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Abstract

Despite major methodological developments, Bayesian inference in Gaussian

graphical models remains challenging in high dimension due to the tremendous

size of the model space. This article proposes a method to infer the marginal

and conditional independence structures between variables by multiple testing,

which bypasses the exploration of the model space. Specifically, we introduce

closed‐form Bayes factors under the Gaussian conjugate model to evaluate the

null hypotheses of marginal and conditional independence between variables.

Their computation for all pairs of variables is shown to be extremely efficient,

thereby allowing us to address large problems with thousands of nodes as

required by modern applications. Moreover, we derive exact tail probabilities

from the null distributions of the Bayes factors. These allow the use of any

multiplicity correction procedure to control error rates for incorrect edge

inclusion. We demonstrate the proposed approach on various simulated

examples as well as on a large gene expression data set from The Cancer

Genome Atlas.
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1 | INTRODUCTION

Identifying the complex relationships between molecular
entities is central to the understanding of disease biology.
The advent of high‐throughput biotechnologies has
provided opportunity to study this interplay and con-
siderably stimulated research in this direction. Many
studies now exploit high‐throughput molecular data to
describe the functional relationships between molecular
entities such as genes, proteins, or metabolites.

Graphical models provide a natural basis for the
statistical description and analysis of relationships
between variables. In applications, interest often lies in
the undirected graph that describes the conditional

dependence structure among variables. When the joint
distribution of the variables is assumed to be Gaussian,
this is known to be fully coded in the inverse‐covariance
matrix ωΩ = { }ij (Dempster, 1972). Precisely, a pair i j( , )
of variables with ≤ ≤i j p1 < , will be conditionally
independent (given all the remaining variables) when
ω = 0ij . The present article treats inference of the
undirected graph in context of the Gaussian model when
the number of variables p is potentially larger than the
sample size.

Despite major methodological developments, Bayesian
inference for Gaussian graphical models remains challen-
ging. The standard approach casts the problem as a model
selection problem, and first requires specification of prior
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distributions over all possible graphical models and their
parameter spaces. Such specification is not straightforward
as it is desirable to favor parsimonious models and address
the compatibility of priors across models (Carvalho and
Scott, 2009; Consonni and La Rocca, 2012). Next, the
inference procedure is hindered by the search over a very
high‐dimensional model space where the number of
possible graphical models grows superexponentially with
the number of variables. Full exploration of the model
space is, therefore, only possible when the number of
variables is very small (say ≤p 10). In moderate‐dimen-
sional and high‐dimensional settings where p is in the
tens, hundreds, or thousands, the model space must
generally be searched stochastically (Wang and Li, 2012;
Mohammadi and Wit, 2015). However, due to the
tremendous size of the model space in such settings, it
may be difficult (or impossible) to identify with confidence
the graphical model that is best supported by the data.
Indeed, many models may almost equally be supported by
the data. Accordingly, it is preferable to account for model
uncertainty by performing Bayesian model averaging and
to infer the graphical structure by selecting edges with the
highest marginal posterior probabilities, for example, by
exploiting their connection to a Bayesian version of the
false discovery rate (Mitra et al., 2013; Baladandayuthapa-
ni et al., 2014; Peterson et al., 2015).

To bypass the difficulties associated with the standard
approach, this article proposes to use an alternative
framework based on directly selecting edges by multiple
testing of hypotheses about pairwise conditional inde-
pendence using closed‐form Bayes factors. These are
obtained using the conditional approach of Dickey
(1971), in which the prior under the null hypothesis is
derived from that of the alternative by conditioning on
the null hypothesis. This approach was also adopted by
Giudici (1995) to derive a closed‐form Bayes factor for
conditional independence. However, the latter relies on
elements of the inverse of the sample covariance matrix
which is singular when the number of variables is large
relative to the sample size. We circumvent this issue and
introduce new closed‐form Bayes factors for marginal
and conditional independence that are suitable in such
settings. Moreover, we show the consistency of the Bayes
factors and derive exact tail probabilities from their null
distributions to help address the multiplicity problem and
control error rates for incorrect edge inclusion. The
proposed procedure, available via the R package beam
on the CRAN website, is shown to be computationally
very efficient, addressing problems with thousands of
nodes in just a few seconds.

The next section introduces notations and the
Gaussian conjugate (GC) model. Section 3 presents a
closed‐form Bayes factor to evaluate the null hypothesis

of conditional independence between any two variables
and studies its consistency (all results about marginal
independence are provided in Appendix S2). Section 4
details graph inference and discusses the multiple testing
problem and error control. The performance of the
proposed approach is compared to Bayesian and non‐
Bayesian methods on simulated data in Section 5. Section
6 illustrates our method on a large gene expression data
set from The Cancer Genome Atlas.

2 | BACKGROUND

2.1 | Notation

We write ∣x μ μNΣ Σ, ~ ( , )p to indicate that ∈x p has a
multivariate normal distribution with mean μ and positive‐
definite covariance matrix ∣ α IW αΣ Ω A A, , ~ ( , )d to in-
dicate thatΩ has an Inverse‐Wishart distribution with scale
matrix A and degree of freedom α d> + 1, and
β β b b~ ( , )1 2 to indicate that β has a β distribution with
shape parameters b1 and b2. xΓ ( )d is the d‐dimensional
gamma function, the operator vec denotes the linear
transformation that stacks the columns of a matrix into a
vector and ⊗ denotes the Kronecker product. We use the
subscripts aa bb ab, , , and ba to refer to the submatrices
Σ Σ Σ, ,aa bb ab, and Σba of a p p× symmetric matrixΣ whose
block‐wise decomposition is implied by a partition of its
rows and columns into two disjoint subsets indexed by
⊂a p{1,…, } and ⧹b p a= {1,…, } .

2.2 | The GC model

Given an n p× observation matrix Y Y Y= ( ,…, )p1 , the GC
model is defined by

∣ ⊗
∣
vec N

δ IW δ p δ
Y Σ Σ I

Σ D D
( ) ~ (0, ),
, ~ (( − − 1) , ),

np n

p
(1)

with D positive definite, In the n‐dimensional identity
matrix, and δ p> + 1. Here, the covariance matrix with
Kronecker product structure makes explicit the assump-
tion of independence for the rows of Y and the
dependence of its columns via the covariance Σ.

