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Abstract

Genome-scale metabolic models have been utilized extensively in the study and engineer-

ing of the organisms they describe. Here we present the analysis of a published dataset

from pooled transposon mutant fitness experiments as an approach for improving the accu-

racy and gene-reaction associations of a metabolic model for Zymomonas mobilis ZM4, an

industrially relevant ethanologenic organism with extremely high glycolytic flux and low bio-

mass yield. Gene essentiality predictions made by the draft model were compared to data

from individual pooled mutant experiments to identify areas of the model requiring deeper

validation. Subsequent experiments showed that some of the discrepancies between the

model and dataset were caused by polar effects, mis-mapped barcodes, or mutants carry-

ing both wild-type and transposon disrupted gene copies—highlighting potential limitations

inherent to data from individual mutants in these high-throughput datasets. Therefore, we

analyzed correlations in fitness scores across all 492 experiments in the dataset in the con-

text of functionally related metabolic reaction modules identified within the model via flux

coupling analysis. These correlations were used to identify candidate genes for a reaction in

histidine biosynthesis lacking an annotated gene and highlight metabolic modules with

poorly correlated gene fitness scores. Additional genes for reactions involved in biotin, ubi-

quinone, and pyridoxine biosynthesis in Z. mobilis were identified and confirmed using

mutant complementation experiments. These discovered genes, were incorporated into the

final model, iZM4_478, which contains 747 metabolic and transport reactions (of which 612

have gene-protein-reaction associations), 478 genes, and 616 unique metabolites, making

it one of the most complete models of Z. mobilis ZM4 to date. The methods of analysis that

we applied here with the Z. mobilis transposon mutant dataset, could easily be utilized to

improve future genome-scale metabolic reconstructions for organisms where these, or simi-

lar, high-throughput datasets are available.
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Author summary

We have used several methods of analysis of a high-throughput transposon library dataset

for the organism Zymomonas mobilis in order to improve a newly developed genome-

scale metabolic model. Data from individual experiments within this dataset were com-

pared to predictions made by our draft model to determine areas of inaccuracies in the

model. Correlations within the dataset were investigated in the framework of metabolic

modules in the model enabling us to identify, and subsequently experimentally confirm,

genes for several reactions in the model that previously lacked an associated gene. Finally,

we looked at which metabolic modules correlate poorly, highlighting where metabolic

knowledge gaps in Z.mobilismay still reside. Our metabolic model, iZM4_478, is one of

the most complete for Z.mobilis ZM4 to date, and we expect it will be a valuable tool for

investigating the unique, streamlined metabolism of this organism. The data analysis

approaches that we used can be easily applied by other investigators in the development of

metabolic models for other organisms with similar datasets, leading to more complete

assignment of genes to reactions and more accurate metabolic models.

Introduction

Zymomonas mobilis is an aerotolerant, Gram-negative, alpha-proteobacterium known for its

ethanol production capabilities and exceptionally high glycolytic flux. Glucose uptake

through facilitated diffusion coupled with high expression of the Entner-Doudoroff (ED)

pathway results in uptake rates exceeding most common organisms, such as Escherichia coli,
by several fold [1]. Z.mobilis converts up to 98% of glucose, fructose, or sucrose to ethanol

[2,3]. This streamlined metabolism, low-biomass yield, robust growth without oxygen, and

the ability to fix atmospheric nitrogen [4] without loss of product yield makes Z.mobilis an

industrially relevant microbe as a biofuel and biochemical producer. Previous metabolic

engineering efforts have focused on expanding its substrates (e.g., xylose [5] and arabinose

[6]), products (e.g., sorbitol [7] and β-carotene [8]), and tolerance to lignotoxins [9], and

have been recently reviewed [10].

The genome of Z.mobilis ZM4 was first sequenced and annotated by Seo et al. [11] in 2005,

improved by Yang et al. [12] in 2011, and recently updated with a higher degree of emphasis

on native plasmids [13]. These genome annotations have enabled a systematic approach to

study this organism via metabolic modeling. To date, there have been two medium-scale stoi-

chiometric models [14,15], one kinetic model of the ED pathway in Z.mobilis [16], and four

genome-scale metabolic models [17–20]. In addition to these models, metabolic flux analysis

studies using 13C and 31P or 2H tracers have been applied to investigate the thermodynamics

and central metabolic flux distributions in Z.mobilis ZM4 [21,22]. The genome-scale meta-

bolic models describe the complete known metabolic network and can be used to explore the

capabilities of Z.mobilis. However, for these predictions to be useful, the model must accu-

rately portray the organism’s metabolism. One method for testing and improving the validity

of these models is through the integration of datasets from high-throughput “-omics” experi-

ments [23,24], including pooled transposon mutant fitness profiling experiments [25,26].

Transposon mutagenesis is a valuable genetic tool for generating large mutant libraries.

Inclusion of a short DNA barcode into the transposon provides an easy way to map individual

mutants to gene disruption events via barcode sequencing, an approach especially useful in

high-throughput pooled fitness profiling experiments. The abundance of individual mutants

can be quantified at the start and end of a growth experiment using barcode sequencing
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techniques such as Bar-seq [27], which enables the determination of a mutant’s, and thereby a

gene’s, relative fitness under different experimental conditions. Such datasets have been gener-

ated for many organisms with an increasing number of conditions tested, and have proven

useful for identifying mutant phenotypes and suggesting gene functions [25,28–31].

Pooled transposon mutant fitness profiling datasets represent a wealth of pooled in vivo
phenotype data for mutants throughout the genome; however, these datasets have not been

fully leveraged in the development or investigation of genome-scale metabolic models. Gene-

protein-reaction (GPR) associations, identifiers incorporated in the model that link a gene

encoding a protein to the respective reaction the protein catalyzes, provide a direct method for

mapping the gene fitness data to metabolic reactions and pathways. Modeling methods such as

flux balance analysis (FBA) can be used to interpret the results of these experiments by investi-

gating fitness scores (the average log2 of the change in the abundance of a barcoded transposon

for a given gene in an individual experiment or media condition) in the context of the meta-

bolic network. Discrepancies between the high-throughput data and model predictions can

then be used to correct errors in the model.

While data from individual experiments has been used to refine models, model informed

investigation of gene fitness correlations across multiple conditions has yet to be applied in the

same way. Flux coupling analysis [32] of the genome-scale model can be used to identify meta-

bolic modules in which we expect the gene’s fitness scores to be highly correlated within the

dataset. As an example, disruption of individual reactions within a linear pathway should result

in the same phenotype, and therefore similar fitness scores, in each individual experiment in

the dataset. While poorly correlating modules highlight potential knowledge gaps, well corre-

lating modules can be used to identify candidates for genes responsible for module reactions

that lack a GPR in the model.

We have developed a new genome-scale metabolic network model for Z.mobilis ZM4

(summary statistics given in Table 1). The model was used in conjunction with a dataset from

pooled mutant fitness experiments for 1,586 genes across 492 different experiments [26]. Cor-

rections were made to the original draft model by first comparing the data from two experi-

ments in the dataset to predictions made by the model for growth on minimal media. Through

analysis of the correlation of fitness scores for individual genes in the entire pooled mutant

dataset, and our model-enabled gene search (MEGS) approach [33], candidate genes were

identified for reactions in histidine, biotin, ubiquinone, and pyridoxine biosynthesis pathways.

Table 1. Comparison of Z. mobilis genome-scale metabolic models.

Model: iZM4_478 ZmoMBEL601 iZM363 iZM411 iEM439b

Reference: (This Study) [17] [18] [19] [20]

Year of publication: 2020 2010 2011 2018 2016

Number of reactionsa 747 591 739 648 755

- Reactions w/ GPR 612 498 414 507 593

- Reactions w/o GPR 135 93 325 141 162

- Metabolic reactions w/o GPR 19 64 182 89 106

Number of genes 478 353 363 360 439

Number of metabolites 616 579 600 602 658

Presented values are based on analysis performed with the model files included with the original publications to allow for a meaningful comparison between models and

may not match values reported in these publications.
a Reaction counts exclude biomass and exchange reactions. Metabolic reactions further exclude transport reactions across the cellular membranes.
b iEM439 is a genome-scale metabolic model for ZM1.

https://doi.org/10.1371/journal.pcbi.1008137.t001
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These gene candidates were then experimentally verified for the predicted function and incor-

porated into the final version of the model (iZM4_478).

