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Summary
Background Embryonic ploidy is critical for the success of embryo transfer. Currently, preimplantation genetic testing
for aneuploidy (PGT-A) is the gold standard for detecting ploidy abnormalities. However, PGT-A has several inherent
limitations, including invasive biopsy, high economic burden, and ethical constraints. This paper provides the first
comprehensive systematic review and meta-analysis of the performance of artificial intelligence (AI) algorithms
using embryonic images for non-invasive prediction of embryonic ploidy.

Methods Comprehensive searches of studies that developed or utilized AI algorithms to predict embryonic ploidy from
embryonic imaging, published up until August 10, 2024, across PubMed, MEDLINE, Embase, IEEE, SCOPUS, Web of
Science, and the Cochrane Central Register of Controlled Trials were performed. Studies with prospective or retro-
spective designs were included without language restrictions. The summary receiver operating characteristic curve,
along with pooled sensitivity and specificity, was estimated using a bivariate random-effects model. The risk of bias and
study quality were evaluated using the QUADAS-AI tool. Heterogeneity was quantified using the inconsistency index
(I2), derived from Cochran’s Q test. Predefined subgroup analyses and bivariate meta-regression were conducted to
explore potential sources of heterogeneity. This study was registered with PROSPERO (CRD42024500409).

Findings Twenty eligible studies were identified, with twelve studies included in the meta-analysis. The pooled
sensitivity, specificity, and area under the curve of AI for predicting embryonic euploidy were 0.71 (95% CI:
0.59–0.81), 0.75 (95% CI: 0.69–0.80), and 0.80 (95% CI: 0.76–0.83), respectively, based on a total of 6879 embryos
(3110 euploid and 3769 aneuploid). Meta-regression and subgroup analyses identified the type of AI-driven
decision support system, external validation, risk of bias, and year of publication as the primary contributors to
the observed heterogeneity. There was no evidence of publication bias.

Interpretation Our findings indicate that AI algorithms exhibit promising performance in predicting embryonic
euploidy based on embryonic imaging. Although the current AI models developed cannot entirely replace invasive
methods for determining embryo ploidy, AI demonstrates promise as an auxiliary decision-making tool for embryo
selection, particularly for individuals who are unable to undergo PGT-A. To enhance the quality of future research, it
is essential to overcome the specific challenges and limitations associated with AI studies in reproductive medicine.
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Research in context

Evidence before this study
Embryonic ploidy is crucial for successful embryo transfer, yet
current non-invasive methods for predicting ploidy remain
limited in accuracy. Advances in artificial intelligence (AI) offer
a promising solution to improve predictive performance.
However, no quantitative synthesis has yet comprehensively
assessed the effectiveness of AI in predicting embryo ploidy.
To fill this gap, we conducted a systematic review and meta-
analysis, performing a comprehensive literature search across
multiple databases up to August 10, 2024, without language
restrictions.

Added value of this study
To our knowledge, this is the first systematic review and
meta-analysis focused on AI-based prediction of embryonic
ploidy from imaging data. We adhered strictly to diagnostic
review guidelines and conducted a comprehensive search

across medical and engineering databases to ensure thorough
coverage. Our findings suggest that AI shows strong potential
as a decision-making tool for embryo selection, particularly
for patients unable to undergo preimplantation genetic
testing for aneuploidy (PGT-A).

Implications of all the available evidence
AI algorithms show promising performance in predicting
embryonic ploidy from imaging data. While current models
cannot fully replace invasive methods for determining ploidy,
AI offers the potential as a valuable decision-making tool for
embryo selection, especially for individuals unable to undergo
PGT-A. Adopting more rigorous reporting standards that
address the unique challenges inherent in AI research would
be instrumental in enhancing the quality and reliability of
future studies.
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Introduction
Embryo aneuploidy is a primary contributor to embry-
onic dysplasia, implantation failures, pregnancy losses,
and congenital abnormalities in newborns.1,2 During
in vitro fertilization (IVF) treatments, the aneuploidy
rates in two-pronuclear stage embryos typically range
from 25% to 40%, escalating with maternal age.3,4 Pre-
implantation genetic testing for aneuploidy (PGT-A)
employs biopsy techniques for precise chromosomal
assessment,5,6 enabling embryologists to ascertain em-
bryo ploidy before transfer, thus improving pregnancy
outcomes of IVF treatment. Nevertheless, several limi-
tations hinder the practical application of PGT-A. Em-
bryo biopsy, an invasive procedure, may damage
embryos and reduce their developmental potential.7

Legal and ethical restrictions further restrict access to
PGT-A for some patients.8 Additionally, not all embryos
are suitable for biopsy, limiting the applicability of this
technology. Economic factors also pose significant con-
straints; for example, PGT-A costs can exceed £3000 in
the UK and $12,000 in the US, affecting its accessibility
and adoption.9 Consequently, research is increasingly
focusing on non-invasive techniques for embryo ploidy
testing, aiming to provide viable alternatives to PGT-A.