Due to conjugacy, model (1) offers closed‐form
Bayesian estimators of the covariance matrix Σ and its
inverse Ω Σ= −1. The posterior expectation of Σ is

∣ ∕E δ p δ n pΣ Y D S( ) = {( − − 1) + } ( + − − 1), (2)

where S Y Y= T , and that of its inverse is

∣E δ n δ pΩ Y D S( ) = ( + ){( − − 1) + } .−1 (3)
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It is important to note that estimator (2) is a
linear shrinkage estimator that is a convex linear
combination of the maximum likelihood estimator
 nΣ S=mle

−1 of Σ and E Σ D( ) = , with weight
∕ ∈α δ p δ n p= ( − − 1) ( + − − 1) (0, 1) (Chen, 1979;

Hannart and Naveau, 2014). Likewise, estimator (3) is
recognized as a ridge‐type estimator of the precision
matrix (Kubokawa and Srivastava, 2008; Van Wierin-
gen and Peeters, 2016). The next proposition presents
some properties of these two estimators. All proofs are
presented in Appendix S4.

Proposition 1. Let estimators (2) and (3) depend on δ
with nD, , and p fixed, and denote them by Σδ and Ωδ,
respectively. Then the following properties hold:

(1) 
→∞
Σ Dlim =

δ
δ ;

(2) 
→∞
Ω Dlim =

δ
δ

−1;

(3)  
→

Σ Σlim =
δ p

δ
+1

mle;

(4)  ∕
→

n p nΩ Σlim = {( + + 1) }
δ p

δ
+1

mle
−1

, if n p> ;

(5) Σδ and Ωδ are positive definite.

Additionally, the asymptotic properties of estimators
(2) and (3) when → ∞n are the same as those of the
maximum likelihood estimators Σmle and Σmle

−1
of Σ andΩ.

Proposition 2 summarizes.

Proposition 2. Let estimator (2) and (3) depend on n
with δD, , and p be fixed, and denote them by Σn and Ωn,
respectively. Then the following properties hold:

(1)  
→∞
Σ Σlim =

n
n mle;

(2) 
→∞
Ω Σlim =

n
n mle

−1
.

2.3 | Choice of hyperparameters

In model (1), the prior matrix D represents the prior
expectation of Σ. It may also be interpreted as the shrinkage
target toward which the maximum likelihood estimator of
the covariance matrix is shrunk, since the posterior
expectation of Σ is a linear shrinkage estimator. For these
reasons,D can be chosen to encourage estimator (2) to have
specific structures (eg, autoregressives or low ranks).
Ideally, in such cases the matrixD should be parameterized
by a low‐dimensional vector of hyperparameters that are
interpretable and for which prior knowledge exists. As often
this knowledge is absent, it is common to choose D I= p.
Throughout this paper, we use D I= p and standardize the

n p× observation matrix Y so that for ≤ ≤j p Y1 , 1 = 0j
T

n
and ∕nY Y = 1j

T
j , where 1n is an n × 1 vector whose

elements are all equal to 1.
The other hyperparameter δ clearly acts as a regular-

ization parameter (see Equations (2) and (3)) and its value
must therefore be chosen carefully. Following Chen (1979)
and Hannart and Naveau (2014), we use empirical Bayes
and estimate δ by the value δ maximizing the marginal (or
integrated) likelihood of the model (see Appendix S2). We
are referring the reader to Hannart and Naveau (2014,
Section 2.3) for the proof that the asymptotic properties of
estimator (2) and (3) (Proposition 1) hold when δ δ= .

3 | BAYES FACTORS

3.1 | Bayes factor for conditional
independence

In this section we derive an analytic expression for the
Bayes factor evaluating the null hypothesis of conditional
independence between two variables in context of model
(1). For ease of notation, we define δ pF D= ( − − 1)
and T F S= + . We wish to evaluate the null hypothesis
of conditional independence, denoted H ij0, , between two
coordinates i and ≤ ≤j i j p, 1 < . We test H ω: = 0ij ij0,
against the alternative hypothesis ≠H ω: 0ij ij1, , where ωij
is the (i,j)th element of Ω. The Bayes factor evaluating
evidence in favor of H ij1, is

∫
∫

∣
∣BF

p p d
p p d

Y Σ Σ Σ
Y Σ Σ Σ

=
( ) ( )
( ) ( )

,ij
1 1

0
0

0
0 0 (4)

where, by definition, Σ0 is such that ω = 0ij .
Giudici (1995) showed that (4) could be obtained in

closed form by reparameterizing the GC model and
defining a compatible prior under the null hypothesis
using the approach of Dickey (1971). However, the
proposed Bayes factor does not exist in high‐dimensional
settings where p n> because it depends on elements of
S−1. This problem is here circumvented by factorizing the
joint likelihood of the observed data as ∣p Y Σ( ) =

∣ ∣ ∣p pY Σ Y Y B Σ( ) ( , , )b bb a b a b aa b. , the product of a margin-
al and conditional likelihood. This factorization arises
from the partition of Y Y Y= [ , ]a b into two disjoint
subsets indexed by a i j= { , } and ⧹b V a= . The quantity

∣B Σ Σ=a b bb ba
−1 represents the matrix of regression coeffi-

cients obtained when regressing the variables indexed by
a onto the variables indexed by b, whereas Σ =aa b.
Σ Σ Σ Σ−aa ab bb ba

−1 denotes the residual covariance matrix.
The factorization of the likelihood allows conveniently

to simplify (4). Using the change of variable from
Σ Σ Σ( , , )aa ab bb to ∣Σ B Σ( , , )aa b a b bb. together with the fact
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that Σbb is independent of ∣B Σ( , )a b aa b. , most nuisance
parameters are integrated out and (4) becomes

∬
∬

∣
∣

∣ ∣ ∣
∣ ∣ ∣

BF
p p d d
p p d d

Y Y B Σ B Σ B Σ
Y Y B Σ B Σ B Σ

=
( , , ) ( , )
( , , ) ( , )

.ij
a b a b aa b a b aa b a b aa b

a b a b aa b a b aa b a b aa b

1 . 1 . .