Results

The genome-scale metabolic model of Zymomonas mobilis ZM4
Three genome-scale metabolic models of Z.mobilis strain ZM4 and one model of strain ZM1

have been previously published [17–20]; however, the previous ZM4 models are either not

available in a simulation ready format, not charge balanced, or lack complete GPRs distin-

guishing between isozymes and subunits. Our newly developed genome-scale metabolic

model of Z.mobilis ZM4 (iZM4_478) contains 478 genes, 616 unique metabolites, and 747

mass- and charge-balanced metabolic and transport reactions, of which 612 have GPR associa-

tions (see S1 and S2 Models for SBML and Excel versions of the model). Out of the 135 reac-

tions without GPR associations, 116 are transport reactions across the outer membrane with

unknown porin specificity. This new model contains only 19 metabolic reactions lacking GPR

associations, significantly fewer than previously developed metabolic models of Z.mobilis
which ranged from 64 to 182 reactions lacking gene associations (Table 1).

Comparison between model predictions and experimental data

Flux balance analysis of iZM4_478 accurately predicts specific growth rates and ethanol pro-

ductivities. Multiple chemostat studies and 13C based metabolic flux analysis studies of Z.

mobilis have been published with varying values in glucose uptake rates, specific growth rates,

and ethanol productivities [1,4,18,21,22]. In order to compare model predictions across these

uptake rates, we carried out FBA for glucose uptake rates ranging from 0 to 70 mmol/gDW/h.

Predicted specific growth rates and ethanol production rates over this range are plotted along-

side data points from previous experimental studies (Fig 1A). Additionally, iZM4_478 was

capable of predicting the growth rate and ethanol productivity from a study under nitrogen

fixation conditions [4] (S1 Fig), a condition previous models were incapable of predicting

accurately.

In addition to growth and fermentation rates, we compared the FBA predicted flux distri-

bution, and carried out flux variability analysis (FVA) at the FBA optimal growth rate, against

a recently published flux map derived from 2H and 13C metabolic flux analysis (MFA) (see Fig

1B and S1 Text) [21]. We generally found good correlation between the FBA predicted central

metabolic fluxes and the experimentally derived fluxes, with a few outliers. At the optimal

growth rate, the solution is nearly unique, with some flexibility in the utilization of NADH or

NADPH in some few reactions. Predicted fluxes tended to underpredict flux towards biomass

due to differences in specific growth rates at the specified glucose uptake rate (Fig 1A), along

with key differences in fluxes of the pentose phosphate pathway, ornithine production, and

excretion of acetate (see S1 Text for more detailed discussion of these results).

A phenotype microarray study of Zymomonas mobilis ZM4 identified a limited number of

utilized substrates [24]. Only hexose sugars, glucose, fructose or the disaccharide sucrose, were

consumed as primary carbon sources. Nitrogen sources were limited to ammonia, aspartate,

asparagine, glutamate, glutamine, ethanolamine, glucuronamide, adenosine, parabanic acid,

and some peptides. The model predicts growth on glucose, fructose, and sucrose as primary

carbon sources and glutamine, ammonia, asparagine, and molecular nitrogen as nitrogen

sources. Simulated growth with aspartate and glutamate as primary nitrogen sources requires

the addition only of transport reactions for these metabolites. However, to simulate growth

with ethanolamine, parabanic acid, or glucuronamide as priamry nitrogen sources requires

both addition of transport and metabolic pathways. Since genes encoding pathways for
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utilizing these compounds as nitrogen sources are not known in Z.mobilis and we did not con-

firm their use in this study, reactions enabling growth for these nitrogen sources were not

added to our model.

Comparison of model predictions to transposon library data for growth in

minimal media

During the development of our model, in silico predictions of gene essentiality were compared

to the experimental results from individual experiments in previously published pooled Tn5

transposon mutant fitness experiments originally constructed to investigate chemical stresses

from complex plant hydrolysates, and later extended to investigate mutant phenotypes [25,26].

While this dataset contains many experimental conditions carried out in a complex condition

such as rich media, inclusion of inhibitory compounds, non-media environmental shifts (e.g.,

temperature), or motility assays, that are not modellable via genome-scale metabolic models,

several experiments within the dataset can be modeled individually.

To investigate the completeness of the metabolic network and the predictive capability of

our model, predictions under anaerobic minimal media conditions were compared against

Fig 1. Model predictions for growth, ethanol and central metabolic fluxes. (A) Comparison between model predicted (solid lines) and reported

experimental (data points) specific growth rates (top) and ethanol production rates (bottom) against glucose uptake rates for published anaerobic

glucose minimal media experiments. Simulation ready models for iZM363, iZM411, and iZmobMBEL601 were not available with their respective

publications. (B) Plot of the predicted fluxes based on FBA versus the fluxes found via metabolic flux analysis in Jacobson et al. FBA was run for

anaerobic growth in minimal media with a constraint preventing lactate production, forcing flux to ethanol as the primary fermentation product. Flux

variability as determined by FVA at the optimal FBA growth rate is less than the size of the markers for each reaction. Grey dashed lines represent a

2-fold change in flux in either direction, reactions falling outside of these boundaries are labeled with their reaction IDs from iZM4_478 (where

ACOTA is acetylornithine transaminase, EX_ac_e is acetate exchange, FBA is fructose-bisphosphate aldolase, ORNTAC is ornithine transacetylase,

P5CR is pyrroline-5-carboxylate reductase, PDH is pyruvate dehydrogenase, PFL is pyruvate formate lyase, PSERT is phosphoserine transaminase,

THRAi is threonine aldolase, TKT1 is transketolase reaction involving sedoheptulose-7-phosphate, and TPI is the triose-phosphate isomerase).

Reactions with zero flux in the FBA solution are plotted at 10−4 in the log space.

https://doi.org/10.1371/journal.pcbi.1008137.g001
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two replicate experiments, specifically Exp. 633 and Exp. 638 in the dataset. In order to com-

pare to the model, the mutants in the experiments must be categorized as having either a

growth phenotype or a non-growth phenotype. We selected a cutoff of -0.6 as the gene fitness

score above which a mutant is considered to have a growth phenotype in the pooled mutant

experiments. The fitness score cutoff influences the error rate between in silicomodel predic-

tions and pooled phenotypes. A lower fitness score cutoff increases the number of false nega-

tives (i.e., model predicts no growth, experimental data indicates growth), and a higher cutoff

increases the number of false positives (i.e., model predicts growth, the experimental data indi-

cates no growth). Further complicating the selection of a fitness score cutoff, the two experi-

ments in the dataset may disagree regarding a given gene’s essentiality due to differences in

fitness scores, giving rise to genes with an inconsistent pooled phenotype.

We selected a fitness score cutoff that minimized the total error between the model and the

pooled mutant datasets thereby providing a higher confidence in identifying true mispredic-

tions made by the model (Fig 2). With a cutoff of -0.6, transposon mutants in 380 genes

included in the model exhibited consistent experimental mutant growth phenotypes in the

anaerobic glucose minimal medium experiments. An additional 49 mutants had inconsistent

experimental growth phenotypes (fitness score above -0.6 in one experiment and below -0.6 in

the other), roughly half (24/49) of which were predicted by the model to be essential (Table 2).

