cerebellum 

compared to the cerebrum may begin as early as the 17th GW and continue until the early 

postnatal period.

4.2. Shape analysis

We constructed a template representing the average surface of the cerebellum at early 

gestational ages (from 15 to 22 GW), during which it showed a dumbbell shape (Fig. 2) that 

was different from the inverted heart shape observed from 20 to 31 GW (Scott et al., 2012). 

During the second and third trimesters, the cerebellum exhibited rapid growth, including an 

increase in surface foliation, deepening of the primary fissures, and the emergence of 
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secondary fissures (Chong et al., 1997; Lavezzi et al., 2006). These developments may 

underlie the remarkable changes that occur in the shape of the cerebellum.

Studies on cellular development found that the cerebellar cortex underwent greater cell 

proliferation along the longitudinal axis during the third and fifth months of pregnancy 

(Keibel and Mall, 1912; Patten, 1968). Specifically, longitudinal growth occurred earlier in 

the vermis and later extended to the cerebellar hemispheres (Keibel and Mall, 1912). In a 

study of measurements of cerebellar linear dimensions, the height and anterior-posterior 

diameter of the vermis were found to increase by 220% and 208%, respectively, and these 

increases were greater than that found along the transverse cerebellar diameter (180%) 

between 19 and 37 weeks of gestation (Triulzi et al., 2005). Our results, based on the shape 

analysis method, showed that the extreme lateral portions of the cerebellar hemispheres had 

the slowest growth during the early second trimester (Fig. 4A). Overall, the cerebellar 

hemispheres developed later than the vermis in the early fetal period. According to 

phylogenetic criteria, the vermis belongs to the paleocerebellum, and the cerebellar 

hemispheres belong to the neocerebellum. The phylogenetically older parts of the 

cerebellum develop earlier than the younger parts, in accordance with cerebral cortical 

development (Gogtay et al., 2004). The cerebellum was characterized by transverse growth 

during the third trimester (Malinger et al., 2001; Tubbs and Oakes, 2013). Adolescents born 

severely prematurely showed significantly reduced cerebellar volume, especially in the 

lateral lobes (Allin et al., 2005). A study of preterm newborns showed that the rate of 

volume expansion was higher in the lateral convexity of the cerebellar hemispheres (Kim et 

al., 2016). The hemispheres of the cerebellum, especially the lateral portions, may undergo 

more rapid growth in the late fetal period.

The differences in the regional development features of the cerebellum observed in this 

study may be associated with functional topography. The cerebellum is divided into two 

large main lobes (the anterior lobe and the posterior lob) by the primary fissures. Our results 

showed that the anterior lobe of the cerebellum grew faster than most of the posterior lobe 

between 15 and 22 GW (Fig. 4B). Prior cerebellar functional connectivity and task-related 

studies have shown that the anterior lobe was mainly involved in sensorimotor control, while 

the majority of the posterior lobe, which was interconnected with cerebral association 

cortices, participated in cognitive and emotional processing (Buckner et al., 2011; O’Reilly 

et al., 2010; Stoodley and Schmahmann, 2009; Stoodley et al., 2012). The cerebral 

association cortices participate in a range of cognitive processes and mature later in 

development (Fuster, 2002; Gogtay et al., 2004). Thus, we cautiously propose that the 

different growth rates of the cerebellar subregions are related to their functional 

characteristics. In addition, the regions of the cerebral cortex and the cerebellum that 

participate in cognitive processing mature later than other regions. There may be similar 

trajectories of growth within cerebro-cerebellar circuits.

The growth of the superior surface of the cerebellum was faster than that of its inferior 

regions (Fig. 4B). This may be due to evolution, in that the superior regions of the 

cerebellum received granular cells earlier than the inferior regions (Altman and Bayer, 

1978). The inferior-posterior part of the vermis grew more slowly than its surrounding 

structures (Fig. 4B, inferior view), which may be associated with the increase in the 
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curvature of the posterolateral fissure that occurred from 15 to 28 GW (Nowakowska-Kotas 

et al., 2014). Additionally, changes in surface shape statistics may reflect the influence of the 

surrounding tissues. The relatively slower growth along the central part of the anterior 

cerebellar surface (Fig. 4B, anterior view) appeared to be caused by the expansion of the 

brainstem. The posterior surface of the two hemispheres exhibited rapid growth (Fig. 4B, 

posterior view), which may have been promoted by the surrounding vacant space. These 

results were consistent with previous observations of the cerebellar surface curvature (Scott 

et al., 2012). From 21 to 30 GW, the anterior lobe facing the brainstem of the hemispheres 

increased in concavity, while the inferior-posterior lobe of the cerebellar hemispheres 

increased in convexity.

In summary, cerebellar subdivisions based on phylogenetic and functional characteristics 

showed distinct patterns of growth in this study that may be related to their roles in different 

aspects of development.

4.3. Limitations and future directions

This study has several limitations. We did not measure hemispheric differences in cerebellar 

volume. While structural and functional asymmetries have been identified in the adult 

cerebellum (Wang et al., 2013), Scott found that there was no significant difference between 

the right and left hemispheric volumes of fetal cerebellum from 20 to 31 GW (Scott et al., 

2012). Our sample size was too small to perform analysis of sex-based differences in fetal 

cerebellar development. Sex differences in cerebellar volume have been observed in 

childhood and adolescence (Brain Development Cooperative, 2012; Wierenga et al., 2014). 