Time-lapse systems, which could capture detailed
multiplanar images of the embryonic development pro-
cess at regular intervals, are increasingly utilized globally
in the field of reproductive medicine, primarily for em-
bryo quality assessment during IVF treatments.10 Previous
studies have demonstrated significant correlations be-
tween morphokinetic variables and embryo euploidy.11,12

The integration of time-lapse videography into IVF could
provide detailed annotations of embryo morphokinetics
and facilitate the identification of novel biomarkers for
embryo selection. However, relying solely on morphoki-
netic parameters to predict embryo euploidy still presents
significant challenges due to considerable variability be-
tween aneuploid and euploid embryos.13

Advancements in artificial intelligence (AI) could
potentially bridge the significant gap between the high
demand for non-invasive predictions of embryo ploidy
and the currently limited predictive accuracy of such
assessments.14,15 Radiomics, a novel data-driven
approach, extracts numerous quantitative features
from medical images.16 These features can be analysed
using machine learning (ML) or deep learning (DL)
techniques.17 ML, a subset of AI, minimizes operator
subjectivity and enhances the accuracy of embryonic
ploidy prediction. Yuan et al. developed a robust ML
model that integrated the morphokinetic and morpho-
logical characteristics of blastocysts with patients’ clin-
ical parameters to predict the euploidy of blastocysts and
the area under the curve (AUC) of this model reached
0.879, indicating its high predictive accuracy.18 In recent
years, the clinical application of DL in embryonic ploidy
prediction has surged.19,20 An AI model constructed by
S.M. Diakiw et al. using a Convolutional Neural
Network (CNN) achieved an accuracy of 77.4% in pre-
dicting embryonic euploidy.19 However, DL, character-
ized by artificial neural networks with multiple hidden
layers, often lacks transparency due to its complex
structure, leading to ethical and societal concerns
among IVF professionals due to its ‘black-box’ na-
ture.21,22 Moreover, researchers are constantly exploring
various methods to enhance diagnostic accuracy,
including improving image quality, incorporating more
clinical data of patients, increasing sample sizes, and
optimizing algorithms.23
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The research on AI in reproductive medicine em-
ploys a diverse range of methodologies, from DL
frameworks analysing morphokinetic variables to
advanced algorithms that integrate clinical and imaging
data. Despite promising advancements in AI, the per-
formance inconsistency of these models, the variability
in study designs, and the constraints posed by limited
dataset sizes are notable challenges. To address these
issues, a comprehensive systematic review is imperative
to thoroughly assess the effectiveness, dependability,
and feasibility of AI applications in embryo selection.
This study leverages meta-analysis to bridge existing
research gaps, enhancing our understanding of the
strengths and limitations of non-invasive, image-based
ploidy prediction techniques. The findings could revo-
lutionize clinical practices by offering a less invasive and
auxiliary decision-making tool for embryo selection,
thereby enhancing the safety, efficiency, and accessi-
bility of ART for a wider patient demographic.
Methods
Protocol registration and study design
The study was officially registered with PROSPER-
O(CRD42024500409). The meta-analysis adhered to
established reporting standards, specifically the PRISMA24

and CHARMS 25 reporting guidelines.

Search strategy and eligibility criteria
A comprehensive literature search was performed using
the following databases: PubMed, MEDLINE, Embase,
IEEE, SCOPUS, Web of Science, and the Cochrane
Central Register of Controlled Trials. These databases
represent the entirety of our search scope, ensuring
broad coverage across medical, engineering, and tech-
nology fields. This systematic review targeted studies
that developed AI algorithms to evaluate the diagnostic
performance of human embryonic ploidy using medical
imaging techniques. The literature search was limited to
articles published up to August 10, 2024, without lan-
guage restrictions. The search strategy employed across
all databases included the following terms: (‘Artificial
intelligence’ OR ‘Machine learning’ OR ‘Deep learning’
OR ‘Neural network’) AND (‘Performance’ OR ‘Sensi-
tivity’ OR ‘Specificity’ OR ‘Accuracy’ OR ‘Area under the
curve’) AND (‘Genetic testing’ OR ‘Genetic screening’
OR ‘Preimplantation genetic testing’ OR ‘Preimplanta-
tion genetic screening’ OR ‘Preimplantation genetic
diagnosis’ OR ‘Embryo’) AND (‘Chromosomal consti-
tution’ OR ‘Aneuploid*’ OR ‘Euploid*’ OR ’*ploid*’).
The asterisk (*) serves as a wildcard, allowing the search
engine to include any relevant auto-completion of the
specified search term. A detailed summary of the search
strategies employed for each database is provided in
Supplementary Note 1.

In this systematic review, we considered studies
evaluating the efficacy of AI models in the non-invasive
www.thelancet.com Vol 77 November, 2024
prediction of human embryonic ploidy. Eligible studies
reported on any outcomes such as accuracy, sensitivity
(Se), specificity (Sp), positive predictive value, and
negative predictive value, or provided detailed data from
2 × 2 contingency tables. We imposed no restrictions
concerning participant characteristics or the specific
contexts in which AI models were applied. Both pro-
spective and retrospective research designs were
included. Exclusion criteria were as follows: (1) dupli-
cate publications; (2) letters to the editor, editorials,
conference abstracts, systematic reviews or meta-
analyses, consensus statements, guidelines, and review
articles; (3) studies not pertinent to the designated topic;
(4) studies utilizing non-human samples; (5) studies
lacking an AI model. Two reviewers (XX and Y-JM)
independently screened titles and abstracts based on
these criteria. Full texts of potentially relevant articles
were subsequently retrieved for detailed evaluation. Any
disagreements were discussed with a third reviewer (S-
SW) and resolved through consensus.

Data extraction
In the systematic review process, data regarding study
characteristics and diagnostic performance were inde-
pendently extracted by two reviewers (XX and Y-JM)
utilizing a standardized data extraction form
(Tables 1–4), which was carefully developed to ensure
comprehensive and accurate data collection. The form
included key variables relevant to our study objectives
and was structured to capture all necessary information
systematically. To address consistency between re-
viewers, we conducted a pilot test of the form. Any
discrepancies that arose during this phase were
addressed through discussion between the two primary
reviewers. In instances where consensus could not be
achieved, a third investigator (S-SW) was consulted to
resolve the disagreements.