These 49 genes associated with inconsistent growth phenotypes were not considered further

when comparing model predictions to the data. Under the selected cutoff, the final model pre-

dictions agree with the data for 81.58% (310/380) of the genes, with 13.16% (50/380) being

false positives (GNG mutants, i.e., model predicts Growth but experimental results indicate

No Growth) and 5.26% (20/380) being false negatives (NGG mutants, i.e., model predicts No

Growth but experimental results indicate Growth). The relationship between model predic-

tions and experimental growth phenotypes is statistically significant (chi-squared test statistic

yields p< 0.001). There were 49 genes included in the model for which a mutant was not pres-

ent in the Tn5 mutant collection, likely representing genes that are essential in the aerobic rich

media in which the collection was made [25]. Roughly, two-thirds of these genes (33/49) were

predicted to be essential by the model for growth in anaerobic glucose minimal media. A sum-

mary is shown in Table 2.

In addition to the anaerobic minimal media condition, we modeled and similarly analyzed

data from individual experiments using aerobic minimal media, alternative nitrogen sources

(glutamine, glutamate, cysteine, nitrogen gas), and supplementation experiments with methio-

nine or casamino acids. We found that the model performed similarly well at predicting

growth/no growth phenotypes in these experiments, except for an experiment with no added

nitrogen source. Except for that experiment, model predictions agreed with the fitness data for

an average 77.2% of the genes, with a 14.3% false positive and 8.5% false negative rate. We

found 26 genes were consistently classified as false positives (GNG) and 16 genes consistently

classified as false negatives (NGG). A summary of these additional simulations is included in

the supplemental S1 Text.

Characterizing mispredicted Tn5 mutant isolates

Discrepancies between model predictions and experimental results can arise due to errors in

the model, errors in the library or dataset, or as the result of the selected fitness cutoff used to

assign experimental mutant growth phenotypes. During their analysis of the constructed trans-

poson library in Z.mobilis, Skerker et al. noted that in some mutants PCR amplification of the

mapped insertion region resulted in two bands, one corresponding to the wild-type gene and

the other corresponding to the transposon disrupted gene (30). Therefore, to confirm that the
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Fig 2. Comparison of model predictions to pooled fitness data. (A) Analysis of the effect of fitness score cutoff for

growth phenotype classification of the pooled growth experiments. The fraction of genes with inconsistent growth

phenotypes (i.e., above the cutoff in one experiment and below in the other) is shown in blue, the fraction of false

positives (model predicts growth, but categorized as no growth experimentally, i.e., GNG mutants) in orange, the

fraction of false negatives (model predicts no growth, but categorized as growing experimentally, NGG mutants) in
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differences between our draft model’s predictions and the dataset were true errors, we investi-

gated 12 mutants from the collection. We selected five NGG mutants (two isolates of

ZMO0113:Tn5, and single isolates of ZMO114::Tn5, ZMO0563::Tn5, ZMO0938::Tn5, and

ZMO1307::Tn5), four GNG mutants (ZMO0962::Tn5, ZMO1494::Tn5, ZMO1488::Tn5, and

ZMO1661::Tn5), two mutants predicted to grow but inconsistent experimentally (GI mutants

ZMO1556::Tn5 and ZMO1598::Tn5), and one mutant the model and data agreed should grow

(ZMO0172::Tn5, a GG mutant).

To confirm these mutants had transposons disrupting the gene to which the barcode was

mapped, we amplified the mapped loci using PCR. Only five of the 12 (ZMO0114::Tn5,

ZMO0172::Tn5, ZMO0938::Tn5, ZMO1307::Tn5, and one of the two isolates of ZMO0113::

Tn5) mutants tested showed the expected product of the transposon disruptions of the

mapped genes. An additional five mutants showed bands corresponding to both a disrupted

and a wild-type copy of the gene, while gel imaging of the PCR products for the remaining two

mutants revealed only the wild-type gene at the mapped loci. A summary of the PCR results is

included with the strain list in Supplementary S2 Appendix.

For four of the five verified mutants with a pooled experimental “growth” phenotype,

anaerobic growth experiments were performed in Hungate tubes with ZymomonasMinimal

Medium Glucose (ZMMG). After one day, ZMO0938::Tn5 and ZMO1307::Tn5 reached an

OD600 over 1.0, while ZMO0114::Tn5 and ZMO0172::Tn5 showed only weak growth. These

latter two strains were diluted, transferred to fresh ZMMG medium, and incubated for an

additional two days. ZMO0172::Tn5, a GG mutant in thiamine biosynthesis, grew with supple-

mented thiamine agreeing with both the model and experimental dataset. ZMO0114::Tn5, a

NGG mutant involved in folate biosynthesis did not grow agreeing with our model prediction

that this gene is essential, but not the dataset. It is possible that the ZMO0114::Tn5 mutant

grew in the pooled fitness experiment by cross-feeding with other mutants, or using residual

carryover from rich media precultures. ZMO0938::Tn5, a folate biosynthesis mutant, and

ZMO1307::Tn5 a fumarase mutant both grew, agreeing with the experimental dataset, but not

our initial model’s prediction that these genes are essential. The initial model’s ZMO1307

green, and the total model prediction error (combination of false positive and negatives) is shown in red. The vertical

dashed grey line represents the selected fitness score cutoff of -0.6 which minimizes the total error. (B) The fitness

scores for genes included in iZM4_478 for the two anaerobic glucose minimal media experiments (Exp. 633 and

Exp. 638) are shown as a scatter plot and histograms. The fitness cutoff used for growth classification is shown as

dashed grey lines. Genes in the scatter plot are colored based on model growth predictions, with cyan being genes

predicted to be non-essential and red being genes predicted to be essential. Genes in the upper-left and lower-right

quadrants of the scatter plot are genes where the growth phenotypes are inconsistent between the two experiments.

https://doi.org/10.1371/journal.pcbi.1008137.g002

Table 2. Comparison of in silico predictions of single knockout mutants vs. pooled experimental results for anaerobic growth in minimal media.

Experimental Resultsa

Growth No growth Inconsistentb Unavailablec

Model Predictions Growth 142 (GG) 50 (GNG) 25 (GI) 16

No growth 20 (NGG) 167 (NGNG) 24 (NGI) 33

Abbreviations included in the table correspond to the abbreviations used in the text and are defined as the intersection of the categories (e.g., GG stands for model

predicts Growth, experimental results indicate Growth).
a Based on experimental results from Exp. 633 and Exp. 638 in Deutschbauer et al. [26].
b The growth/no growth phenotypes for these mutants are different in the two experimental datasets.
c The mutant was not available in the dataset.

https://doi.org/10.1371/journal.pcbi.1008137.t002
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misprediction was caused by imbalanced flux through the fumarate node of the network. We

found that due to five reactions that must occur in a fixed ratio due to the biomass equation

and the lack of a complete TCA cycle in Z.mobilis, when the fumarase reaction was deleted

from the model, no steady-state solution could be found (S2 Fig). Noting that the problem

could be corrected via the excretion of fumarate in silico, we hypothesized and found that dur-

ing growth ZMO1307::Tn5 excretes fumarate into the media. Inclusion of fumarate secretion

in our model also resolved a NGG discrepancy for the malic enzyme mutant, ZMO1955::Tn5.

The remaining discrepancy in folate biosynthesis (ZMO0938::Tn5) remains the same between

the draft and final model and highlights that folate biosynthesis represent an area for further

investigation and future improvements.

Analyzing gene fitness correlations via flux coupling analysis

Flux coupling analysis was used to identify metabolic modules within our genome-scale

model consisting of reactions that must carry flux simultaneously at variable (partially cou-

pled) or fixed (fully coupled) ratios [32]. This analysis takes into account branch points in

pathways that can lead to non-coupled reactions. With a full in silicomedia, allowing for the

uptake or excretion of any metabolites with transport reactions included in the model, we

identified 157 fully coupled and six partially coupled modules, containing between two and

19 reactions (see supplementary S1 Appendix for a complete list of modules). The corre-

sponding set of genes, and their respective mutants in the collection, were identified for each

module based on the GPR associations for these reactions. Mutants with isozymes were

excluded from these sets.

