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Biological membranes consist of hundreds of different lipids that together with the

embedded transmembrane (TM) proteins organize themselves into small nanodomains.

In addition to this function of lipids, TM regions of proteins bind to lipids in a very

specific manner, but the function of these TM region-lipid interactions is mostly unknown.

In this review, we focus on the role of plasma membrane cholesterol, which directly

binds to the αβ T cell antigen receptor (TCR), and has at least two opposing functions

in αβ TCR activation. On the one hand, cholesterol binding to the TM domain of the

TCRβ subunit keeps the TCR in an inactive, non-signaling conformation by stabilizing

this conformation. This assures that the αβ T cell remains quiescent in the absence

of antigenic peptide-MHC (the TCR’s ligand) and decreases the sensitivity of the T

cell toward stimulation. On the other hand, cholesterol binding to TCRβ leads to an

increased formation of TCR nanoclusters, increasing the avidity of the TCRs toward the

antigen, thus increasing the sensitivity of the αβ T cell. In mouse models, pharmacological

increase of the cholesterol concentration in T cells caused an increase in TCR clustering,

and thereby enhanced anti-tumor responses. In contrast, the γδ TCR does not bind to

cholesterol and might be regulated in a different manner. The goal of this review is to

put these seemingly controversial findings on the impact of cholesterol on the αβ TCR

into perspective.
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INTRODUCTION

A eukaryotic plasma membrane is composed of a variety of lipids and sterols, such as cholesterol.
The most common composition of the plasma membrane is 20–50% phosphatidylcholine, 20–25%
sphingomyelin, 30–50% cholesterol, 10% phosphatidylserine and 25% phosphatidylethanolamine
(vanMeer et al., 2008; Marquardt et al., 2015). One important sterol is cholesterol (Figure 1A), that
is synthesized by the cells themselves and can be taken up from the environment. It determines
membrane fluidity and permeability (Heerklotz and Tsamaloukas, 2006; Subczynski et al., 2017).
The tetracyclic structure of cholesterol is planar and rigid. As a result, increase in membrane
cholesterol increases lipid packing and stiffness causing decreased fluidity of lipid bilayers.
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Lipids are not randomly distributed within the membrane
but are organized. Using model membranes lipid nanodomains
called liquid-ordered (Lo) and liquid-disordered (Ld) domains
can be distinguished (Veiga et al., 2001; Veatch et al., 2004).
It has been argued that these nanodomains are also present in
the plasma membrane of living cells, although in a less stable
and smaller manner (Eggeling et al., 2009; Levental et al., 2011;
Mueller et al., 2011). The Lo domains would correspond to
the lipid rafts in cellular membranes and the Ld domains to
the non-raft domains (Simons and Ikonen, 1997; Sharma et al.,
2004). In cellular membranes the lipid rafts are enriched in
sphingolipids and cholesterol and are most likely very small
(10–40 nm) and short-lived (microseconds) and hence difficult
to characterize. Important for the formation of these domains
is the interaction between cholesterol and sphingomyelin that
facilitates stable dimers (Figure 1A) (Demel et al., 1977; Veiga
et al., 2001; Bjorkbom et al., 2011). In addition to the dimer,
free cholesterol and free sphingomyelin also exist (Simons
and Ikonen, 1997; Endapally et al., 2019). Rafts concentrate
signaling molecules and thus are important for signaling (Simons
and Ikonen, 1997). Non-raft domains are rich in unsaturated
glycerophospholipids, mostly lack sphingolipids and contain
less cholesterol. Lo domains are thicker than Ld domains, due
to the loss of kinks in acyl chains (Subczynski et al., 2017).
Another factor that contributes to nanodomain formation in
cellular membranes is the lipid asymmetry between the outer
and the inner leaflet. For example, phosphatidylserine is strongly
enriched in the inner leaflet and sphingomyelin is mainly found
in the outer leaflet (Fadeel and Xue, 2009). Another well-known
asymmetry observed is of that of cholesterol where its affinity
toward sphingomyelin leads to its enrichment in the outer layer
(Wood et al., 2011), although due to its small hydrophilic group
(Figure 1A) it possesses a very high flip-flop rate (Steck et al.,
2002).