In the systematic review, diagnostic accuracy metrics
—true positive (TP), false positive (FP), false negative
(FN), and true negative (TN)—were collated directly into
contingency tables. These tables facilitated the compu-
tation of Se and Sp. In instances where a single study
provided multiple contingency tables corresponding to
the same or different AI algorithms, each was treated as
an independent observation.43,44 Supplementary
Table S1 provides a summary of the contingency ta-
bles derived from the included studies. For studies
where contingency table data were not available from
the original publication, we contacted the authors via
email to request the raw data. Ultimately, eight studies
did not yield the necessary data and were therefore
excluded from the meta-analysis.

Study quality assessment
In the process of quality assessment, each study selected
for inclusion underwent evaluation using the quality
assessment of diagnostic accuracy studies for artificial
3
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Author,
year

Inclusion criteria Exclusion criteria Number of embryos Number
of
patients

Mean or
median
age (SD;
range)

COH protocol Algorithm
architecture

T. Bamford
et al.,26

2023a

Patients selected for PGT-A
primarily for advanced maternal
age, recurrent implantation failure
(>2 failed embryo transfers),
recurrent miscarriage (>2
spontaneous miscarriages), or to
shorten the time to pregnancy.

Mosaic embryos were excluded
from the initial modelling.

Dataset 1 = 8027
embryos (3004 euploid
and 5023 aneuploid);
Dataset 2 = 2457
embryos (1008 euploid
and 1449 aneuploid)

1725 NR long GnRH agonist or
short antagonist protocol.

ML (LR, RFC,
XGBoost)/DL
(DL)

J. Barnes
et al.,27

2023a

Embryos that were biopsied for
PGT-A either on day 5 if the
morphological grade was 2BB or
better, or by day 6 if they reached
the blastocyst stage, using the
Veeck and Zaninovic grading
system. In instances where patients
had a small number of viable
embryos, embryos were biopsied
on day 6 even if they were in the
morula stage or the cavitating
morula stage.

Embryos with significant missing
morphokinetic parameters.
Underexposed static images were
removed from the dataset. Mosaic
embryos were excluded from the
final dataset.

10,378 embryos (4425
euploid and 5953
aneuploid)

1385 36.98
(4.62)

NR ML (XGBoost,
k-NN, SVM,
RF)/DL
(ResNet18
CNN)

A. Chavez-
Badiola
et al.,28

2020a

More than one blastocyst available;
PGT-A test results available; and
having both euploid and aneuploid
blastocysts within the same
cycle.The micrographs passed
through a series of quality filters,
including sufficient light for clear
visibility, sharp focus of the zona
pellucida and trophectoderm, one
embryo per micrograph, the entire
embryo shown within the limits of
the image.

With visible instruments or debris,
hindrance of visibility by text or
symbols in the images.

840 embryos NR 37.1
(36.5–37.7)

NR DL (deep
neural
network)

B. Huang
et al.,29

2021a

All embryo images are captured
during 5 or 6 days after fertilization
before biopsy by time-lapse
microscope system.

Cycles where the patient gave up
PGT were excluded.

1490 blastocysts (617
euploid, 873 aneuploid)

469 30.8 (4.5) NR DL (3D CNN)

C. I. Lee
et al.,30

2021a

Patients undergoing PGT-A were
selected. The dataset comprised
time-lapse videos with known
outcomes from PGT-A, capturing
embryo development from day 1 to
day 5.

AMH ≤ 1.1 ng/mL, advanced age
group (>38 years old), severe
endometriosis and uterine
pathology, surgical sperm retrieval,
and the patient experienced at
least three previous failures of
euploid embryo transfers.

690 blastocysts (533
euploid and mosaicism,
157 aneuploid)

108 NR NR DL (Two-
Stream
Inflated 3D
ConvNet)

S. De
Gheselle
et al.,31

2022a

The inclusion criteria for embryos in
this study involved undergoing
trophectoderm biopsy for PGT,
being part of an ICSI cycle, and
having detailed embryonic
development and morphokinetic
data recorded through time-lapse
imaging.

NR 539 blastocysts (244
euploid, 295 aneuploid)

128 34.0
(22.0–43.0)

Ovarian stimulation was
performed with either
GnRH agonist (short- or
long-acting) or antagonist
protocol.

ML (RCF, GB,
SVM, NB,
MLR)

S. M. Diakiw
et al.,19

2022a

Female patients aged at least 18
years who underwent IVF
procedures. Included images of
embryos taken using optical light
microscopy systems, with matched
PGT-A results as the ground truth
outcome. All images were required
to have a minimum resolution of
480 × 480 pixels with the complete
embryo in the field of view and the
focus on the inner cell mass (ICM).

PGT-A result was inconclusive or
missing. Technical issues (duplicate
images, unmatched images/
metadata, etc.). Day 6 embryos
(excluded from training but used
to evaluate model performance, as
described). Days other than Day 5
or Day 6 (or day not recorded).
Mosaic embryos (excluded from
training but used to evaluate
model performance, as described).