Transposon mutants within the same metabolic module should result in similar phenotypic

behavior in pooled experiments across different conditions, and the gene fitness scores

between these mutants should be well correlated (e.g., mutants in the histidine biosynthesis

pathway should all exhibit a histidine auxotrophy phenotype and have similar fitness scores in

each experiment). The Pearson’s correlation for all pairs of genes’ fitness scores (cofitness) was

calculated for all 492 experiments in the dataset. The mean cofitness was 0.07 for all genes and

0.15 for genes included in iZM4_478. In order to determine if a given module showed a signifi-

cant correlation in its gene’s fitness scores, we calculated threshold cofitness values represent-

ing the 95th percentile of average cofitness scores of 100,000 sets of randomly sampled genes

for a given module size (S1 Appendix). Thirty-two of the 39 modules containing three or more

genes had average cofitness score above the corresponding threshold indicating genes in the

module exhibited consistent mutant phenotypes. Reactions, genes, and associated pathways

are shown in Table 3 for a subset of the metabolic modules, and in supplemental S1 Appendix

for all modules. Modules with average cofitness values below the threshold may represent

areas where our knowledge is incomplete and warrant further investigation, these modules are

discussed in detail in supplementary S1 Text. Well correlating modules both validate our

knowledge of Z.mobilismetabolism and can be applied to identify gene candidates for

enzymes catalyzing reactions in a module lacking an annotated gene.

Identifying a missing gene in histidine biosynthesis

During the draft model building process, we found that the gene responsible for the eighth

step of histidine biosynthesis, histidinol-phosphatase, was missing from the genome annota-

tion (Fig 3). This reaction must occur biologically since Z.mobilis ZM4 grows without histi-

dine supplementation. In order to identify candidate histidinol-phosphatase encoding genes,

we searched for additional genes in the dataset whose fitness were highly correlated with

known histidine biosynthesis genes. With the exception of ZMO0421 where a transposon
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insertion had a polar effect on a downstream gene (discussed in supplemental S1 Text), the

known genes in the histidine biosynthesis module (M10 in Table 3) were well correlated in the

experimental datasets, with an average cofitness for the module of 0.75 (Fig 3). All genes were

ranked by their average cofitness score with known genes in the pathway (S3 Fig), and the top

genes were considered as potential candidates (Fig 3). The highest correlating gene ZMO1518

(mean r = 0.76) was annotated as an inositol-monophosphatase and was therefore considered

a highly likely candidate. Other genes with high cofitness scores, ZMO1768 (mean r = 0.73),

ZMO0913 (mean r = 0.72), and ZMO1600 (mean r = 0.71) were annotated as a diaminopime-

late decarboxylase, branched-chain aminotransferase, and homoserine kinase, respectively.

The ZMO1518::Tn5 mutant and the other mutants in the histidine biosynthesis pathway

were confirmed as histidine auxotrophs via growth experiments with and without histidine

Table 3. Cofitness scores of select metabolic modules.

Module

No.

Average

Cofitnessa
No. of

Rxn

Coupled Reactionsb No. of

Genes

Relevant Mutantsc Associated

Pathways

Modules with the highest average cofitness scores

M1 0.880 4 ALAS_f, HMBS_f, PPBNGS_f, UPP3S_f 4 ZMO1198, ZMO1879, ZMO1903 Porphyrinogen

Biosynthesis

M2 0.859 3 CHORS_f, PSCVT_f, SHKK_f 3 ZMO0594, ZMO1693, ZMO1796 Chorismate

biosynthesis

M3 0.846 4 ASPCT_f, DHORTS_r, OMPDC_f, ORPT_r 3 ZMO0587, ZMO0791, ZMO1707 Uridine

biosynthesis

Modules associated with histidine and cofactor biosynthesis

M10 0.746 10 ATPPRT_f, HISTD_f, HISTP_f, HSTPT_f, IG3PS_f,

IGPDH_f, PRAMPC_f, PRATPP_f, PRMICI_f,

SINK_his-L_f

9 ZMO0421, ZMO1178, ZMO1499,

ZMO1500, ZMO1501, ZMO1502,

ZMO1503, ZMO1550, ZMO1551

Histidine

biosynthesis

M46 0.470 19 AMAOTr_f, AOXSr2_f, BTS5_f, DBTS_f,

DM_AMOB_f, EGMEACPR_f, EPMEACPR_f,

EX_meoh_e_f, MALCOAMT_f, MEOHtex_r,

MEOHtrpp_r, OGMEACPD_f, OGMEACPR_f,

OGMEACPS_f, OPMEACPD_f, OPMEACPR_f,

OPMEACPS_f, PMEACPE_f, S2FE2SR_f

13 ZMO0094, ZMO0423, ZMO0425,

ZMO0426, ZMO0427, ZMO1067,

ZMO1146, ZMO1222, ZMO1278,

ZMO1692, ZMO1915, ZMO1917,

ZMO1918,

Biotin biosynthesis

Modules with average cofitness scores below the significance threshold

M45 0.497 5 E4PD_f, OHPBAT_f, PDX5PS_f, PERD_f,

SINK_pydx5p_f

3 ZMO1313, ZMO1684, ZMO1708 Pyridoxine

biosynthesis

M51 0.346 8 EX_h2_e‘_f, EX_n2_e_r, FNOR_r, H2tex_r, H2tpp_r,

N2tex_f, N2tpp_f, NIT1b_f

3 ZMO1823, ZMO1824, ZMO1825 Nitrogen fixation

M52 0.332 5 CDPMEK_f, DXPRIi_f, MECDPDH5_f, MECDPS_f,

MEPCT_f
4 ZMO0180, ZMO1128, ZMO1182,

ZMO1851

Isoprenoid

Precursor

biosynthesis

M56 0.293 3 PGCD_f, PSERT_f, PSP_L_f 3 ZMO1137, ZMO1684, ZMO1685 Serine biosynthesis

M57 0.247 6 ADEt2rpp_r, ADEtex_r, HPN1_f, HPN2_f, HPN3_f,

EX_ade_e_f

3 ZMO0873, ZMO0874, ZMO0969 Hopanoid

biosynthesis

M60 0.119 11 ADCL_f, ADCS_f, AKP1_f, DHFS_f, DHNPA2r_f,
DHPS2_f, EX_gcald_e_f, GCALDtex_f,

GCALDtpp_f, GTPCI_f, HPPK2_f

7 ZMO0113, ZMO0114, ZMO0582,

ZMO0938, ZMO1006, ZMO1229,

ZMO1277

Folate biosynthesis

M63 -0.140 7 AMPMS2_f, DM_4CRSOL_f, ICYSDS_f, PMPK_f,
THZPSN3_f, TMPPP_f, TYRL_f

3 ZMO0172, ZMO0738, ZMO1834 Thiamine

biosynthesis

a Module number shows relative position of module based on sorted average cofitness values.
b Suffix "_f" represents forward component and "_r" represents reverse component of the reaction. Reactions italicized either had no available mutant in the collection,

or had isozymes confounding analysis. Underlined reactions represent exchange or sink reactions missing GPRs. Bolded reactions represent reactions missing GPRs.
c Mutants whose genes are associated with the reactions in the module excluding known isozymes and mutants that are absent from the Tn5 mutant collection.

https://doi.org/10.1371/journal.pcbi.1008137.t003

PLOS COMPUTATIONAL BIOLOGY Bar-seq data improves metabolic modeling of Zymomonas mobilis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008137 August 17, 2020 10 / 23

https://doi.org/10.1371/journal.pcbi.1008137.t003
https://doi.org/10.1371/journal.pcbi.1008137


supplementation (S4 Fig). Complementation of the ZMO1518 gene on a plasmid rescued the

ZMO1518::Tn5 mutant’s growth in un-supplemented minimal medium, indicating that the

histidine auxotrophy was a result of the disrupted gene (Fig 3 and S4 Fig). To demonstrate that

the ZMO1518 gene encodes a histidinol-phosphatase, we expressed ZMO1518 in a histidinol-

phosphatase knockout strain of E. coli. In E. coli, the histidinol-phosphatase reaction is cata-

lyzed by a multifunctional enzyme (HisB), which catalyzes both the sixth and eighth reaction

steps in histidine biosynthesis. Expression of ZMO1503 (associated with the sixth step in Z.

mobilis) and ZMO1518 rescued growth of an E. coli ΔhisBmutant in minimal medium lacking

histidine (Fig 3 and S5 Fig). These complementation experiments demonstrate that ZMO1518

is responsible for catalyzing the histidinol-phosphatase reaction in Z.mobilis. After validating

our candidate gene, we found that ZMO1518 was recently re-annotated as a histidinol-phos-

phatase based on computational inference in BioCyc [34] and our results provide the first

experimental evidence confirming this prediction.