Transmembrane (TM) proteins are also not randomly
distributed on the cell surface, but localize to certain lipid
nanodomains. This is most likely dictated by the exact sequence
of the TM region that interacts with the lipids, but also
by interactions with other proteins. This localization impacts
the function of these proteins, as it allows the vicinity to
proteins with a similar lipid preference and guarantees a distance
to proteins with a different lipid preference. For example,
specific interaction of TM proteins with certain lipids has been
demonstrated by structural biology for the bacteriorhodopsin-
glycolipid S-TGA-1 (Essen et al., 1998), the cytochrome bc1
complex of the mitochondrial respiratory chain (Hunte, 2005),
the metarhodopsin-cholesterol (Ruprecht et al., 2004), the β2-
adrenergic receptor-cholesterol (Cherezov et al., 2007; Hanson
et al., 2008) interactions or by functional assays for the epidermal
growth factor receptor (EGFR)-ganglioside GM3 association
(Coskun et al., 2011). These interactions might be the underlying
reason for their preferential localization to certain lipid domains
or not. In addition, these specific TM region-lipid interactions
might directly influence the function of the TM protein. One
well-studied example is the T cell antigen receptor (TCR)-
cholesterol interaction (Schamel et al., 2017, 2019) and this is the
focus of this review.

THE T CELL ANTIGEN RECEPTOR (TCR)

T cells are important for an adaptive immune response against
pathogens and tumors and are involved in autoimmunity. In
humans 95% of the T cells express an αβ TCR while 5% express
a γδ TCR on their surface. The TCR expression is crucial for
their development and activation. The αβ TCR (here denoted as
TCR for simplicity) binds to pathogen-, tumor- or host-derived
peptides presented on MHC molecules (pMHC) by the host’s
cells. This binding leads to the activation and proliferation of
the T cells and downstream effector functions such as cytokine
production, provision of help to B cells, regulation of the T cell
response or killing of cells expressing the cognate pMHC.

The TCR is a trans-membrane protein complex composed of
non-covalently bound TCRαβ, CD3γε, CD3δε, and ζζ2 dimers
(Figure 1B). All subunits are type I membrane proteins that
contain either basic amino acid residues (arginine and lysine
in TCRα; lysine in TCRβ) or acidic ones in their TM domains
(aspartic acid in CD3ε, CD3δ, and ζ ; glutamic acid in CD3γ)
(Alarcon et al., 2003; Malissen, 2003). It is suggested that the
potentially charged amino acids in the TM domains are involved
in the interaction between the TCRαβ and CD3 (Call et al., 2002)
as are also the ectodomains (Schamel et al., 2019).

With their variable extracellular regions TCRαβ bind to
pMHC and the information of ligand binding is transduced
through the membrane to the cytosolic tails of CD3 and ζ, that
contain intracellular signaling motifs (Figure 1B). These motifs
include the receptor-kinase (RK) motif that binds to the TCR’s
kinase Lck (Hartl et al., 2020), tyrosines in the context of the
immunoreceptor tyrosine-based activation motifs (ITAMs) that
can be phosphorylated (Reth, 1989; Weiss, 2010) and a proline-
rich sequence (PRS) that can associate with the adaptor protein
Nck (Gil et al., 2002). Further, basic rich sequences (BRSs) in
CD3ε and ζ bind to negatively charged lipids of the inner leaflet
of the plasma membrane in the resting TCR (Aivazian and Stern,
2000; Xu et al., 2008; Zhang et al., 2011). pMHC-binding leads to
the exposure of these motifs with a consequent phosphorylation
of the tyrosines by Lck. These phospho-tyrosines serve as docking
sites for signaling proteins with SH2 domains (Acuto et al.,
2008; Courtney et al., 2018). The latter then transduce the signal
into the cells, causing activation of the T cell and subsequent
effector functions.