5050 embryos (3251
euploid, 1799
aneuploid)

2438 36.2
(19–53)

NR DL (CNN:
DenseNet-161,
ResNet-50,
DenseNet-121)

(Table 1 continues on next page)
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Author,
year

Inclusion criteria Exclusion criteria Number of embryos Number
of
patients

Mean or
median
age (SD;
range)

COH protocol Algorithm
architecture

(Continued from previous page)

Y. Zou
et al.,32

2022a

Only the embryos graded over 5BC
or 5CB, according to criteria
previously described by Gardner
and Lane, were defined as available
blastocysts and were taken into
chromosomal analysis.

Embryos that were not suitable for
time-lapse assessment, because
excessive cytoplasmic
fragmentations at the cleavage
stage (>50%) produced a poor-
quality time-lapse image, were
excluded.

773 embryos (358
euploid, 415 aneuploid)

212 22–46 Ovarian stimulation of the
patients was induced by
short gonadotrophin
releasing hormone agonist
protocol (43.2%) or
gonadotrophin releasing
hormone antagonist
protocol (56.8%).

ML (DT, RF,
GBDT,
Adaboost,
XGBoost)/DL
(DNN, DNN–
LSTM)

G. B.
Danardono
et al.,33

2023a

The embryos had their ploidy status
determined through PGT-A, and
only those images where the
embryos were fully captured
without additional objects like
holding or biopsy pipettes and were
clear were included in the study.

Images with obstructions, poor
quality images.

865 blastocysts (196
euploid, 331 aneuploid,
416 mosaic)

483 35 (32–39) NR ML (DT, RF,
GB, SVM, LR)
and DL (CNN)

E. Paya
et al.,20

2023a

Embryos subjected to PGT-A were
cultured using the EmbryoScope or
EmbryoScope Plus TL systems.

Mosaic embryos were excluded
from the study.

1151 blastocysts (493
euploid, 658 aneuploid)

NR NR ovarian stimulation was
performed with GnRH
agonist treatment

DL (CNN,
BiGRU,
BiLSTM, GRU,
LST,
ResNet50)

Z. Yuan
et al.,18

2023a

The patients included in this study
had to meet specific clinical
indications, such as recurrent
implantation failure, recurrent
pregnancy loss, severe
teratozoospermia, or female
advanced age, defined as being 38
years or older and requiring assisted
reproductive technology. All
patients were required to have
normal chromosomal karyotypes.

NR 1396 blastocys
(877euploid, 519
aneuploid)

403 35.47
(4.86)

Long-acting or antagonist
protocols.

ML (LR)

T. M. Luong
et al.,34

2024a

The inclusion criteria for the study
were embryos from IVF cycles that
underwent PGT-A and used time-
lapse incubation.

Mosaic embryos andembryos with
insufficient DNA quality were
excluded from the analysis

1908 embryos (692
euploid, 1216
aneuploid)

820 38.5 (3.85) GnRH antagonist, long
GnRH agonist, ultrashort
GnRH agonist, PPOS, or
mild stimulation.

ML (RF, LDA,
LR, SVM,
AdaBoost,
LGBM)

J. A. Ortiz
et al.,35

2023

Indications for PGT-A included
advanced maternal age, abnormal
karyotype of one of the parents,
high rate of chromosome
aneuploidies in sperm samples,
history of chromosomal
abnormalities, repeated
miscarriages, and embryo
implantation failure. Embryos
included in the study were from IVF
cycles that had undergone PGT-A
on day-5, -6, or -7.

Noninformative embryos were
excluded from the analysis.

6989 blastocysts (3731
euploid, 3258
aneuploid)

2476 33.82
(6.82)

NR ML (RF)

F. Chen
et al.,36

2023

Couples that were part of PGT
cycles, specifically those involving
PGT-SR. Blastocysts included were
those that received PGT treatment
and had comprehensive
chromosome screening (CCS)
results available.

Embryos or cycles lacking complete
time-lapse videos or
comprehensive chromosome
screening results were excluded.
Embryos with severe gene
disorders were not included in the
PGT-A or PGT-SR testing, hence
were excluded from the study.

1422 blastocysts (651
euploid, 771 aneuploid)

355 31.2 (4.6) COS was accomplished by
GnRH agonist suppression
protocol, GnRH antagonist
flexible protocol, or micro
stimulation protocol.

DL (RN)

V. S. Jiang
et al.,37

2023

NR Embryos with completely non-
discernable images were removed
from the study.

699 blastocysts (339
euploid, 360 aneuploid)

248 37.30 (3.6) NR DL (CNN)

(Table 1 continues on next page)
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Author,
year

Inclusion criteria Exclusion criteria Number of embryos Number
of
patients

Mean or
median
age (SD;
range)

COH protocol Algorithm
architecture

(Continued from previous page)

S. Rajendran
et al.,38

2023

The study included embryos with
available time-lapse sequences of
development and relevant clinical
data such as embryologist-derived
blastocyst scores, morphokinetic
parameters, and maternal age at
the time of oocyte retrieval.

Sequences were excluded if the
embryo was absent from the petri
dish, less than half-visible, or the
image was too dim to discern the
embryo.

1998 blastocysts (916
euploid, 1082
aneuploid)

498 NR NR DL (VGG16
CNN, BiLSTM)

L. Sun
et al.,39

2024

Embryos with available static
images and time-lapse videos.
Patients involved in PGT cycles.

Embryos that did not meet specific
morphological criteria (such as
blastocysts that were not stage
≥3, or inner cell mass or
trophectoderm score < B)

145 embryos 543 NR NR ML (RF) and
DL (CNN)

N.
Handayani
et al.,40

2024

Recurrent IVF failure following the
transfer of top-quality embryo(s),
having a history of recurrent
miscarriages, and advanced
maternal age.