Fig 3. Identification of the histidinol-phosphatase gene. (A) An overview of the histidine biosynthesis pathway, converting 5-phosphoribosyl

diphosphate (PRPP) to L-histidine. Note that ZMO1500 and ZMO1502 are subunits associated with the same reaction. Highlighted in red is the gap-

filled histidinol-phosphatase reaction lacking an annotated gene. (B) Boxplot of the cofitness values for genes with known histidine biosynthesis genes.

Cofitness of the genes in the histidine pathway with the eight genes of the histidine pathway are shown on the left. Candidate genes for the histidinol-

phosphatase reaction (i.e., those with the highest average cofitness to the known genes) are shown on the right. The low cofitness outlier in all cases

(except ZMO1551) corresponds to the cofitness with the ZMO0421 gene. (C) Growth experiments showed the ZMO1518::Tn5 mutant was a histidine

auxotroph that could be rescued by complementation with ZMO1518 on a plasmid. Phenotypes are categorized as growth (++), weak growth (+), and

no growth (-). (D) Growth experiments in E. coli ΔhisB demonstrate that ZMO1518 encodes a histidinol-phosphatase. Note that in E. coli, hisB has two

functions catalyzing both the sixth and eighth steps in histidine biosynthesis, and therefore the E. coli ΔhisB knockout requires complementation with

both ZMO1503 and ZMO1518.

https://doi.org/10.1371/journal.pcbi.1008137.g003
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Conditional anaerobic flux coupling and gene fitness correlations

During model construction, gap filling was required to allow for the anaerobic synthesis of

ubiquinol and pyridoxal 5’-phosphate, as canonical steps in these pathways require molecular

oxygen. We set out to investigate if genes responsible for alternative reactions that can function

anaerobically could be identified through correlation within the dataset. We predict that O2-

independent reactions should be essential in the anaerobic condition and should become cou-

pled and therefore correlate well within the subset of experiments carried out anaerobically.

We carried out the same flux coupling and fitness correlation analysis except under anaero-

bic conditions, by constraining the oxygen uptake rate to zero, thereby simulating a rich anaer-

obic media. We found that nine of the previously identified metabolic modules gain additional

condition-dependent fully coupled reactions. In six modules, these additional reactions

become coupled as alternative aerobic reactions requiring molecular oxygen become infeasi-

ble. In the other three modules, alternative pathways require ubiquinone dependent oxidation

reduction reactions coupled to the electron transport chain, which becomes blocked without

oxygen as the terminal electron acceptor. Fitness correlation analysis similar to that described

above for the full in silicomedia was conducted using the subset of 41 anaerobic experiments

within the dataset, and modules identified via anaerobic flux coupling. The condition-depen-

dent coupled reactions, genes, average cofitness scores for the anaerobic modules resulting

from this analysis, and 95th percentile cutoffs for randomly sampled gene sets within the anaer-

obic sub-dataset are presented in supplemental S1 Appendix.

We found that the modules with condition-dependent coupled reactions, did exhibit higher

average cofitness scores in the anaerobic subset of the data. We hoped that by investigating the

anaerobic cofitness of genes to the other genes in the ubiquinol (M11) or pyridoxal 5’-phos-

phate (M45) biosynthesis modules, we would be able to identify strong gene candidates for O2

independent reactions for these pathways. Unfortunately, no strong candidates were identified

with this approach. While we were not successful in using this approach to identify additional

genes, we did observe condition specific effects on the average cofitness of certain modules.

We found that module 8, representing the transport and phosphorylation of gluconate, has

an average cofitness of 0.750 within the full dataset, but only 0.214 within the subset of anaero-

bic experiments. While Z.mobilis transports glucose via a facilitated diffusion process under

most conditions, extracellular gluconate accumulation, the result of a periplasmic glucose

dehydrogenase, has been described as a result of oxygen exposure [35]. The poor correlation of

this module in the anaerobic case may be interpreted as these genes not being expressed or car-

rying minimal flux in the anaerobic state, agreeing with this previous observation.

Identifying additional genes for reactions missing GPRs

We used our model-enabled gene search (MEGS) approach [33] to identify Z.mobilis genes

likely responsible for other gap-filled reactions—chorismate-pyruvate lyase (encoded by ubiC
in E. coli) and erythronate-4-phosphate dehydrogenase (encoded by pdxB in E. coli)—and to

confirm the hypothesized pimeloyl-ACP methyl ester esterase (encoded by bioH in E. coli)
(Table 4). MEGS was also applied to identify ZMO0201 as an isozyme of the ZMO0113 gluta-

mine amidotransferase, and unsuccessfully to search for an isozyme of the ZMO1684 phos-

phoserine aminotransferase (supplemental S1 Text). Following the MEGS approach, first an E.

coli host strain and selective medium pair were designed such that a reaction of interest (e.g., a

gap-filled reaction) becomes essential in the E. coli host strain when grown in the paired selec-

tive medium. The corresponding gene in Z.mobilis was identified via a selection experiment

after transformation into the host strain a plasmid-based library containing fragments of the

Z.mobilis genome. Plasmids from the Z.mobilis library that rescue the E. coli host strain’s
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growth on the selective medium should contain Z.mobilis gene(s) responsible for the reaction

of interest and were analyzed by DNA sequencing.

E. coli knockout mutants ΔubiC, ΔpdxB, and ΔbioH were used as MEGS host strains and

paired selective media was MOPS minimal medium with 20 mM malate (ΔubiC), MOPS mini-

mal medium with 20 mM glucose (ΔpdxB), or M9 minimal medium with 20 mM glucose

(ΔbioH), respectively. Plasmids that contained ZMO1008 or ZMO1916 complemented growth

of the ΔpdxB and ΔbioH E. colimutants, respectively. Therefore, ZMO1008 (annotated as a

FAD linked oxidase domain protein) likely encodes an erythronate-4-phosphate dehydroge-

nase and ZMO1916 (annotated as a hypothetical protein) likely encodes a pimeloyl-ACP

methyl ester esterase. ZMO0562 and ZMO0563 were found together on the plasmid comple-

menting the growth of the ΔubiC E. colimutant. These two genes were cloned separately into

the E. coli ΔubiC strain and only ZMO0563 (annotated as chorismate mutase) complemented

growth of the mutant, indicating that it is likely the enzyme responsible for chorismate-pyru-

vate lyase activity.

Discussion

In this study, we analyzed a previously published pooled mutant fitness dataset using the

framework of a newly developed genome-scale metabolic model of Z.mobilis ZM4 to improve

the accuracy and gene assignments included in the model. Candidate genes for several gap-

filled reactions were identified via correlations in the pooled fitness dataset or MEGS, and

experimentally validated, allowing us to further improve the GPR assignments in our new

genome-scale model iZM4_478. Prior models of Z.mobilis contained large numbers of reac-

tions without GPR associations. The model reported here has better gene coverage, with only

19 metabolic reactions lacking GPR associations in the final model (detailed in S1 Appendix).