THE αβ TCR BINDS TO CHOLESTEROL

Compared to techniques to study protein-protein interactions,
the ones for identifying specific associations of lipids with the
TM regions of proteins are scarce and have limitations. Thus,
not much is known about lipid-protein interactions. Useful
techniques include the following: (i) In living cells covalent cross-
linking of lipid derivatives with a UV light inducible reactive
groups to proteins as been successfully used (Thiele et al., 2000;
Hulce et al., 2013). However, the lipids are not exactly the
natural ones and thus some interactions might not be detected.
(ii) Structural studies of membrane proteins, such as NMR or
crystallization, might resolve lipids that either were co-purified
with the protein or added during the analysis or crystallization
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FIGURE 1 | Cholesterol and the TCR. (A) Structure of cholesterol and the cholesterol sphingomyelin pair. (B) Schematic of the resting, inactive TCR, in which the

cytoplasmic signaling motifs of the CD3 and ζ subunits are not accessible (right), and of the active TCR with the pMHC ligand bound (left), in which the motifs are

exposed. The ITAM, BRS, PRS, and RK motifs are indicated.

(Hunte, 2005). (iii) Although indirect, another approach is to
modulate the lipid composition of the membrane, as e.g., is
artificial liposomes, and then detect changes on the embedded
membrane protein (Coskun et al., 2011). (iv) A complementary
method is to use beads coupled to a lipid that are then used
for pull-down assays to purify proteins that bind to the lipid
(Beck-Garcia et al., 2013). However, this requires solubilisation
of the membrane proteins by detergent that might be a source for
artifacts. Due to these caveats it is recommended to use at least
two complementary techniques. These experiments done with
the TCR are described in the next paragraph.

Using a radioactive cross-linkable cholesterol derivative
(Thiele et al., 2000), we could show that cholesterol specifically
binds to the TCR in living cells, and it did not bind to other
receptors tested (Molnar et al., 2012). This binding occurred
to the TCRβ chain in the resting, i.e., non-ligand bound TCR
(Molnar et al., 2012; Swamy et al., 2016). In a recent first high
resolution structure of the complete TCR, bound cholesterol was
not seen (Dong et al., 2019), most likely because digitonin was
used to solubilize the TCR from the cell membrane, which is
known to extract and remove cholesterol from the TCR (Schamel
et al., 2005; Alarcon et al., 2006;Molnar et al., 2012). Interestingly,
cholesterol sulfate, a naturally occurring derivative of cholesterol,
competes with cholesterol in binding to the TCR (Wang et al.,
2016).

The cholesterol-TCRβ interaction is dynamic, since only
the non-ligand bound TCR associated with cholesterol and
the ligand-bound TCR did not (Swamy et al., 2016). These
binding characteristics were recapitulated using purified TCRs
and cholesterol-coupled beads (Beck-Garcia et al., 2013; Swamy
et al., 2016) as only the resting TCR bound to these beads. This
demonstrated that the dynamic cholesterol binding is a property
of the TCRβ TM region and is not a consequence of altered
membrane properties caused by ligand engagement.

In addition to the cholesterol-TM region interaction and
as mentioned above, the cytosolic tails of CD3ε and ζ might
interact with the head groups of negatively charged lipids, such as

phosphatidylserine, in the inner leaflet of the plasma membrane
(Aivazian and Stern, 2000; Xu et al., 2008). Since this has already
been reviewed by Wu et al. (2016), it will not be discussed.