0 .
0

0 .
0

.
0

(5)

Note that by the standard properties of the multi-
variate normal and inverse‐Wishart distributions (Gupta
and Nagar, 2000, Theorems 2.3.12 and 3.3.9) the densities
under the alternative model are

∣ ⊗
∣ ⊗

∣ ∣
∣ ∣

vec N vec
vec N vec

IW δ

Y Y B Σ Y B Σ I
B Σ F Σ F

Σ F

( ) , , ~ ( ( ), ),
( ) ~ ( ( ), ),

~ ( , ),

a b a b aa b n b a b aa b n

a b aa b p a b aa b bb

aa b aa b

. ×2 .

. ( −2)×2 .
−1

. 2 .

(6)

where ∣F F F=a b bb ba
−1 and F F F F F= −aa b aa ab bb ba.

−1 . There-
fore, the simplification of Bayes factor (4) intuitively tells
us that evaluating the conditional independence between
any two coordinates within the p‐dimensional GC model
(1) is equivalent to evaluating the diagonality of the
residual covariance matrix in a bivariate regression model.

To obtain (5) in closed form we, similar to Giudici
(1995), define a compatible prior for ∣B Σ( , )a b aa b. under
the null hypothesis H ij0, using the conditional
approach of Dickey (1971). Precisely, the prior density
under H ij0, is derived from that under H ij1, by
conditioning on H ij0, . The densities under the null
model are therefore

∣ ⊗
∣ ⊗

∣
∬

∣ ∣
∣ ∣
∣ ∣

∣
∣ ∣

vec N vec
vec N vec
p p H

Y Y B Σ Y B Σ I
B Σ F Σ F
B Σ B Σ

( ) , , ~ ( ( ), ),
( ) ~ ( ( ), ),
( , ) = ( , )

= ,

a b a b aa b n b a b aa b n

a b aa b p a b aa b bb

a b aa b a b aa b ij
p H

p H d d
B Σ

B Σ B Σ

.
0

×2 .
0

.
0

( −2)×2 .
0 −1

0 .
0

1 . 0,
( , , )

( , , )
a b aa b ij

a b aa b ij a b aa b

1 . 0,

1 . 0, .

(7)

where Σaa b.0 is such that ω = 0ij .
We now state the main result of this section.

Lemma 1. Assume (5) holds with densities defined by
(6) and (7). Then the Bayes factor in favor of H ij1, is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟BF k δ n

r

r
g g
q q

= ( , )
(1 − )

(1 − )
,ij

g
δ

q
δ n

ii jj

ii jj
1

2 /2

2 (( + )/2)

1/2
ij

ij

with

k δ n δ n δ n δ
δ δ δ n

( , ) = Γ(( + )/2)Γ(( + − 1)/2)Γ (( + 1)/2)
Γ( /2)Γ(( − 1)/2)Γ (( + + 1)/2)

,1
2

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥r

g
g g

r
q
q q

g g
g g

q q
q qF T= , = , = , = .g

ij

ii jj
q

ij

ii jj
aa b

ii ij

ij jj
aa b

ii ij

ij jj
. .ij ij

Remark 1. In Lemma 1, the quantities gii and qii (resp.,
gjj and qjj) can be thought of representing prior and
posterior partial variances for coordinate i (resp., j),
whereas rgij and rqij can be thought of representing prior
and posterior partial correlations.

Remark 2. The Bayes factor proposed by Giudici (1995,
Lemma 3), in contrast to Lemma 1, defines the quantities
gij and qij such that the matrices gF = { }aa b ij. and

qF S+ = { }aa b aa b ij. . , with S S S S S= −aa b aa ab bb ba.
−1 . Note

that here Saa b. only exists when Sbb is invertible
(ie, when n is large relatively to p) whereas T =aa b.
T T T T−aa ab bb ba

−1 defined in Lemma 1 exists even
when p n> because T is always positive definite
(a consequence of Proposition 1).

Remark 3. Standard matrix algebra (Gupta and Nagar,
2000, Theorem 1.2.3.(v)) tells us that F F= {( ) }aa b aa.

−1 −1

and T T= {( ) }aa b aa.
−1 −1. This means that the elements of

the 2 × 2 matrices Faa b. and Taa b. can, respectively, be
obtained from the elements of F−1 and T−1. The
computation of the Bayes factor in Lemma 1 for all
pairs of variables i j( , ) hence boils down to computing
F−1 and T−1.

3.2 | Consistency

In this section, we consider the selection consistency of the
Bayes factor defined in Lemma 1. A Bayes factor is said to
be consistent when →∞BFlim = 0n ij if H ij0, is true and

∞→∞BFlim =n ij if H ij1, is true (Wang and Maruyama,
2016). In other words, the consistency property means that
the true hypothesis will be selected when enough data are
provided. We now state the following result.

Lemma 2. If the sample correlation matrix has a limit
as → ∞n that is positive definite, then the Bayes factor BFij
is consistent in selection.

4 | GRAPH STRUCTURE
RECOVERY

4.1 | Inference by multiple testing

We propose to infer the conditional independence graph
by multiple testing of hypotheses using the Bayes factor
introduced in the previous section. Precisely, we propose
to infer the edge set ∣ ≠E i j ω= {( , ) 0}U ij of the

4 | LEDAY AND RICHARDSON
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undirected graph U V E= ( , )U with vertex set V by
evaluating H ω: = 0ij ij0, (absence of an edge) vs.

≠H ω: 0ij ij1, (presence of an edge) separately for each
pair i j( , ) of variables.

On the whole, the multiple testing approach consists in
translating the pattern of rejected hypotheses into a graph.
The approach is justified by the fact that, for the undirected
graph, the conditioning sets in the pairwise independence
statements do not depend on the structure of the graph
(Drton and Perlman, 2007). This means that these
statements can be evaluated individually by hypothesis
testing. Here, these tests are carried out separately using
model (1) that encodes the complete undirected graph
where no independence structure is imposed.