The fitness score data from two experiments in the mutant fitness dataset, performed in

anaerobic glucose minimal media, were compared to our model’s in silico predictions of gene

essentiality. Disagreements between the model and dataset in this minimal media condition

were especially useful for pointing out parts of the metabolic network that required attention

and led to a correction in our draft model with the addition of fumarate secretion after con-

firming that ZMO1307::Tn5 was capable of growth in minimal media. However, not all mis-

predicted mutants were due to errors in the model. As noted by Skerker et al. and others who

have worked with isolates from this Z.mobilis transposon library, some mutants carry both

wild-type and transposon disrupted copies of the gene [25,26,36]. Indeed, we found several of

the mutant isolates that we worked with presented both wild-type and disrupted gene bands

after PCR. This observation has led to speculation that Z.mobilismay be polyploid [25,26] and

recently Brenac et al. reported that Z.mobilismay carry more than 50 copies of its genome per

cell [36]. Whatever the explanation, a mixed mutant genotype complicates the direct

Table 4. Summary of identified genes.

Z. mobilis
Gene

Experimental Activity Identification

Method

MEGS host E. coli
Strain

Previous KEGG Annotation

ZMO0201 Glutamine amidotransferase of 4-amino-4-deoxychorismate

synthase (isozyme)

MEGS ΔpabA Glutamine amidotransferase of

anthranilate synthase

ZMO0563 Chorismate-pyruvate lyase MEGS ΔubiC Chorismate mutase

ZMO1008 Erythronate-4-phosphate dehydrogenase MEGS ΔpdxB FAD linked oxidase domain protein

ZMO1518 Histidinol phosphatase Bar-Seq Correlation N/A Inositol-monophosphatase

ZMO1916 Pimeloyl-ACP methyl ester esterase MEGS ΔbioH Conserved Hypothetical Protein

https://doi.org/10.1371/journal.pcbi.1008137.t004
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comparison between gene fitness scores from individual experiments and predictions made in
silico by flux balance analysis. As a result, it is important to verify a strain’s phenotype in

monoculture and genotype before making model changes based on discrepancies between

experiments and model predictions.

Growth experiments with a subset of mutants confirmed two true errors in the model and

revealed that in some cases cross-feeding or carry over of nutrients from rich media precul-

tures may alter the expected phenotype in pooled experiments. ZMO0114::Tn5, a mutant in

the folate biosynthesis module, initially grew weakly when transferred to minimal media.

However, propagation of the strain to fresh media resulted in no growth indicating that nutri-

ent cross-feeding or carryover may be supporting the strain’s growth in pooled experiments.

ZMO0938::Tn5, another mutant in the folate biosynthesis module, represents a true mispre-

diction made by our model. Furthermore, in our later analysis of metabolic modules we found

that the folate biosynthesis module, M60, was poorly correlated. Together these suggest that

the accuracy of the model’s representation, and thereby our understanding of how folate bio-

synthesis occurs in Z.mobilis is limited and an area deserving of further research.

In addition to analyzing individual experiments contained in the dataset, the correlation of

fitness scores across the entire dataset provided a method for investigating pathways, or meta-

bolic modules identified via flux coupling analysis of iZM4_478. We expect mutants of genes

in the same linear pathways to have the same phenotypic behavior in each experiment. Simi-

larly, mutants for genes partially coupled through stoichiometric ratios should have similar

phenotypic behavior as zero flux through one reaction implies zero flux through the other.

Therefore, we posit that by using the Pearson correlations coefficient between pairs of genes

across the entire dataset, we can mitigate the impact that mutants carrying both the wild-type

and transposon disrupted gene may have during the analysis of the modules. With this

approach, we found that by analyzing the pairwise cofitness of genes within the histidine mod-

ule, we were able to successfully identify, and then experimentally confirm, the gene associated

with histidinol-phosphatase, a reaction that had been added to the model during the gap-filling

process.

We also investigated the condition-dependent correlation of fitness scores for the anaerobic

subset of data. While we were unable to identify genes for the gapfilled reactions allowing for

the anaerobic biosynthesis of cofactors, we did discover that condition-dependent coupling

does occur within the dataset in the form of periplasmic glucose oxidation that has previously

been observed after exposure to oxygen [35]. We were unable to investigate other condition-

dependent correlations, as other identified conditions (e.g., alternative nitrogen sources)

within the dataset lacked a statistically powerful number of individual experiments for deter-

mining cofitness scores. Condition-dependent flux coupling analysis may be an avenue worth

considering in the design, collection and applications of similar datasets for genome-scale met-

abolic module refinement.

While most of the modules in Z.mobilis are well correlated across the entire mutant fitness

dataset, several are not. Investigation of pairwise cofitness of genes in these modules (Fig 4, S1

Text) revealed that in several cases, a single poorly correlated gene lowered the average cofit-

ness. We found several cases in which this may be explained by either the genetic context, or as

an artifact of the pooled experiments. In the case of the ZMO0421::Tn5 mutant, polar effects

on a downstream gene caused an expected histidine auxotrophy, but an unexpected tyrosine

auxotrophy (S1 Text, S6 Fig). This unexpected phenotype likely led to the low cofitness scores

we observed between ZMO0421 and the other genes in the histidine pathway. Growth experi-

ments with ZMO0114::Tn5 and ZMO0172::Tn5 mutants suggests that media carryover or

cross-feeding may obscure true growth phenotypes within the pooled experiments. In other

cases, such as the nitrogen fixation module (M51) or thiamine biosynthesis module (M63), the
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media in the majority of experimental conditions in the pooled dataset contained the relevant

nutrients making the genes in the module non-essential, which may explain their low correla-

tion. While many of these poorly correlating genes could be explained, others may be the result

of errors within the mutants in the collection or may represent true knowledge gaps in our

understanding of Z.mobilismetabolism.

In conjunction with the analysis performed using the published dataset, we applied MEGS

[33] to experimentally investigate several more gap-filled reactions and poorly correlated mod-

ules and identified three genes (ZMO1008, and ZMO1916, and ZMO0563) for reactions with-

out GPRs in the initial model. Further supporting our identification as an erythronate-

4-phosphate dehydrogenase, ZMO1008 has a high cofitness score with other mutants in the

gene module encompassing pyridoxal 5’-phosphate synthesis, ranking third following the

same procedure used to identify candidate genes for the histidine pathway (S3 Fig). ZMO1916,

the identified pimeloyl-ACP methyl ester esterase, on the other hand would have been difficult

to identify via this approach as it ranked 131st when ordered by average cofitness to the rest of

the pathway (S3 Fig). The chorismate-pyruvate lyase reaction did not belong to an identified

metabolic module, but MEGS identified ZMO0563, annotated as a chorismate mutase, a gene

that if overexpressed overcomes the loss of chorismate-pyruvate lyase in E. coli. Our results

Fig 4. Pairwise cofitness in poorly correlating modules. The seven poorly correlating modules are represented as node and edge plots. Each node

(black square) is a gene within the module, while each edge between nodes represents the cofitness for that pair of genes. Edges in blue represent

positive cofitness and edges in red negative cofitness. Edge thickness correspond to the value of cofitness. These pairwise cofitness values are shown for

smaller modules. In Module 45, the gene ZMO1008 was identified via MEGS during model development and is shown here with dashed lines.

https://doi.org/10.1371/journal.pcbi.1008137.g004
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provide experimental evidence for the annotation of the Z.mobilis genes responsible for chor-

ismate-pyruvate lyase and erythronate-4-phosphatase. Furthermore, the results support a pre-

vious inference for the gene encoding pimeloyl ACP methyl ester esterase made in the original

study of the pooled fitness dataset [26], where ZMO1916 was observed to have high cofitness

scores with biotin synthase (ZMO0094, r = 0.95) and dethiobiotin synthase (ZMO1915,

r = 0.87).