THE γδ TCR DOES NOT BIND TO
CHOLESTEROL

At first sight the γδ TCR looks similar to the αβ TCR. It
also contains the CD3 and ζ subunits, but instead of TCRαβ

it contains the highly related TCRγδ ligand-binding dimer.
However, the TM region of TCRγ is partially different to the
of TCRβ, and consequently using a radioactive cross-linkable
cholesterol derivative (Thiele et al., 2000), we demonstrated that
the γδ TCR does not bind to cholesterol (Swamy et al., 2016).
Thus, the function of cholesterol on the activity of the TCR that
we discuss in this review is limited to the αβ TCR and the γδ

TCR must therefore be regulated by different mechanisms. A
comparison of both TCRs was published recently (Morath and
Schamel, 2020).

CHOLESTEROL REGULATES THE
ALLOSTERIC SWITCH OF THE αβ TCR

As a prerequisite for allostery, the TCR exists in (at least)
two different conformations that differ in their tertiary
and/or quaternary structure (Figure 1B). Although most crystal
structures of certain isolated domains of TCRαβ and CD3 did
not provide information on these changes [Garboczi et al., 1996;
Garcia et al., 1996; Rudolph et al., 2006; and the reason for
that is discussed in a recent review Schamel et al. (2019)],
a number of experiments have detected changes in the TCR
structure upon ligand binding. These include NMR (Natarajan
et al., 2017; Rangarajan et al., 2018), crystallography (Beddoe
et al., 2009), and fluorescence-based or H/D exchange approaches
(Beddoe et al., 2009; Hawse et al., 2012; Lee et al., 2015). In
addition, biochemistry has provided evidence that the TCR
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structure changes when pMHC (or stimulating antibodies) are
bound. These include limited trypsin digest (Risueno et al.,
2008), measuring the distance between two subunits (Lee et al.,
2015), accessibility of an antibody epitope (Risueno et al., 2005),
cholesterol-binding to TCRβ (Swamy et al., 2016), and exposure
of the proline-rich sequence (PRS) (Gil et al., 2002; Minguet et al.,
2007), the receptor-kinase (RK) motif (Hartl et al., 2020) and the
tyrosines in the cytosolic tails of the CD3 and ζ subunits (Swamy
et al., 2016).

The two conformations of the TCR are: (i) the resting, inactive
conformation (TCR), in which the CD3ε RK motif cannot bind
to the Lck and the cytoplasmic tyrosines are shielded and thus
are not phosphorylated; and (ii) the active conformation, which
is stabilized after pMHC or antibody binding, in which Lck binds
to CD3ε and the exposed cytosolic tyrosines of CD3 and ζ are
phosphorylated (Gil et al., 2002, 2005; Minguet et al., 2007; Lee
et al., 2015; Swamy et al., 2016; Hartl et al., 2020). The switch
to the active conformation is essential for TCR phosphorylation
and T cell stimulation. This was confirmed using artificial ligands
(Minguet et al., 2007) and TCR mutants that are trapped in the
resting conformation (Martinez-Martin et al., 2009; Blanco et al.,
2014; Dopfer et al., 2014).

Thus, the αβ TCR is allosterically regulated; binding of pMHC
at one site (through the variable regions of TCRαβ) causes
structural alterations and dynamic changes at other sites, e.g., in
the CD3 subunits. As a side note, the γδ TCR does not show these
changes and its activity is regulated in a different manner (Blanco
et al., 2014; Dopfer et al., 2014; Juraske et al., 2018; Morath and
Schamel, 2020).

The Monod-Wyman-Changeux model of allostery (Monod
et al., 1965) proposes that the αβ TCR can switch spontaneously
between the two states in the absence of ligand (Figure 2)
(Schamel et al., 2017); experimental evidences support this
notion (Mingueneau et al., 2008; de la Cruz et al., 2011; Swamy
et al., 2016). The ligand binding can perturb the equilibrium
between these two states. In fact, ligand only binds to the active
state and thus shifts the equilibrium to the active state (Swamy
et al., 2016); consequently the cytoplasmicmotifs are exposed and
the TCR becomes signaling active (Figure 2). So how does a T cell
guarantee that in the absence of ligand not too many TCRs are in
the active state? This is achieved by cholesterol, which binds only
to the resting TCR, and hence shifts the equilibrium to inactive
TCRs (Figure 2) (Swamy et al., 2016). Thus, the TCR has two
opposing binding partners, one that leads to the accumulation
of inactive TCRs (cholesterol) and the other one that promotes
active TCRs (pMHC).