4.2 | Scaled Bayes factors

To infer the graph structure it is necessary to compare Bayes
factors between all ∕p p( − 1) 2 pairs of variables. However,
the Bayes factor defined in Lemma 1 is not scale‐invariant
(due to its last term) and, hence, not comparable between
different pairs of variables. In light of this, we define a scaled
version of this Bayes factor that can more appropriately rank
edges of graphU . Corollary 1 summarizes.

Corollary 1. The scaled Bayes factor in favor of H ij1, is

sBF k δ n
r

r
= ( , )

(1 − )
(1 − )

,ij
g

δ

q
δ n1

2 /2

2 (( + )/2)
ij

ij

with quantities defined as in Lemma 1.

Remark 4. When the prior matrix D I= p (absence of
prior knowledge), then r = 0gij and the ordering provided
by the scaled Bayes factor in Corollary 1 for all pairs i j( , )
is identical to the ordering provided by the square of the
posterior partial correlation rqij. This means that the graph
selected when using a thresholding rule on the Bayes
factors is the same as that obtained using the equivalent
thresholding rule on the posterior correlations.

4.3 | Multiplicity adjustment and error
control

To address the multiplicity problem, we propose to use
the tail or error probability associated with the null
distribution of each scaled Bayes factor. The tail
probability is closely related to the notion of a P‐value:
the Bayes factor is treated as a random variable and its
distribution, which follows that of the random data, is
used to make a probability statement about its observed
value. Then, to recover the structure of a graph, the tail

probabilities obtained from all ∕p p( − 1) 2 comparisons
are adjusted using standard multiplicity correction
procedures to control, say, the family‐wise error or false
discovery rates (Goeman and Solari, 2014).

In the following, we study the conditional null
distribution of the Bayes factor defined in Corollary 1.
The conditional null distribution here refers to the
distribution that would be obtained by shuffling or
permuting labels of the observations (Jiang et al., 2017).
Under this scheme, we shall define sBF bPr( > )ij the
probability of observing a value for the scaled Bayes
factor that is larger than b. Next, we show that this tail
probability can be obtained analytically without the need
of a permutation algorithm, thus providing a computa-
tional advantage. Before, we state three results which will
be used in our argumentation.

Proposition 3. Suppose W dΦ Σ~ ( , )2 , where

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ϕ ϕ ϕ φ
ϕ ϕ φ ϕ

σ σ σ ρ
σ σ ρ σ

Φ Σ= and =1
2

1 2

1 2 2
2

1
2

1 2

1 2 2
2

are parametrized in terms of their correlations
≤ ≤φ− 1 1 and ≤ ≤ρ− 1 1. Then,

∣ ∕ ∕φ ρ β d( = 0)~ (1 2, ( − 1) 2).2

Proposition 4. The following equality holds:

∣ ∣
∣ ∣

Y Y B Y Y F B F F F
Y Y F I Y F Y Y Y F
− ̄ ( + ) ̄ +

= ( − ) ( + ) ( − ),
a
T

a a b
T

b
T

b bb a b ab bb ba

a b a b
T

n b bb b
T

a b a b

−1

−1 −1

where ∣B Y Y F Y Y F̄ = ( + ) ( + )a b b
T

b bb b
T

a ba
−1 .

Proposition 5. Let Σaa b. be fixed. Then, according to
model (6), we have

∣ ∣ W nY Y F I Y F Y Y Y F Σ( − ) ( + ) ( − )~ ( , ).a b a b
T

n b bb b
T

a b a b aa b
−1 −1

2 .

The only term of the Bayes factor that depends on the
data is ∕r q q q= ( )q ij ii jj

−1 2
ij , where, we recall, qij is such that
qT = { }aa b ij. . Proposition 4 suggests that T F Z= +aa b aa b. . ,

with ∣ ∣Z Y Y F I Y F Y Y Y F= ( − ) ( + ) ( − )a b a b
T

n b bb b
T

a b a b
−1 −1 .

Hence,

∕ ∕
∕ ∕r

g g r z z r
g z g z

=
( ) + ( )
( + ) ( + )

,q
ii jj g ii jj z

ii ii jj jj

1 2 1 2

1 2 1 2ij

ij ij

where zZ = { }ij and ∕r z z z= ( )z ij ii jj
−1 2

ij . This means that
sBF b r cPr{ > } = Pr{ > }ij z

2
ij , where c is a quantity that

depends on δ n g g r z z{ , , , , , , }ii jj g ii jjij . Propositions 3 and 5

LEDAY AND RICHARDSON | 5
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imply that W nZ Σ~ ( , )aa b2 . and ∣ ∕ ∕r H β n~ (1 2, ( − 1) 2)z ij
2

0,ij .
Therefore, the tail probability of the Bayes factor can be
computed exactly using ∕ ∕β n(1 2, ( − 1) 2). We remark
that the definition of the type 1 error is conditioning on
δ n g g r z z{ , , , , , , }ii jj g ii jjij .

5 | NUMERICAL EXPERIMENTS

5.1 | Comparison to Bayesian methods

In this section, we compare the performance of our
approach with other Bayesian methods. For computa-
tional reasons, we consider a moderate‐dimensional
problem. We generate 50 datasets of size ∈n {25,
50, 100} from a multivariate Gaussian distribution with
mean vector 0 and 50 × 50 inverse‐covariance matrix Φ.
The matrixΦ is a sparse matrix which we generate from a
G‐Wishart distribution with scale matrix equal to the
identity and b = 4 degrees of freedom (using the function
bdgraph.sim of R package BDgraph). Four different
graph structures are considered, namely the band,
cluster, hub, and random structures, which we illustrate
in Figure S1.