Our results show how pooled fitness Tn-Seq or Bar-seq datasets can be helpful in the devel-

opment and validation of a metabolic model, and how these datasets can be leveraged in the

identification of genes responsible for gap-filled reactions. The presence of mis-mapped bar-

codes, unexpected polar effects, or mutants possessing both wild-type and transposon dis-

rupted genes in mutant libraries is not unexpected, as the size of these collections makes

characterizing each individual mutant prohibitive. Even with these experimental caveats, these

high-throughput datasets still provide extremely valuable insight into the phenotype of most

knockouts. The metabolic model for Z.mobilis, iZM4_478, that we have employed, and

improved via the analysis of the pooled mutant dataset we analyzed will be a useful tool for

future studies and engineering efforts in this organism. Through this combination of computa-

tional and experimental approaches we identified and verified functions of four genes in Z.

mobilismetabolism, which close knowledge gaps in histidine, biotin, ubiquinone, and pyridox-

ine biosynthesis. It is noteworthy that mixed genotype mutants have not been commonly

observed in the construction of previous barcoded transposon libraries [25], and therefore the

methods of analysis with genome-scale models we have conducted here are likely to be even

more straightforward in organisms with similar datasets.

Materials and methods

Z. mobilis ZM4 metabolic reconstruction

iZM4_478 was constructed with extensive manual curation using the E. colimodel iJO1366

[37] as a template and source for gap-filling reactions using SMILEY [38]. The biomass and

biomass component reactions were reconstructed from multiple sources and details can be

found in supplemental S2 Model. The growth-associated maintenance (GAM) energy and

non-growth associated maintenance (NGAM) energy, the additional energy requirement for

cellular growth or maintenance functions for cell survival expressed and modeled in terms of

ATP equivalents, were estimated to be 75.37 mmol ATP/gDW and 3.71 mmol ATP/gDW/h,

respectively where gDW stands for gram dry weight. These parameters were fit to reported

rates from buffered batch culture experiments [18]. Various resources and databases were

used to support the reconstruction process, including NCBI [39], KEGG [40], BioCyc [34],

BiGG [41], BRENDA [42], MicrobesOnline [43], TransportDB [44], and Memote [45]. Addi-

tional details can be found in the Supplemental S1 Text.

Model-predicted growth, ethanol production, central metabolic fluxes, and

growth phenotypes

Flux balance analysis (FBA) of iZM4_478 and iEM439 was conducted over a range of glucose

uptake rates ranging from 0 to 70 mmol/gDW/h for the anaerobic glucose minimal media,

and anaerobic nitrogen fixing glucose minimal media conditions. Predicted specific growth

rates and ethanol production rates were evaluated at each glucose uptake point. Simulated lac-

tate production was constrained to zero flux. The iZM4_478 flux distribution predicted by

FBA at a glucose uptake rate of 41.9 mmol/gDW/h, was compared to the MFA determined

fluxes. For lumped biosynthesis reactions in the MFA fit, the flux of a single representative flux
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from the linear pathway was compared. The ATPS4rpp reaction in iEM439 was constrained to

a flux of -4 mmol/gDW/h for all simulations with this model, as utilized in the original manu-

script [20].

Gene essentiality was predicted using FBA and a gene was considered essential if the maxi-

mum flux through the biomass reaction was predicted by FBA to be zero. In all simulations,

the lower bounds on the exchange fluxes for biotin, thiamine, and all components found in

ZymomonasMinimal Medium Glucose (ZMMG) were set to -1000 mmol/gDW/h allowing for

uptake of these metabolites in the model. Glucose and oxygen exchange flux lower bounds

were set to -61.5 and 0 mmol/gDW/h, respectively [1]. The upper bound on all exchange fluxes

was 1000 mmol/gDW/h so that any extracellular compound may be secreted.

Flux coupling analysis

The Flux Coupling Finder [32] was used to identify fully coupled and partially coupled reac-

tions in the Z.mobilismodel. In our analysis, all exchange fluxes were allowed to take positive

or negative values and individual sink reactions for each biomass component and terminal

products of complete metabolic pathways were added so that smaller modules of reactions

coupled to individual biomass components (rather than aggregate biomass) could be found.

Average cofitness cutoff based on gene module size

Cofitness was calculated as the Pearson’s correlation between the fitness scores for two genes

across all 492 experiments for the full in silicomodules, and across the 41 anaerobic experi-

ments for the anaerobic condition-dependent modules. For a given set of genes, the average

cofitness was calculated as the average of the cofitness scores between all pairwise combina-

tions of genes in the set. To determine a significance cutoff for the average cofitness for a gene

module of size k, we first sampled k genes randomly from the set of 423 metabolic genes

whose mutants were included in the pooled fitness datasets, calculated the cofitness between

each pairwise combination, and then calculated the average of k choose two pairwise cofitness

scores. We repeated the random sampling of k genes 100,000 times and chose the average

cofitness at the 95th percentile as the cutoff. Similar analysis of the 41 anaerobic experiments

was performed to determine 95th percentile cutoffs for the anaerobic condition-dependent

modules.

Strain construction

E. coli BW25113 was obtained from E. coli genetic stock center and single knockout E. coli
strains were obtained from the Keio collection (Open Biosystems) [46]. Strains with multiple

gene deletions were constructed through sequential removal of the kanamycin resistance gene

(kan) using the temperature sensitive pCP20 plasmid as described previously [47], prior to

incorporation of additional deletions using P1 transduction [48] with single knockout mutants

as donor strains. Z.mobilis ZM4 was obtained from ATCC (ATCC 31821). Z.mobilis ZM4

Tn5 mutants were obtained from the mutant collection generated by Skerker et al. [25] and

used in the pooled fitness datasets reported by Deutschbauer et al. [26]. Strains used in this

study are listed in supplemental S2 Appendix.

Plasmid construction

Gibson cloning [49] was used to generate all plasmids expressing Z.mobilis genes in E. coli and

Z.mobilis. The RBS sequence in front of ZMO1518 in pRL814_ZMO1503_ZMO1518 was

designed using the Salis RBS Calculator [50] to have a similar translation rate as ZMO1503.
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The ZMO0421 and ZMO0420 genes in pRL814_ZMO0421_ZMO0420 were amplified from

the genome with their natural spacing and sequences conserved. All plasmid inserts were con-

firmed via sequencing. Plasmids used in this work and primers used to construct them are

listed in supplemental S2 Appendix.

Media and cultivation

Unless otherwise noted, E. coli strains were grown at 37˚C with shaking and Z.mobilis strains

were grown at 30˚C without shaking. E. coli strains were grown aerobically on LB agar plates,

in LB broth, 2 g/L glucose M9 minimal medium (MM), or MM supplemented with 0.25 g/L

aspartate, 0.2 g/L leucine, 0.15 g/L isoleucine and 0.15 g/L valine (MM++). Z.mobilis strains

were grown in Zymomonas Rich Medium Glucose (ZRMG), ZymomonasMinimal Medium

Glucose (ZMMG), ZymomonasMinimal Medium Glucose with reduced iron sulfate

(ZMMG_0.25Fe), ZRMG agar plates, or ZRMG agar plates supplemented with 0.33 g/L each

of histidine, tyrosine, and phenylalanine (ZRMG++ agar). When necessary, kanamycin or

spectinomycin were added at final concentrations of 50 μg/mL for E. coli and 100 μg/mL for Z.

mobilis. Media recipes can be found in supplemental S2 Appendix.

Plate reader growth experiments

Strains were streaked onto the appropriate rich medium agar plates (LB or ZMRG) with the

necessary antibiotics. Single colonies were precultured aerobically overnight in 3 mL rich

medium with the appropriate antibiotics, centrifuged, washed once in minimal medium, and

inoculated to a starting optical density of ~0.01 at 600 nm (OD600). All plate reader growth

experiments were performed in triplicate in 96-well microplates at 200 μL volume. The OD600

of the E. coli cultures was measured by an Infinite M200 plate reader (Tecan) shaking at 37˚C

for 24 hours. For Z.mobilis, the OD595 was measured by an Infinite F500 plate reader (Tecan)

placed inside an anaerobic chamber shaking at 31.5˚C for 48 hours.