The spontaneous shift of the TCR between its conformations
was seen when in the absence of pMHC the cholesterol
concentration was lowered (by extraction with methyl-β-
cyclodextrin or by oxidation to cholestenone), which caused
accumulation of active TCRs and initiated spontaneous TCR
signaling (Kabouridis et al., 2000; Rouquette-Jazdanian et al.,
2006; Swamy et al., 2016). Although methyl-β-cyclodextrin is
commonly used to extract or to deliver cholesterol tomembranes,
it has several undefined effects on the plasma membrane and
cell viability. Apart from increasing membrane permeability, it
also depolymerizes the actin cytoskeleton and thereby reduces

cell stiffness (Mundhara et al., 2019). Hence, it is important to
complement the results obtained by methyl-β-cyclodextrin with
other methods. In our previous studies we employed cholesterol
oxidase to reduce the amount of available membrane cholesterol
and again observed an accumulation of TCRs in the active
state (Swamy et al., 2016). Similarly, mutating the TCRβ TM
region so that cholesterol can no longer bind led to a shift of
the equilibrium toward the active state and low level of T cell
stimulation (Petersen et al., 2004; Swamy et al., 2016). These
reports show that the TCR TM regions are key regulators of the
conformational states of the TCR and that changes at the TM
regions are linked to changes at the cytosolic tails.

In conclusion, cholesterol is a natural negative allosteric
regulator of the TCR that guarantees that in the absence of ligand
most TCRs remain in the resting state.

In another model, the TCR acts as a mechanosensor, in which
force that is applied via pMHC to the TCR changes the TCR’s
structure to a signaling active configuration (Kim et al., 2009;
Schamel et al., 2019). Since cholesterol stiffens the membrane, its
presence at the TCR might influence these changes.

CHOLESTEROL REGULATES αβ TCR
NANOCLUSTERING

By using complementary techniques, several studies have
suggested that on the surface of a resting T cell, the TCR exists
in a monomeric and in a nanoclustered form (Schamel et al.,
2005; Lillemeier et al., 2010; Kumar et al., 2011; Sherman et al.,
2011; Schamel and Alarcon, 2013; Pageon et al., 2016; Martín-
Leal et al., 2020). Other studies only found low amount of
TCR nanoclusters and thus concluded that nanoclusters would
not exist (James et al., 2011; Rossboth et al., 2018). Thus, the
existence of TCR nanoclusters is still controversial, and technical
limitations that contribute to this disagreement are discussed in
several articles (Schamel and Alarcon, 2013; Platzer et al., 2020).
For example, detergents might disrupt nanoclusters when being
analyzed biochemically, in microscopy a low labeling efficiency
might prevent the detection of nanoclusters or rapid blinking
of a fluorophore attached to a TCR might lead to the detection
of a nanocluster when in reality there is only one TCR present.
Our own studies favor the existence of TCR nanoclusters. In fact,
the amount and the size of the nanoclusters depend on the state
of the cell (and this might be another confounding factor for
detecting or not the nanoclusters). For example, a naïve T cell has
less and smaller nanoclusters than an antigen-experienced T cell
(Kumar et al., 2011; Schamel and Alarcon, 2013). Likewise, the
cholesterol content of these cells increased from naïve to memory
cells (Kaech et al., 2002; Kersh et al., 2003; Tani-ichi et al.,
2005). These findings suggest that cholesterol is involved in the
TCR nanoclustering (Figure 3) and three different approaches
have shown that this is the case: (i) solubilisation of the TCR
from T cell membranes with detergents that do not extract
cholesterol preserved the TCR’s nanoclustered form; in contrast,
when cholesterol was extracted the nanoclusters disassemble to
the monomeric TCRs (Schamel et al., 2005; Alarcon et al., 2006;
Molnar et al., 2012). (ii) TCR nanoclusters disassembled when