PGT-A sample failed to pass quality
control, required re-biopsy, or
yielded undetermined results.

1020 blastocysts (181
euploid, 390 aneuploid,
449 mosaic)

425 36 (7),
median
(IQR)

NR DL (CNN)

B. X. Ma
et al.,41

2024

NR Any samples that failed DNA
amplification during the NGS
analysis were excluded from the
study.

3405 blastocysts (1464
euploid, 1522
aneuploid, 419 mosaic)

979 31.78
(4.44)

NR DL (iDAScore)

H. He
et al.,42

2024

Patients with ICSI-fertilized
embryos, embryos with continuous
cleavage-stage culture, and
embryos with blastocyst culture
during fresh cycles were the only
ones included

Patients with systemic immune
illnesses such as thyroiditis,
systemic lupus erythematosus,
aberrant morphological oocytes,
scarred uteri, uterine deformity,
uterine adhesions, and other
organic uterine problems were also
disqualified.

184 blastocysts (95
euploid, 89 aneuploid)

NR NR NR ML (LR, LGBM,
XGBoost,
CatBoost, RF)

AdaBoost: adaptive boosting; BiGRU: Bidirectional gate recurrent unit; BiLSTM: Bidirectional long short-term memory; CNN: convolutional neural network; COH: controlled ovarian hyperstimulation; DL:
deep learning; DNN: deep neural networks; DT: decision tree; GB: gradient boosting; GBDT: gradient boosting decision tree; GRU: gate recurrent unit; GnRH: gonadotropin-releasing hormone; iDAScore:
intelligent data analysis score; k-NN: k-nearest neighbour; LDA: Linear discriminant analysis; LGBM: Light gradient-boosting machine; LR: Logistic regression; LSTM: long short-term memory; MLR:
multivariable logistic regression; NB: naïve Bayes (gaussian); NR: not reported; PGT-A: preimplantation genetic testing for aneuploidy; PGT-SR: preimplantation genetic testing for chromosomal structural
rearrangements; RFC: random forest classifier; RF: Random Forest; RN: ResNet50; SVM: support vector machine; XGBoost: extreme gradient boosting. aStudies (n = 12) included in the meta-analysis.

Table 1: Participant demographics and algorithm architecture for the 20 included studies.
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intelligence (QUADAS-AI) criteria,45 conducted inde-
pendently by two reviewers (XX and MG). Detailed
outcomes of these assessments are available in
Supplementary Table S2. The QUADAS-AI tool is
designed to equip researchers with a tailored framework
for assessing the risk of bias and applicability in reviews
focused on AI diagnostic test accuracy, as well as in
comparative accuracy studies that include at least one
AI-based index test. Any discrepancies between re-
viewers were resolved through consultation with a third
collaborator (XH).

Statistics
In the study, the primary outcomes were Se, Sp, and
AUC. The hierarchical summary receiver-operating
characteristic (SROC) curve was utilized to ascertain
the precision of the AI model. The SROC curve, inclu-
sive of the corresponding 95% confidence region and
95% prediction region, was constructed around the
averaged Se, Sp, and AUC estimates. When multiple AI
models were evaluated within a single study, the model
demonstrating the highest accuracy was selected for
subsequent meta-analytic procedures.

Spearman correlation test for the presence of diag-
nostic threshold effect. Given the anticipated diversity
across studies, a bivariate random effects model was
applied with both sensitivity and specificity were trans-
formed using the logit transformation before perform-
ing the meta-analysis.46 The forest plot illustrates the
heterogeneity across the included studies. Substantial
heterogeneity is indicated by an inconsistency index
(I2) ≥ 50%, or a p-value of ≤0.10 based on Cochran’s Q
test.47,48 The relationship between Se and Sp was further
examined through a bivariate boxplot.49 A sequential
sensitivity analysis was conducted by sequentially
excluding individual studies to assess the robustness of
the findings and evaluate their impact on heterogeneity
and diagnostic performance metrics.50 To identify po-
tential sources of heterogeneity, meta regression ana-
lyses were undertaken. The predictors assessed in this
study included algorithm type, AI-driven Decision
Support Systems (DSS), annotation methods, external
www.thelancet.com Vol 77 November, 2024
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Author, year Gold standard
(genetic platform)

Detection thresholds for euploidy, aneuploidy and mosaic Type of internal
validation

External
validation

Number of embryos
for training/
validation/testing

T. Bamford et al.,26

2023a
PGT-A (aCGH in 367
(5%) and NGS in 7660
(95%) blastocysts)

Samples with <20% aneuploidy were classed as euploid, 20–80%
mosaic, and >80% aneuploid.

Internal–external cross-
validation

Yes Dataset 1: 6420/NR/
1607 (8:2); Dataset 2:
1967/NR/490 (8:2)

J. Barnes et al.,27

2023a
PGT-A NR Five-fold cross-validation Yes 8336/1557/1555

A. Chavez-Badiola
et al.,28 2020a

PGT-A NR Split-sample validation No 680/76/84 (8:1:1)

B. Huang et al.,29

2021a
PGT-A (NGS: Life
Technologies Ion
Proton)

The threshold for aneuploidy detection was set to be greater than
70%. The threshold for mosaic detection varies from chromosomes.
For chromosomes 13, 16, 18, and 21, the lower limit was 30%, for
the 19 chromosome, lower limit was 50%, for others, lower limit
was 40%. The value below the lower limit indicates a euploidy.