However, virtually no studies have evaluated sex differences in cerebellar growth in fetuses 

or children younger than 3 years old.

In this study, we included fetal specimens obtained during medically indicated abortions that 

were attributed to stressful intrauterine conditions or teratogenesis infection. However, we 

set strict specimen inclusion criteria, and 35 specimens were chosen from a total of 49 

fetuses at 15–22 GW. Ultrasound and 3.0-T MR prescans were conducted by two pediatric 

neuro-radiologists to ensure that the fetal brain was anatomically normal based on the size of 

the cerebrum and the developmental status of sulci, the lateral ventricle, and the corpus 

callosum. Fetuses for which there was a discrepancy between the two radiologists about 

brain development were excluded, and only fetuses with a morphologically normal central 

nervous system were included in this study. In addition, the maternal pregnancy records 

indicated no documented history of fetal chromosomal abnormality, maternal genetic 

disease, excessive alcohol intake, smoking, severe undernutrition, or eclampsia seizures.

Another limitation of our study is that the morphological differences between formalin-fixed 

samples and in vivo brains should be considered when applying the present results to clinical 

observations. Tissue degradation caused by formalin fixation is common in postmortem 

studies (Stan et al., 2006), and minor tissue degradation may slightly affect volume 

measurements and shape statistical results. However, the MRI scans performed in this study 

were acquired while the brain was in the skull, and the time interval between the collection 

of specimens and the MRI scans was less than two months in order to minimize tissue 

degradation. Although the results presented in this study cannot be directly used in clinical 
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diagnoses, they provide information that is beneficial for evaluating fetal cerebellar 

development and can be used as a reference for MRI examinations obtained at lower field 

strengths (Lin et al., 2011).

Moreover, another limitation of our study is that we made no histological sections to 

compare results to those obtained via high-resolution MR images because fetal specimens 

are extremely difficult to obtain. Due to the limitation of materials, this study was performed 

using cross-sectional rather than longitudinal analysis to characterize global and regional 

growth of the cerebellum during the early second trimester.

Early anatomical and embryological studies have established MRI templates of the 

cerebellum based on formalin-fixed normal fetal specimens at gestational ages ranging 

between 9 and 28 weeks (Chong et al., 1997; Nakayama and Yamada, 1999). However, 

those templates described only normal cerebellar development features and could not be 

used to improve automated segmentation of fetal cerebellar studies. A spatiotemporal atlas 

including the cerebellum has been constructed for the premature and postnatal brain from 28 

to 47 GW (Kuklisova--Murgasova et al., 2011). In future studies, we will continue to collect 

more fetal data and construct a spatiotemporal atlas of the cerebellum at each gestational 

week, and this will significantly improve the automatic analysis of cerebellum MRI data.

5. Conclusions

In this study, we characterized 3D morphological development of fetal cerebellum during the 

early second trimester using 7.0-T high-resolution MR images. The advanced shape analysis 

method revealed that different cerebellar subregions exhibited distinctive developmental 

trajectories. The absolute and relative volumes of the cerebellum were both determined. Our 

results complement our current knowledge of the early growth pattern of the human 

cerebellum and may prove valuable in improving understanding of cerebellar 

dysmorphology, both neurological and psychological.
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Fig. 1. 
Segmentation and surface reconstruction of the cerebellum of a 20 GW subject. The 

boundaries of the cerebellum were delineated in the axial plane (a) and confirmed in the 

sagittal (b) and coronal (c) planes to verify the segmentation accuracy. (d) The 3D 

reconstructed cerebellar surface was displayed simultaneously. Abbreviations: (pa) 

pontocerebellar angle; (tb) tentorium cerebelli; (pf) primary fissure; (ppf) prepyramidal 

fissure; (plf) posterolateral fissure.
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Fig. 2. 
Superior view of the 3D representation model of the cerebellar template (A) and its 

corresponding surface meshes (B).
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Fig. 3. 
Scattergram showing the correlations between cerebellar absolute volume (A) and relative 

volume (B) and gestational age in weeks.
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Fig. 4. 
Shape analysis results of the cerebellar surface. (A) P-value map is overlaid on the template 

of the cerebellum. (B) Regression coefficient map of the shape statistics. Superior, inferior, 

anterior, and posterior views are shown. Abbreviations: (AL) anterior lobe; (PL) posterior 

lobe.
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Table 1

Study demographics of the specimens.

Gestational week Number (total 
35)

Gender (male/
female)

Termination of pregnancy Formalin fixation time prior to scanning 
(days)

15 4 1/3 SA (2), TI, UNK 35, 42, 27, 51

16 3 2/1 SA (2), SIC 33, 56, 47

17 4 1/3 SA (2), SIC, UNK 25, 38, 40, 28

18 5 3/2 SA (2), TI, UNK (2) 16, 50, 29, 32, 23

19 4 2/2 SA (2), SIC (2) 43, 26, 34, 53

20 5 1/4 SA (3), SIC, UNK 27, 34, 44, 37, 50

21 6 1/5 SA (2), SIC (2), UNK (2) 42, 37, 20, 19, 23, 27

22 4 1/3 SIC (2), UNK (2) 43, 53, 24, 30

Abbreviations: TI, teratogenesis infection; SA, spontaneous abortion; SIC, stressful intrauterine conditions; UNK, unknown reasons of 
malformation (not brain) detected by MRI.
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