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 January 2021 | Volume 8 | Article 615996

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Pathan-Chhatbar et al. TCR and Cholesterol

FIGURE 2 | Cholesterol’s function of regulating the allosteric switch of the TCR. The TCR can switch spontaneously between the inactive and active state (allosteric

switch). Cholesterol binds to the TCRβ subunit only in the inactive TCR, thus shifting the equilibrium to the left side. The pMHC ligand binds to the TCRαβ subunits

only in the active TCR, thus shifting the equilibrium to the right side. Only in the active state the TCR can be phosphorylated transmitting the signal of

pMHC-binding downstream.

cholesterol was either extracted from the cells or when cholesterol
levels were reduced pharmacologically as detected by immuno-
gold electron microscopy or super-resolution fluorescence
microscopy (Schamel et al., 2005; Alarcon et al., 2006; Molnar
et al., 2012; Yang et al., 2016). (iii) Reconstituting the monomeric
TCR in liposomes of defined lipid composition only allowed
nanoclusters to form when cholesterol and sphingomyelin
were present in the otherwise phosphatidylcholine-containing
liposomes (Schamel et al., 2005; Alarcon et al., 2006;Molnar et al.,
2012). This indicated that membrane proteins other than the
TCR and lipids other than the ones mentioned are not required
for TCR nanoclustering. Since sphingomyelin is mainly present
in the outer leaflet of the plasma membrane, it is possible that
cholesterol and sphingomyelin [maybe as a pair (Demel et al.,
1977; Veiga et al., 2001; Bjorkbom et al., 2011)] bind to the N-
terminal part of the TCRβ TM region. However, this remains
to be tested. Concerning the mechanism of how cholesterol and
sphingomyelin promote TCR nanoclustering, we suggested that
cholesterol and sphingomyelin form amini-raft-islet at the TCRβ

TM region that is not favored to be in contact with the non-raft
lipid domains that are around the TCR (Molnar et al., 2012; Beck-
Garcia et al., 2015). Thus, these islets from several TCRs would
come close to each other to shield each other from the non-raft
domains, causing TCR nanoclustering.

By regulating TCR nanoclustering cholesterol defines the
sensitivity of the TCR for activation through its ligand; a T
cell with more and bigger nanoclusters is easier to activate
than a cell with predominantly monomeric TCRs (Kumar et al.,
2011). Indeed, it was shown that TCR nanoclusters possess
a higher avidity toward multimeric pMHC than monomeric
TCRs (Molnar et al., 2012). Further, TCRs within a nanocluster
show positive cooperativity, so that if one TCR is stabilized in
the active state by ligand-binding also the other TCRs in the
nanocluster reside in the active state (Martinez-Martin et al.,

2009; Schamel et al., 2017). TCRs in a given nanocluster that
are stabilized in inactive state by cholesterol can spontaneously
release cholesterol and thereby subsequently switch to the active
conformation. Whether it is sufficient that one single TCR within
a cluster binds to cholesterol to prevent the switch of all TCRs
to the active conformation is not known. Since nanoclusters
disassemble when cholesterol is extracted from the cells, the
cooperativity of TCR within nanoclusters could be abrogated by
cholesterol removal (Martin-Blanco et al., 2018). This result again
showed that nanoclusters are required for the TCR cooperativity
and that cholesterol is crucial for TCR nanocluster formation.