We compare our method to two sampling‐based
approaches based on the birth‐death and reversible jump
Markov chain Monte Carlo (MCMC) algorithms, devel-
oped by Mohammadi and Wit (2015; 2017), using 100 000
sweeps and a burn‐in period of 50 000 updates. We also
consider the method of Schwaller et al. (2017) that offers
closed‐form inference within the class of tree‐structured
graphical models. For each method we obtain the
marginal posterior probabilities of edge inclusion, either
via the sampling algorithm or exactly.

To evaluate performance we report the area under the
receiver operating characteristic (ROC) curve, which
depicts the true positive rate TP/(TP+ FN) as a function
of the false positive rate FP/(FP + TP), overall possible
thresholds on the marginal posterior probabilities of edge
inclusion (or tail probabilities in case of our method).
Here, TP FP, , and FN denote the number of true
positives, false positives, and false negatives, respectively.
We also report the area under the precision recall (PR)
curve, which depict the precision TP/(TP+ FP) as a
function of the true positive rate (also named recall).

Table 1 summarizes simulation results. It shows that
our method performs well compared to other Bayesian
methods in recovering the different graph structures. For
instance, our method often achieves the largest areas
under the ROC and PR curves for different graph
structures and sample sizes. Moreover, a marked
improvement is observed in cases where the sample size
is small (n = 25) with respect to p. The results also show

nonnegligible differences in performance between the
birth‐death and reversible jump MCMC algorithms,
which suggests that performance can be affected by the
choice of sampling algorithm.

Overall, the simulation results demonstrate that our
method can recover various graphical structures at least
as accurately as other Bayesian approaches at a very low
computation cost (see Figure S2). Our method achieves
generally a greater area under the PR curve than others.
The present results also confirm that obtained by
Schwaller et al. (2017), namely, the relative good
performance of tree‐structured graphical models com-
pared to sampling‐based approaches despite stronger
restrictions on the class of graphical models. However,
the performance of the approach can degrade in some
cases (eg, cluster structures).

5.2 | Comparison to non‐Bayesian
methods

The performance of the proposed method is compared
in higher dimensional settings to non‐Bayesian ap-
proaches that carry out graphical model selection via
multiple testing. We generate 50 datasets of size
n = 100 from a p‐dimensional Gaussian distribution
mean vector 0 and inverse‐covariance matrix Ψ .
Throughout the simulation, we fix the sample size
n = 100 and vary of the dimensionality ∈p {200,
500, 1000}. We consider four different sparse precision
matrices corresponding to different graph structures
(similar to those illustrated in Figure S1): (a) Ψp

band is a
tridiagonal matrix; (b)Ψp

cluster is a block diagonal matrix
whose blocks are sparse matrices of size 20 where off‐
diagonal entries are nonzero with probability 0.1; (c)
Ψp
hub is a block diagonal matrix whose blocks are sparse

matrices of size 20 where only the off‐diagonal entries
in the first row and column are nonzero; and (d)
Ψp
random is obtained by randomly permuting the rows

and columns of Ψp
band. For all matrices nonzero entries

are generated independently from a uniform distribu-
tion on [−1, 1] and positive definiteness is ensured by
adding a constant to the diagonal so the minimum
eigenvalue is equal to 0.1.

We compare our method to that of Schäfer and
Strimmer (2005) that is based on a linear shrinkage
estimator of the covariance matrix (Ledoit and Wolf,
2004) and a mixture model for false discovery rate
estimation (Strimmer, 2008). We also consider the
asymptotic normal thresholding method of Ren et al.
(2015). For both methods we obtain P values associated
with the estimated partial correlations, whereas for our
method we use the tail probabilities associated with the
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Bayes factor defined in Corollary 1 for all pairs of
variables.

As in Section 5.1, we evaluate performance using the
areas under the ROC and PR curves.

Table 2 shows that the proposed method performs
well in recovering large graphical structures compared to
non‐Bayesian methods. It achieves comparable areas
under the ROC and PR curves as other methods for
different problem sizes. However, in the case of hub
structures the proposed method performs better.

Besides recovering accurately the different graphical
structures, Figure 1 shows that the proposed method is
the fastest. When p = 1000, the average computational
time is less than a second whereas contenders are 5 to
20 times slower.

5.3 | Robustness

We here carry out simulations to assess the robustness
of the proposed method to model misspecification as
compared to the Bayesian and non‐Bayesian conten-
ders of Sections 5.1 and 5.2. We explore three scenarios
where the data are (a) multivariate‐t distributed, (b)
Gaussian contaminated, and (c) log‐Gaussian distrib-
uted. Scenarios 1 and 2 are as in Lin et al. (2016),
whereas scenario 3 introduces more skewness. For
each scenario, we fix p = 50 and generate 50 datasets of
size ∈n {25, 50, 100} using the same four graphical
structures (and inverse‐covariance matrices) consid-
ered in Section 5.1.

Results are provided in Appendices S6 to S8. ROC and
PR curves show that the proposed method is fairly robust

TABLE 1 Average and SD (in parenthesis) of areas under the ROC and PR curves over the simulated datasets, as a function of the true
graph structure and sample size n

Band structure Cluster structure

n Methods AUCROC AUCPR AUCROC AUCPR
100 BEAM 0.89 (0.02) 0.65 (0.03) 0.80 (0.02) 0.54 (0.03)