Ten-fold cross-validation Yes 921/102/467

C. I. Lee et al.,30 2021a PGT-A (hr-NGS) Euploid blastocysts with mosaicism levels ≤20%; low-level mosaic
blastocysts with mosaicism levels between 20 and 50%; high level
mosaic blastocysts with mosaicism levels between 50 and 80%;
aneuploid blastocysts with mosaicism levels >80%.

NR No 552/NR/138 (8:2)

S. De Gheselle et al.,31

2022a
PGT-A or PGT-SR
(NGS)

NR Ten-fold cross-validation No 388/43/108

S. M. Diakiw et al.,19

2022a
PGT-A NR Split-sample validation YES 3174/300/1001 (7:1:2)

Y. Zou et al.,32 2022a PGT (SNP array
testing.)

Embryos less than 20% of the mosaic were considered euploid, and
those more than 80% of the mosaic were considered aneuploid
(Xiao et al., 2021). The other embryos (20–80% aneuploid) were
classified as mosaic and were excluded in the study.

Five-fold cross-validation No 494/124/155

G. B. Danardono
et al.,33 2023a

PGT-A (NGS) The threshold for calling mosaic was a 30%–80% mixture of euploid
and aneuploid cells (<30% was euploid, and >80% was aneuploid).

Split-sample validation No 692/NR/173 (8:2)

E. Paya et al.,20 2023a PGT-A (NGS). NR Split-sample validation No 932/104/115 (8:1:1)

Z. Yuan et al.,18 2023a PGT-A NR NR No NR/NR/1396

T. M. Luong et al.,34

2024a
PGT-A (NGS) Embryos with less than 30% full chromosome aneuploidy in the

biopsy were classified as euploid, while those with more than 70%
full chromosome aneuploidy were categorized as aneuploid.
Embryos displaying 30–70% of the presence of two or more cell lines
with chromosomal complements were classified as mosaics and
were excluded from the study.

Five-fold cross-validation Yes 1176/437/295

J. A. Ortiz et al.,35

2023
PGT-A (aCGH, NGS) Embryos with a percentage of aneuploid cell line <25% were

classified as euploid. Embryos were classified as mosaic if the
percentage of the aneuploid cell line was between 25% and 50%. , if
the proportion of aneuploid cells was >50%, the embryo was
classified as aneuploid.

Ten-fold cross-validation No 6290/699/1398

F. Chen et al.,36 2023 PGT-A or PGT-SR (SNP
microarray, NGS)

Euploid blastocysts with mosaicism levels <50%; aneuploid
blastocysts including numerical chromosomal aberration and high
level mosaic blastocysts with mosaicism levels between 50% and
80%.

Split-sample validation No 854/284/284 (6:2:2)

V. S. Jiang et al.,37

2023
PGT-A (modified FAST-
SeqS NGS)

NR Split-sample validation No NR

S. Rajendran et al.,38

2023
PGT-A (NGS) NR Four-fold cross-validation Yes 884/295/505

L. Sun et al.,39 2024 PGT-A (NGS) NR Split-sample validation Yes NR

N. Handayani et al.,40

2024
PGT-A (NGS) Euploid (a mixture of euploid and <30% aneuploid cells), aneuploid

(mosaicism with more than 80% aneuploid cells), and mosaic (a
mixture of euploid and 30–80% aneuploid cells, with low-level
mosaicism defined as 30–50% aneuploid cells while the remaining
cells were categorized as high-level mosaicism)

Split-sample validation No 816/NR/204 (8:2)

B. X. Ma et al.,41 2024 PGT (NGS) A threshold of more than 70% was established for the detection of
aneuploidy. When it comes to chromosomes, the threshold for
mosaic detection differs. The lower limit was 30% for chromosomes
13, 16, 18, and 21, 50% for chromosome 19, and 40% for all other
chromosomes. A number that is below the lower bound denotes
euploidy.

NR No NR

H. He et al.,42 2024 PGT-A NR 10-fold cross-validation No NR

Abbreviation: aCGH: array comparative genomic hybridization; NGS: next generation sequencing; NR: not reported; PGT-A: preimplantation genetic testing for aneuploidy; SNP: single nucleotide
polymorphism. aStudies (n = 12) included in the meta-analysis.

Table 2: Gold standard, detection thresholds and model validation for the 20 included studies.
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Author, year Equipment used to acquire imaging
data

Perform
image
pre-
processing

Exclusion
of a poor-
quality
image

Images and image-based annotations Nonimage annotations

T. Bamford et al.,26

2023a
Time-lapse (EmbryoScope TLS,
Vitrolife; Frölunda, Sweden)

Yes NR Morphokinetic parameters Embryologic predictors (genetic platform, IVF or
ICSI, sperm concentration, sperm progressive
motility), clinical predictors (age of egg provider,
number of eggs retrieved, sperm provider age, long
or short protocol, FSH dose).

J. Barnes et al.,27

2023a
Time-lapse (Embryoscope) Yes Yes Static images (500 × 500 pixels)

captured at 110 h after ICSI,
morphokinetic parameters, blastocyst
morphological assessments (blastocyst
grade, blastocyst scor).

Maternal age

A. Chavez-Badiola
et al.,28 2020a

Inverted microscopes: Olympus IX71
(laser, 400X, or 200× objectives) (640×
480 pixels) or Olympus IX73 (400X or
200× objectives) (807× 603 pixels)
using standard light optics.

Yes Yes Static images taken during 5 or 6 days
after fertilization before any
intervention, such as biopsy,
cryopreservation, or transfer.