Studies show that naive T cells contain lower levels of
cholesterol than activated T cells (Kersh et al., 2003; Tani-
ichi et al., 2005). Indeed, upon activation of T cells cholesterol
metabolism is reprogrammed to synthesize more cholesterol by
upregulation of the Sterol Regulatory Element-Binding Protein-
2 (SREBP-2) pathway and to transport less cholesterol out of
the cell by downregulation of Liver X Receptor (LXR) target
genes (Bensinger et al., 2008; Wu et al., 2016). Importantly,
in antigen-experienced T cells, such as effector or memory T
cells, the increased cholesterol levels contribute to enhanced
TCR nanoclustering (Kumar et al., 2011). This might be a
danger, since the nanoclusters lower the threshold for T cell
activation due to increased avidity and cooperativity. Thus, a
counter-regulation through cholesterol by keeping the TCRs
in the inactive state might prevent spontaneous activation or
activation by weak signals, in order to prevent autoimmune
diseases. Indeed, elevated cholesterol levels in T cells have been
linked to certain autoimmune diseases (see below).

Cholesterol sulfate, which is a low abundant derivative of
cholesterol (Bergner and Shapiro, 1981) can bind to the TCR
and disrupt the TCR-cholesterol interaction (Wang et al., 2016).
This finding suggested that cholesterol sulfate binds to the same
region as cholesterol. Interestingly, cholesterol sulfate disrupted
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FIGURE 3 | Cholesterol’s function of regulating nanoclustering of the TCR. With low levels of cholesterol and sphingomyelin TCRs are expressed as monomers on the

cell surface (left)—as it is the case in naïve T cells. With increasing concentrations of cholesterol and sphingomyelin, these lipids bind to the TCR and cause TCR

nanoclustering—as it is the case in activated and memory T cells.

TCR nanoclustering in liposomes and in T cells (Wang et al.,
2016). The reduced TCR nanoclustering was paralleled by a
reduced avidity of the T cells toward multivalent TCR ligands
(Wang et al., 2016). Maybe the cholesterol-sphingomyelin pair
is required for TCR nanoclustering (see above); and since
cholesterol sulfate may not bind to sphingomyelin, it does not
promote TCR nanoclustering.

Likewise, the lipid ceramide reduced TCR nanoclustering
(Martín-Leal et al., 2020). This was observed in liposomes as
well as in T cells that were treated with sphingomyelinase, which
hydrolyses sphingomyelin to ceramide. This data suggest that
the cholesterol-sphingomyelin pair drives TCR nanoclustering.
Interestingly, signaling by the receptor CCR5 reduces ceramide
levels in antigen-experienced T cells (Martín-Leal et al., 2020).
In these cells, along with reduced ceramide levels, increased
membrane cholesterol contributes to enhanced TCR nanocluster
formation and increased sensitivity of these cells compared to
naive T cells. In conclusion, T cells regulate their membrane
lipid composition, in order to tune TCR nanoclustering and thus
TCR signaling.

MODULATION OF CHOLESTEROL LEVELS
TO TUNE αβ TCR FUNCTION IN THE
TREATMENT OF DISEASES

As discussed, cholesterol modulates the activity of the TCR.
Moreover, since dampening or increasing signaling by the TCR
can be used to treat autoimmunity or cancer, respectively, it is
not surprising that pharmacologically changing the cholesterol
content of T cells has been used to ameliorate certain diseases.

Autoantibodies and the deposition of immune complexes
are known to cause the autoimmune disease systemic lupus
erythematosus (SLE). Overactive T cells contribute to the
pathology by help provided to B cells and by the killing
of host cells in a number of organs. Thus, a strong T
cell activity contributes to SLE (Moulton and Tsokos, 2015).
Importantly, T cells from SLE patients possess increased plasma
membrane levels of cholesterol and glycosphingolipids (Jury
et al., 2004; McDonald et al., 2014). These could lead to
enhanced TCR nanoclustering and formation of signaling-
promoting lipid rafts, consequently leading to increased T cell