100 BDMCMC 0.89 (0.03) 0.67 (0.03) 0.79 (0.02) 0.51 (0.04)

100 RJMCMC 0.88 (0.03) 0.63 (0.05) 0.78 (0.03) 0.50 (0.04)

100 SATURNIN 0.89 (0.02) 0.61 (0.04) 0.77 (0.02) 0.53 (0.04)

50 BEAM 0.84 (0.03) 0.53 (0.04) 0.73 (0.02) 0.39 (0.04)

50 BDMCMC 0.82 (0.03) 0.51 (0.06) 0.72 (0.03) 0.37 (0.04)

50 RJMCMC 0.81 (0.03) 0.47 (0.05) 0.72 (0.02) 0.35 (0.04)

50 SATURNIN 0.82 (0.02) 0.44 (0.04) 0.68 (0.02) 0.33 (0.04)

25 BEAM 0.78 (0.04) 0.39 (0.05) 0.66 (0.03) 0.24 (0.04)

25 BDMCMC 0.75 (0.04) 0.32 (0.05) 0.65 (0.03) 0.23 (0.03)

25 RJMCMC 0.75 (0.04) 0.27 (0.05) 0.64 (0.03) 0.22 (0.03)

25 SATURNIN 0.73 (0.03) 0.28 (0.05) 0.58 (0.02) 0.15 (0.02)

Hub structure Random structure

100 BEAM 0.88 (0.03) 0.62 (0.03) 0.87 (0.03) 0.65 (0.03)

100 BDMCMC 0.89 (0.02) 0.67 (0.04) 0.86 (0.03) 0.66 (0.03)

100 RJMCMC 0.89 (0.02) 0.65 (0.05) 0.85 (0.03) 0.65 (0.04)

100 SATURNIN 0.92 (0.01) 0.63 (0.02) 0.86 (0.02) 0.59 (0.02)

50 BEAM 0.84 (0.03) 0.53 (0.03) 0.83 (0.03) 0.56 (0.04)

50 BDMCMC 0.84 (0.03) 0.52 (0.05) 0.81 (0.03) 0.53 (0.05)

50 RJMCMC 0.84 (0.03) 0.48 (0.06) 0.80 (0.03) 0.49 (0.06)

50 SATURNIN 0.86 (0.02) 0.48 (0.03) 0.83 (0.02) 0.47 (0.03)

25 BEAM 0.80 (0.03) 0.42 (0.04) 0.79 (0.03) 0.43 (0.05)

25 BDMCMC 0.79 (0.04) 0.32 (0.05) 0.75 (0.02) 0.33 (0.05)

25 RJMCMC 0.77 (0.04) 0.27 (0.04) 0.74 (0.03) 0.30 (0.05)

25 SATURNIN 0.80 (0.03) 0.35 (0.04) 0.77 (0.02) 0.35 (0.04)

Abbreviation: AUC, area under curve; PR, precision recall; ROC, receiver operating characteristic.
BEAM, our method; BDMCMC and RJMCMC, methods of Mohammadi and Wit (2015); SATURNIN, method of Schwaller et al. (2017); AUCROC , area under the ROC
curve; AUCPR area under the PR curve. Best performances are boldfaced.

LEDAY AND RICHARDSON | 7



LEDAY and RICHARDSON 1295

to model misspecification. All methods under considera-
tion logically suffer from model misspecification, how-
ever, the proposed method keeps an edge over
contenders. Results also suggest that the performance

of sampling‐based Bayesian methods, which explore the
model space, is most affected by model misspecification.

6 | GENE NETWORK IN
GLIOBLASTOMA MULTIFORME

We illustrate our method on a large gene expression data
set on glioblastoma multiforme from The Cancer
Genome Atlas. Glioblastoma multiforme is an aggressive
form of brain tumor in adults associated with poor
prognosis. The data comprise measurements (level 3
normalized; Agilent 244K platform) of 14 827 genes on
532 patients. A small subset of the data were analyzed in
Leday et al. (2017). Instead, we here characterize globally
the conditional independence structure between all
14 827 genes.

Figure 2A displays the log‐marginal likelihood of
model (1) as a function of the prior parameter α when
D I= p. Using the empirical Bayes estimate of α we
computed the Bayes factors and their associated tail
probabilities for all pair of variables. These computations
took 90 seconds overall on 3.40 GHz Intel Core i7‐3770

TABLE 2 Average and SD (in parenthesis) areas under the ROC and PR curves over the simulated datasets, and as a function of the true
graph structure and sample size n

Band structure Cluster structure

p Methods AUCROC AUCPR AUCROC AUCPR
200 BEAM 0.88 (0.01) 0.55 (0.02) 0.91 (0.01) 0.58 (0.01)

200 GENENET 0.89 (0.01) 0.57 (0.02) 0.91 (0.01) 0.59 (0.01)

200 FASTGGM 0.87 (0.01) 0.57 (0.02) 0.89 (0.01) 0.60 (0.02)

500 BEAM 0.91 (0.01) 0.58 (0.01) 0.89 (0.01) 0.50 (0.01)

500 GENENET 0.91 (0.01) 0.60 (0.01) 0.89 (0.01) 0.52 (0.01)

500 FASTGGM 0.90 (0.01) 0.61 (0.01) 0.85 (0.01) 0.49 (0.01)

1000 BEAM 0.88 (0.01) 0.49 (0.01) 0.90 (0.00) 0.48 (0.01)

1000 GENENET 0.88 (0.01) 0.49 (0.01) 0.90 (0.00) 0.49 (0.01)

1000 FASTGGM 0.87 (0.01) 0.51 (0.01) 0.87 (0.00) 0.48 (0.01)

Hub structure Random structure

200 BEAM 0.90 (0.01) 0.56 (0.01) 0.86 (0.01) 0.43 (0.02)

200 GENENET 0.85 (0.01) 0.21 (0.03) 0.86 (0.01) 0.47 (0.02)

200 FASTGGM 0.87 (0.01) 0.46 (0.02) 0.85 (0.01) 0.47 (0.02)

500 BEAM 0.92 (0.01) 0.54 (0.01) 0.82 (0.01) 0.35 (0.01)

500 GENENET 0.90 (0.00) 0.43 (0.01) 0.82 (0.01) 0.34 (0.01)

500 FASTGGM 0.88 (0.01) 0.44 (0.01) 0.81 (0.00) 0.34 (0.01)

1000 BEAM 0.93 (0.00) 0.54 (0.01) 0.77 (0.00) 0.22 (0.01)

1000 GENENET 0.92 (0.00) 0.49 (0.01) 0.77 (0.00) 0.21 (0.01)

1000 FASTGGM 0.89 (0.00) 0.44 (0.01) 0.77 (0.00) 0.22 (0.01)

Abbreviation: AUC, area under curve; PR, precision recall; ROC, receiver operating characteristic.
BEAM, our method; SATURNIN, method of Schwaller et al. (2017); GENENET, method of Schäfer and Strimmer (2005); FASTGGM, method of Ren et al. (2015); AUCROC ,
area under the ROC curve; AUCPR area under the PR curve. Best performances are boldfaced.