Validation of the growth phenotypes Tn5 mutant isolates

Z.mobilismutants selected for testing based on incorrect growth predictions were taken from

frozen stocks and grown up in 3 mL ZRMG with kanamycin overnight before streaking on

ZRMG agar plates with kanamycin. Primer pairs for each tested mutant isolate were designed

with primers approximately 500 bp upstream and downstream of the mapped insertion site,

such that the PCR product would include the inserted transposon if present. Independent

PCR reactions were performed using three colonies from each plate. Mutant growth experi-

ments were performed in duplicate. Strains were inoculated to a starting OD600 of ~0.02 in 5

mL of ZMMG_0.25Fe with kanamycin in Hungate tubes purged with filtered nitrogen gas,

and grown for 24 hours. Mutants with poor growth were diluted, transferred to fresh media,

and incubated for another 48 hours.

Liquid chromatography-mass spectrometry of extracellular fumarate

Biological triplicates of ZMO1307::Tn5 grown in ZMMG were washed and inoculated into

fresh ZMMG to a starting OD600 = 0.02 and grown to a final OD600 = 1.0. Supernatant samples

were filtered through a 0.22 μm filter and diluted 100-fold in HPLC grade water. A fumarate

standard curve was constructed in HPLC grade water to determine sample concentrations.

Samples and standards were analyzed with a Vanquish UPLC coupled to a Q Exactive orbitrap

high-resolution mass spectrometer (ThermoScientific) equipped with electrospray ionization

operating in negative-ion mode. Chromatography was carried out on a 2.1 x 100 mm
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ACQUITY UHPLC BEH C18 column with 1.7 μm particle size (Waters) at 25˚C. Solvent A

was 97:3 water:methanol with 10 mM tributylamine adjusted to pH 8.2 with 10 mM acetic acid

and solvent B was 100% methanol. The separation run time was 25 minutes following the pro-

tocol: 0 min, 5% B; 2.5 min, 5% B; 17 min, 95% B; 19.5 min, 95% B; 20 min, 5% B; 25 min 5%

B. Full MS-SIM (single ion monitoring) parameters include scanning between 70 and 1000m/

z, automatic control gain target of 1e6, maximum injection time of 40 ms, with a resolution of

140,000 full width at half maximum. Data analysis performed using the MAVEN software

package with fumarate identified by retention time matched to the standard curve. Fumarate

excretion was simulated in MATLAB 2017a as growth associated product formation based on

the excretion rate determined by FBA, and integrated to OD600 = 1.0. OD600 values were con-

verted to gDW based on a published conversion factor of 0.41 gDW OD600
-1 L-1 [21]

MEGS genomic libraries and growth selections

Growth coupled recipient E. coli strains and paired media sets were designed using FBA with

the E. coli iJO1366 model [37] as described previously [33]. The genomic DNA library of Z.

mobilis was prepared using fragments of extracted genomic DNA generated through sonica-

tion and ligated into the HinCII multiple cloning site of the pZE21MCS1 vector [33]. The aver-

age insert size of the library was ~1.4 kbp, with a titer of 210,000 colony forming units (CFUs).

Supporting information

S1 Text. Additional notes on model reconstruction, investigation of the ZMO0421::Tn5

mutant, and discussion of poorly correlating modules.

(DOCX)

S1 Model. iZM4_478 model in SBML format.

(XML)

S2 Model. iZM4_478 model in readable Excel format.

(XLSX)

S1 Appendix. Flux coupling analysis module average cofitness and cofitness thresholds,

and summary of gap-filled reactions.

(XLSX)

S2 Appendix. Strain, plasmid, primer, and media lists.

(XLSX)

S1 Fig. Model predictions of growth and fermentative productivity under nitrogen fixation

conditions. Comparison of model predicted (solid lines) and reported experimental (data

points) specific growth rates (top) and ethanol production rates (bottom) against glucose

uptake rates for published nitrogen fixation experiments conducted in anaerobic glucose mini-

mal media experiments. Simulation ready models for iZM363, iZM411, and iZmobMBEL601

were not available with their respective publications.

(TIF)

S2 Fig. Fumarate fluxes in the ZMO1307::Tn5 mutant. (A) Diagram of reactions included in

the model producing or consuming fumarate. For simplicity, fluxes shown were calculated

with an in silico growth rate of 1 hr-1. Due to the composition of the biomass equation, several

reactions producing fumarate from aspartic acid, or using fumarate as an electron acceptor

(shown in red) are constrained to a fixed ratio with the biomass reaction since their products

lead to ATP, GTP, UTP, CTP, NAD or arginine synthesis. Only fumarase (νFUM) and fumarate
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transport reactions (νFUM1tpp, νFUMtex) are unconstrained and may carry the balance of flux

(0.6474 mmol/gDW/hr) necessary to satisfy the steady state assumption around the fumarate

(or fumaric acid) node. (B) Bar graph of extracellular fumarate concentration of ZMO1307::

Tn5 culture at an OD600 = 1.0, model predicted concentration based shown in light blue,

experimentally measured supernatant concentration shown in dark blue, error bar represents

one standard deviation of triplicate data.

(TIF)

S3 Fig. Cofitness analysis histidine, pyridoxine, and biotin biosynthesis modules. Boxplots

of cofitness values of individual genes with the module genes and bar graphs showing genes

ordered by average cofitness scores to module genes for modules 8, 42, and 46 (A, B, and C

respectively). Cofitness of the genes in the module with the other genes in the module are

shown in the left of the boxplot, candidate genes or genes identified via MEGS are shown to

the right of the plot. Orange bars in the bargraph represent the module genes, blue bars the

candidate genes included in the left panel, and green bars genes identified via MEGS that do

not overlap with candidate genes. Horizontal green lines represent the average cofitness score

of the known genes (0.746, 0.497, and 0.466 for panels A, B, and C respectively) and the red

lines represent the 95th percentile module cutoffs. ZMO1008, the gene identified via MEGS

experiments, was identified as the gene with the third highest average cofitness score.

ZMO1916, identified as the pimeloyl-ACP methyl ester esterase via MEGS experiments is

shown on the far right of the boxplot and highlighted via a green bar in the bargraph.

(TIF)

S4 Fig. Growth curves of histidine biosynthesis pathway Tn5 mutants and ZMO1518::Tn5

mutants. Growth of the wild-type and each tested mutant, or mutant with plasmid comple-

ment, shown in minimal media (ZMMG) (blue), and in minimal media with histidine supple-

mentation (orange) over 48 hours. The solid line represents the average (n = 3) optical density

at 595nm (OD595) over time, and the shaded band indicates one standard deviation.

(TIF)

S5 Fig. ΔhisB E. coli growth curves for ZMO1518 verification. Growth curves of ΔhisB E. coli
strain carrying an empty plasmid (blue), pRL814_ZMO1503 (orange), pRL814_ZMO1518

(green), and pRL814_ZMOM1503_ZMO1518 (red) in minimal media without supplementa-

tion. The solid line represents the average (n = 3) optical density at 600 nm (OD600) over time,

and the shaded band indicates one standard deviation.

(TIF)

S6 Fig. Overview of ZMO0421::Tn5 analysis. (A) Genomic region containing ZMO0421 and

ZMO0420, which are in a single operon. (B) Partial pathways for tyrosine and histidine bio-

synthesis, showing the steps catalyzed by ZMO0421 and ZMO0420. (C) Summary of growth

phenotypes of a ΔaspC ΔtyrB ΔilvE triple E. coli knockout with and without plasmid comple-

mentation of ZMO0421 grown in minimal media with no supplementation, supplementation

with tyrosine, phenylalanine, or both. (D) Summary of the growth phenotypes for the

ZMO0421::Tn5 mutant harboring different plasmids in minimal media with different supple-

mentations. Phenotypes are categorized as growth (++), weak growth (+), and no growth (-).

(TIF)
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