activation and effector functions as observed experimentally
(McDonald et al., 2014). Extraction of cholesterol from the
membrane of T cells from SLE patients using methyl-β-
cyclodextrin indeed reversed the heightened signaling by the
TCR (Krishnan et al., 2004). This may be a result of a
disintegration of TCR nanoclusters and a partial disruption of
lipid rafts. Reduced TCR signaling was also seen when the
inhibitor N-butyldeoxynojirimycin was used, which normalized
glycosphingolipid levels in T cells of SLE patients (McDonald
et al., 2014). Similarly, inhibition of cholesterol biosynthesis in
the SLE T cells by Atorvastatin reduced signaling and T cell
activation (Jury et al., 2006). Statins are widely prescribed as
drugs to reduce cholesterol levels by inhibiting 3-hydroxy-3-
methylglutaryl-coenzyme-A (HMG-CoA) reductase, which is a
key enzyme in the mevalonate pathway to synthesize cholesterol,
but also to generate protein prenylations, such as farnesylation or
geranylgeranylation. Thus, statins have multiple effects. Indeed,
Simvastatin impairs T cell activation through inhibition of Ras
prenylation (Ghittoni et al., 2005) and Lovastatin suppresses
T cells proliferation due to reduced farnesol pyrophosphate
levels (Chakrabarti and Engleman, 1991; Bietz et al., 2017).
These anti-inflammatory effects of statins could be beneficial
for autoimmune or inflammatory disorders but would worsen
immune responses against cancer. In this review, we focus on the
cholesterol-related effects.

In vivo extraction of cholesterol from plasma membrane of
T cells using methyl-β-cyclodextrin in a mouse model of SLE
delayed disease onset (Deng and Tsokos, 2008). This is line with
reducing the T cells’ activity by disruption of TCR nanoclusters
and of lipid rafts. The latter mechanism was most likely involved,
as clustering of lipid rafts in T cells by cholera toxin B promoted
disease progression in vivo (Deng and Tsokos, 2008).

To treat cancer by increasing T cell activation has been
proven to be a successful strategy (Iwai et al., 2002; Fritz and
Lenardo, 2019). The enzyme acyl-CoA cholesterol acyltransferase
1 esterificates cholesterol and thus reduces cholesterol levels in T
cells (Chang et al., 2006). Inhibition of this enzyme by Avasimibe
led to elevated membrane cholesterol levels in CD8+ T cells and
enhanced signaling (Yang et al., 2016) most likely by increased
TCR nanoclustering. Importantly, this led to enhanced T cell
effector functions resulting in stronger killing of tumor cells in
mouse melanoma and lung carcinoma models (Yang et al., 2016).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 January 2021 | Volume 8 | Article 615996

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Pathan-Chhatbar et al. TCR and Cholesterol

Additionally, combination of Avasimibe and anti PD1 treatments
proved to be more potent than either monotherapies against
cancer (Yang et al., 2016).

These preclinical findings show that the role of cholesterol in
promoting TCR signaling (by inducing TCR nanoclustering and
formation of lipid rafts) is dominant over its role in suppressing
TCR signaling (by stabilizing the inactive TCR state).

CONCLUSION

Cholesterol specifically binds to the αβ TCR through its TCRβ

subunit in the TCR’s inactive conformation, thus supressing
signaling. Cholesterol also promotes TCR nanoclustering and
the formation of lipid rafts, both of which promote signaling.
In a translational approach, this knowledge was recently
used to pharmacologically enhance cholesterol levels in T
cells, which potentiated the anti-tumor function of T cells
in mouse models. This suggests that the cholesterol-induced
nanoclustering and lipid raft formation are dominant in this
setting and hence, cholesterol acted as a positive regulator of TCR
signaling. What remains to be understood is, how the balance
between positive and negative regulation through cholesterol
interaction is regulated, in order to achieve fine-tuning of
TCR activation and how this can be translated for the
treatment of diseases that depends on the sensitivity of
TCR activation.

Most likely, the TCR is an example protein for which
its regulation by lipids is beginning to unfold. Most likely
the influence of direct lipid-TM region interactions on the
functioning of membrane proteins is much more widespread
than currently thought.
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