FIGURE 1 Running time in seconds (assessed on 3.40 GHz
Intel Core i7‐3770 CPU) for each method when p = 1000
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CPU without parallel schemes, which is remarkable for a
graph with a total number of 109 912 551 possible edges.

The conditional independence graph identified by
controlling the family‐wise error rate at 10% using the
conservative Bonferroni procedure consists of 46,071 edges
(0.042% of the total number of edges). Edge degree varies
from 0 to 127 with 9675 genes having nonzero degrees. The
degree distribution seems to follow an exponential distribu-
tion (see Figure 2A), thereby indicating that a relative small
number of genes have a large number of links.

Because it is difficult to visualize the graph in its
entirety, we identify groups of densely connected nodes
using the algorithm of Blondel et al. (2008) implemen-
ted in the R package igraph (Csardi and Nepusz,
2006). The algorithm identifies a partition that yields
an overall modularity score equal to 0.91. The
modularity score measures the quality of a division of
a graph into subgraphs. Its maximal value being 1, the
identified partition presents a high modularity and
suggests the presence of densely interconnected groups
of nodes in the conditional independence graph. To
illustrate this, we report a subgraph in Figure 3 that has
been identified by the clustering algorithm and
corresponds to the HOXA gene family. The HOX gene
family is known to be involved in the development of
human cancers (Bhatlekar et al., 2014), including
glioblastoma. The HOXA13 gene has for instance been
advanced as potential diagnostic marker for glioblas-
toma (Duan et al., 2015) and the role of HOXA9 gene in
cell proliferation, apoptosis, and drug resistance are
under active research (Costa et al., 2010; Gonçalves
et al., 2016).

7 | DISCUSSION

This article introduced a Bayesian method to infer the
conditional (and marginal) independence structure between
variables by multiple testing, which bypasses the exploration
of the model space and can easily tackle very large problems
with thousands of variables. In extensive simulations, the
proposed method was shown to perform at least as good as
Bayesian and non‐Bayesian contenders while being orders of
magnitude faster. The method was illustrated on a large
gene expression data set comprising 14 827 genes.

FIGURE 2 A, Log‐marginal likelihood of the GC model as a function of ∕α δ p δ n p= ( − − 1) ( + − − 1). The vertical and horizontal
dotted lines indicates the location of the optimum. B, Degree distribution of the conditional independence graph. GC, Gaussian conjugate

FIGURE 3 Example of a densely connected gene subgraph
identified by the clustering algorithm of Blondel et al. (2008)

LEDAY AND RICHARDSON | 9



LEDAY and RICHARDSON 1297

The proposed method has the advantage of being
extremely fast and providing explicit control of the type I
error. Moreover, it facilitates the incorporation of
(different types of) prior information, which is more
difficult in a non‐Bayesian setting. For example, the
proposed method can incorporate prior marginal and
partial correlations via the hyperparameter D, prior
probabilities or odds ratios via the Bayes factors, as well
as prior group information (eg, pathways) via the
multiple testing procedure (Ramdas et al., 2018).

The main limitation of the proposed method relates to
estimation. The proposed approach is based on a simple
linear shrinkage estimator that does not perform as well
as sparse estimators in sparse settings, unless prior
knowledge is used (see Appendix S9). Moreover, the
multiple testing procedure identifies the most important
edges but does not necessarily yield a graphical model
that fits well the data (Drton and Perlman, 2007) because
the emphasis is on type I error control rather than
goodness‐of‐fit.

We foresee several promising extensions of the
proposed approach. The Bayes factors proposed in this
paper can be used for differential network analysis in
which the goal is to identify edges that are in common or
specific to predefined groups of samples. Provided that
samples between groups are independent, the Bayes
factors can simply be multiplied across groups so as to
obtain new Bayes factors that provide evidence toward
the presence or absence of a common edge. Being
symmetric, the Bayes factors can also be inverted before
being multiplied so as to evaluate more complex
hypotheses, for example, edge losses or gains in a two‐
group comparison. Last, it would be interesting to derive
the Bayes factor in a regression framework so as to
compare them with that of Zhou and Guan (2018).

ACKNOWLEDGMENTS

This research was supported by the Medical Research
Council grant number MR/M004421 and core funding
number MRC_MC_UP_0801/1. The authors wish to
thank Ilaria Speranza for helpful comments on the
manuscript and improving largely the software. The
authors also wish to thank Catalina Vallejos and
Leonardo Bottolo for helpful discussions.

REFERENCES

Baladandayuthapani, V., Talluri, R., Ji, Y., Coombes, K.R., Lu, Y.,
Hennessy, B.T., Davies, M.A. and Mallick, B.K. (2014). Bayesian
sparse graphical models for classification with application to

protein expression data. The Annals of Applied Statistics, 8,
1443–1468.

Bhatlekar, S., Fields, J.Z. and Boman, B.M. (2014). Hox genes and
their role in the development of human cancers. Journal of
Molecular Medicine, 92, 811–823.

Blondel, V.D., Guillaume, J.‐L., Lambiotte, R. and Lefebvre, E.
(2008). Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment, 2008,
P10008.

Carvalho, C.M. and Scott, J.G. (2009). Objective Bayesian model
selection in Gaussian graphical models. Biometrika, 96, 497–512.

Chen, C.F. (1979). Bayesian inference for a normal dispersion
matrix and its application to stochastic multiple regression
analysis. Journal of the Royal Statistical Society: Series B, 41,
235–248.

Consonni, G. and LaRocca, L. (2012). Objective Bayes factors for
Gaussian directed acyclic graphical models. Scandinavian
Journal of Statistics, 39, 743–756.

Costa, B.M., Smith, J.S., Chen, Y., Chen, J., Phillips, H.S., Aldape,
K.D., Zardo, G., Nigro, J., James, C.D., Fridlyand, J. and Reis,
R.M. (2010). Reversing HOXA9 oncogene activation by PI3K
inhibition: epigenetic mechanism and prognostic significance in
human glioblastoma. Cancer Research, 70, 453–462.