No

B. Huang et al.,29

2021a
Time-lapse (Embryoscope Plus,
Vitrolife, Denmark)

Yes Yes Static images captured during 5 or 6
days after fertilization before biopsy and
video files of entire cleavage stage and
the blastocyst stage, kinetic parameters,
blastocyst stage.

The age of blastocyst (Day5 or Day 6), patient’s age.

C. I. Lee et al.,30

2021a
Time-lapse (EmbryoScope+, Vitrolife,
Sweden)

Yes NR Time-lapse videos No

S. De Gheselle
et al.,31 2022a

Time-lapse (EmbryoScope or
EmbryoScope Plus; Vitrolife, Sweden)

No NR Morphokinetic, standard embryonic
development features.

Subjects’ demographic and clinical and cycle features
(sperm characteristics, woman’s age at the start of
treatment, and the total dose of gonadotropins).

S. M. Diakiw et al.,19

2022a
Standard optical light microscopy
imaging system

Yes Yes Static images were collected of embryos
on Day 5, Day 6 and Day 7 of culture,
with only Day 5 embryo images used
for training and development of the AI
model.

No

Y. Zou et al.,32 2022a Time-lapse (EmbryoSlide, Vitrolife,
Frölunda, Sweden)

Yes Yes Morphokinetic parameters,
dysmorphisms and irregular cleavages
and blastocyst quality.

Clinical features (maternal and paternal age, BMI,
basal sex hormone, PGT indications, number of
ovarian stimulation cycles, ovarian stimulation
protocol, ovarian stimulation days, gonadotrophin
dose, number of oocytes and embryos at
stimulation day, semen quality and endometrial
thickness).

G. B. Danardono
et al.,33 2023a

Time-lapse (MIRI time-lapse
incubators) and inverted microscope
(Olympus IX71 or Nikon Eclipse Ti,
Japan).

Yes Yes Static image extraction from time-lapse
videos recorded through a closed
incubator system and direct image
extraction captured using an inverted
microscope.

Clinical Characteristics (Etiology of Infertility, basal
sex hormone levels, Stimulation Protocol, Estradiol
and Progesterone on trigger day, AMH, AFC),
baseline (Female Age, BMI, Infertility Duration, Type
of Infertility).

E. Paya et al.,20

2023a
Time-lapse (EmbryoScope or
EmbryoScope Plus TL system, Vitrolife,
Frölunda, Sweden)

Yes NR Videos and static images provided by
EmbryoScope time-lapse system with a
resolution of 500*500 pixels which
were taken automatically every
10–20 min and in up to 7–11 focal
planes, morphokinetic parameters.

Female age

Z. Yuan et al.,18

2023a
Time-lapse (Vitrolife) No NR Morphokinetic parameters, gardner

grade.
Female age, frozen days.

T. M. Luong et al.,34

2024a
Time-lapse (EmbryoScope; Vitrolife,
Goteborg, Sweden)

NR NR Morphokinetic parameters, morphology
grades.

Parental clinical data (maternal age, paternal age,
BMI, AMH, LH, E2, P4, oocyte number, IVF number,
sperm concentration, and sperm motility on an
embryo-by-embryo basis).

J. A. Ortiz et al.,35

2023
Optical microscope No NR Embryo quality Clinical Characteristics (maternal age, paternal age

and karyotype, indications for PGT-A, doses of
gonadotrophins used, and the number of oocytes
retrieved, day of biopsy).

F. Chen et al.,36 2023 Time-lapse (Embryoscope or
Embryoscope Plus, Vitrolife,
Copenhagen, Denmark)

Yes NR Time-lapse videos Female age, male age, AMH, adverse pregnancy
events, parental chromosomal structural
abnormality, immunological abnormalities, and
semen abnormalities.

(Table 3 continues on next page)
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Author, year Equipment used to acquire imaging
data

Perform
image
pre-
processing

Exclusion
of a poor-
quality
image

Images and image-based annotations Nonimage annotations

(Continued from previous page)

V. S. Jiang et al.,37

2023
Time-lapse (EmbryoScope, Vitrolife) Yes Yes Static image collected at 10-min

intervals under illumination from a
single 635 nm LED using a Leica
20 × objective.

Maternal age, AMH level, paternal sperm quality,
total number of normally fertilized (2 PN) embryos.

S. Rajendran et al.,38

2023
Time-lapse (Embryoscope or
Embryoscope+)

Yes Yes Time-lapse sequences typically
constituted 360–420 distinct frames,
captured at 0.3-h intervals over five
days of development, morphological
grades and morphokinetic parameters,
Blastocyst Score, ICM Score, TE Score,
Expansion Score.

Maternal age

L. Sun et al.,39 2024 Time-lapse (EVO; Vitrolife Kft, Szeged,
Hungary)

Yes NR Time-lapse videos or static image
extraction from time-lapse videos,
morphokinetic parameters.

Clinical metadata (e.g., maternal age, body mass
index)

N. Handayani
et al.,40 2024

Time-lapse (Miri TL; Esco Medical,
Denmark)

Yes NR Static image extraction from time-lapse
videos.

No

B. X. Ma et al.,41

2024
Time-lapse (Embryoscope Plus,
Vitrolife A/S, Denmark) incubator

No NR Time-lapse videos, morphological
assessment.

Length of blastocyst incubation, parental
chromosome results, embryo’s cleavage pattern.