Csardi, G. and Nepusz, T. (2006). The igraph software package
forcomplex network research. InterJournal, Complex Systems,
1695.

Dempster, A.P. (1972). Covariance selection. Biometrics, 157–175.
Dickey, J.M. (1971). The weighted likelihood ratio, linear hypoth-

eses on normal location parameters. The Annals of Mathema-
tical Statistics, 42, 204–223.

Drton, M. and Perlman, M.D. (2007). Multiple testing and error
control in Gaussian graphical model selection. Statistical
Science., 22, 430–449.

Duan, R., Han, L., Wang, Q., Wei, J., Chen, L., Zhang, J., Kang, C.
and Wang, L. (2015). HOXA13 is a potential GBM diagnostic
marker and promotes glioma invasion by activating the wnt and
TGF‐β pathways. Oncotarget, 6, 27778.

Giudici, P. (1995). Bayes factors for zero partial covariances. Journal
of Statistical Planning and Inference, 46, 161–174.

Goeman, J.J. and Solari, A. (2014). Multiple hypothesis testing in
genomics. Statistics in Medicine, 33, 1946–1978.

Gonçalves, C., Pojo, M., Xavier‐Magalhães, A., de Castro, J.V.,
Pinto, A., Taipa, R., Pardal, F., Reis, R.M., Sousa, N. and Costa,
B.M. (2016). Regulation of WNT6 by HOXA9 in glioblastoma:
Functional and clinical relevance. European Journal of Cancer,
61, S45–S46.

Gupta, A.K., and Nagar, D.K. (2000). Matrix Variate Distributions,
Vol. 104 of Chapman & Hall/CRC Monographs and Surveys in
Pure and Applied Mathematics. Boca Raton, FL: Chapman &
Hall/CRC.

Hannart, A. and Naveau, P. (2014). Estimating high dimensional
covariance matrices: a new look at the Gaussian conjugate
framework. Journal of Multivariate Analysis, 131, 149–162.

Jiang, B., Ye, C. and Liu, J.S. (2017). Bayesian nonparametric tests
via sliced inverse modeling. Bayesian Analysis, 12, 89–112.

Kubokawa, T. and Srivastava, M.S. (2008). Estimation of the
precision matrix of a singular Wishart distribution and its
application in high‐dimensional data. Journal of Multivariate
Analysis, 99, 1906–1928.

10 | LEDAY AND RICHARDSON



LEDAY and RICHARDSON1298

Leday, G.G.R., de Gunst, M.C.M., Kpogbezan, G.B., van der Vaart,
A.W., van Wieringen, W.N. and van de Wiel, M.A. (2017). Gene
network reconstruction using global‐local shrinkage priors. The
Annals of Applied Statistics, 11, 41–68.

Ledoit, O. and Wolf, M. (2004). A well‐conditioned estimator for
large‐dimensional covariance matrices. Journal of Multivariate
Analysis, 88, 365–411.

Lin, L., Drton, M. and Shojaie, A. (2016). Estimation of high‐
dimensional graphical models using regularized score match-
ing. Electronic Journal of Statistics, 10, 806–854.

Mitra, R., Müller, P., Liang, S., Yue, L. and Ji, Y. (2013). A Bayesian
graphical model for ChIP‐Seq data on histone modifications.
Journal of the American Statistical Association, 108, 69–80.

Mohammadi, A. and Wit, E.C. (2015). Bayesian structure learning
in sparse Gaussian graphical models. Bayesian Analysis, 10,
109–138.

Mohammadi, A., and Wit, E.C. (2017). BDgraph: an R package for
Bayesian structure learning in graphical models. [Preprint] ArXiv e‐
prints. https://arxiv.org/abs/1501.05108. Accessed July 1, 2018.

Peterson, C., Stingo, F.C. and Vannucci, M. (2015). Bayesian
inference of multiple Gaussian graphical models. Journal of the
American Statistical Association, 110, 159–174.

Ramdas, A., Foygel Barber, R., Wainwright, M.J. and Jordan, M.I.
(2018). A unified treatment of multiple testing with prior
knowledge using the p‐filter. [Preprint] ArXiv e‐prints. https://
arxiv.org/abs/1703.06222. Accessed February 1, 2018.

Ren, Z., Sun, T., Zhang, C.‐H. and Zhou, H.H. (2015). Asymptotic
normality and optimalities in estimation of large Gaussian
graphical models. Annals of Statistics, 43, 991–1026.

Schäfer, J. and Strimmer, K. (2005). A shrinkage approach to large‐
scale covariance matrix estimation and implications for func-
tional genomics. Statistical Applications in Genetics and
Molecular Biology, 32, 28.

Schwaller, L., Robin, S., and Stumpf, M. (2017). A closed‐form
approach to Bayesian inference in tree‐structured graphical
models. [Preprint] ArXiv e‐prints. https://arxiv.org/abs/1504.
02723. Accessed July 1, 2018.

Strimmer, K. (2008). A unified approach to false discovery rate
estimation. BMC Bioinformatics, 9, 303.

VanWieringen, W.N. and Peeters, C.F.W. (2016). Ridge estimation
of inverse covariance matrices from high‐dimensional data.
Computational Statistics and Data Analysis, 103, 284–303.

Wang, H. and Li, S.Z. (2012). Efficient Gaussian graphical model
determination under G‐Wishart prior distributions. Electronic
Journal of Statistics, 6, 168–198.

Wang, M. and Maruyama, Y. (2016). Consistency of Bayes factor for
nonnested model selection when the model dimension grows.
Bernoulli, 22, 2080–2100.

Zhou, Q. and Guan, Y. (2018). On the null distribution of bayes
factors in linear regression. Journal of the American Statistical
Association, 113, 1362–1371.

SUPPORTING INFORMATION

Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

https://doi.org/10.1111/biom.13064

LEDAY AND RICHARDSON | 11

How to cite this article: Leday GGR, Richardson S.
Fast Bayesian inference in large Gaussian graphical
models. Biometrics. 2019;75:1288–1298.