H. He et al.,42 2024 Time-lapse (Embryoscope Plus,
Vitrolife, Denmark)

No NR Morphokinetic parameters non-invasive chromosomal screening (NICS)

AFC: antral follicle count; AMH: anti-mullerian hormone; BMI: body mass index; E2: estradiol; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; LH: luteinizing hormone; NR: not reported; P4:
progesterone. aStudies (n = 12) included in the meta-analysis.

Table 3: Equipment, image pre-processing and annotations for the 20 included studies.

Articles
validation approaches, risk of bias, maternal age,
geographical location, sample size, and year of publica-
tion. Sensitivity and specificity were used as the primary
response variables to evaluate model performance. A
bivariate normal distribution was assumed for the
random error distribution, with a logit link function
applied. The random effects term was assumed to follow
a normal distribution.51 Using Scatterplots to confirm
the linearity for quantitative predictors. Additionally,
publication bias was assessed using Deek’s funnel plot
asymmetry test,52 implemented via the MIDAS module
in Stata with a p-value of less than 0.05 was considered
indicative of publication bias. The clinical applicability
of the studies was assessed using a Fagan diagram.

Nine subgroup analyses were conducted to explore
sources of heterogeneity: (1) based on the type of AI al-
gorithm (ML vs. DL); (2) stratified by the type of AI-driven
DSS (black-box, matte-box, or glass-box); (3) according to
annotation methods (image-only vs. image plus clinical
data); (4) external validation (with vs. without external
validation); (5) by risk of bias (≥3 domains with low risk
vs. <3 domains with low risk); (6) inclusion of maternal
age (yes vs. no); (7) geographical region (Asia vs. non-
Asia); (8) sample size (<400 vs. >400); and (9) publica-
tion year (before 2023 vs. after 2023).

In the systematic review, the methodological robust-
ness of each included study was assessed using the
QUADAS-AI tool as implemented in Review Manager
(RevMan, Version 5.4). To visually illustrate the variance
in Se and Sp estimates across studies, a crosshairs plot
www.thelancet.com Vol 77 November, 2024
was generated using R (Version 4.4.0). All additional
statistical analyses were performed in STATA (version 17,
STATA Corp., College Station, TX, USA) with the
MIDAS module53 and random-effects models and Meta-
DiSc 1.4 software,54 employing a two-tailed significance
level set at a type I error probability of 0.05.

Role of funding source
Our study was funded by the National Key R&D Pro-
gram of China (2022YFC2702905), the Shengjing
Freelance Researcher Plan of Shengjing Hospital and
the 345 talent project of Shengjing Hospital. The funder
of the study had no role in study design, data collection,
data analysis, data interpretation, or writing of the
report. The corresponding authors had full access to all
study data and took final responsibility for the decision
to submit the manuscript for publication.
Results
Study selection and characteristics of included
studies
In the initial search, a total of 4774 records were identified.
Following the removal of 1543 duplicates, the remaining
records underwent a title and abstract screening process,
which led to the exclusion of 2837 studies. Subsequently,
65 studies were selected for full-text review. Ultimately, 20
articles met the inclusion criteria for this systematic
review, and among these, 12 provided sufficient data to be
incorporated into the meta-analysis (Fig. 1).
9
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Author, year Type of Al-driven DSS Transfer
learning
applied

Study design, source of data, sample period Open
access
data

T. Bamford et al.,26 2023a Matte-box or Glass-box NR Retrospective multicenter cohort study, data from nine IVF clinics in the UK, 2012–2020. No

J. Barnes et al.,27 2023a Black-box or Matte-box NR Retrospective study, data from Weill Cornell Medicine Centre of Reproductive Medicine, New York,
NY, USA, 2012–2017.

No

A. Chavez-Badiola et al.,28

2020a
Black-box NR Retrospective study, data from three New Hope Fertility Centres in Mexico City, Guadalajara, and

New York City, 2015.1–2019.6.
No

B. Huang et al.,29 2021a Matte-box Yes Retrospective single-centre cohort study, data from Reproductive Medicine Centre of Tongji Hospital,
Huazhong University of Science and Technology, Wuhan, China, 2018.4–2020.12.

No

C. I. Lee et al.,30 2021a Black-box Yes Retrospective study, data from Division of Infertility, Lee Women’s Hospital, Taichung, Taiwan, NR. No

S. De Gheselle et al.,31

2022a
Glass-box No Retrospective cohort analysis, data from Department for Reproductive Medicine of Ghent University

Hospital (Belgium), 2016.01–2019.12.
No

S. M. Diakiw et al.,19 2022a Black-box Yes Most data were collected retrospectively, with additional data collected prospectively for double-blind
evaluation of the final genetics AI model, data from 10 different IVF clinics located in the USA, India,
Spain, and Malaysia, 2011–2021.

No

Y. Zou et al.,32 2022a Matte-box or Glass-box Yes Retrospective study, data from Shanghai Jiai Genetic and Infertility Institute, Obstetrics and
Gynecology Hospital of Fudan University, China, 2016.7–2021.7.

No

G. B. Danardono et al.,33

2023a
Matte-box Yes Retrospective study, data from the Morula IVF Jakarta Clinic, Jakarta, Indonesia, NR. No

E. Paya et al.,20 2023a Black-box or Matte-box Yes Retrospective study, data from IVI Valencia, Spain, NR. No

Z. Yuan et al.,18 2023a Glass-box No Retrospective study, data from Reproductive Medicine Centre of Xuzhou Maternal and Child Health
Care Hospital, 2019.01–2022.01.

No

T. M. Luong et al.,34 2024a Glass-box No Retrospective cohort study, data from Taipei Fertility Centre in Taipei, Taiwan, 2020.03–2022.08. No

J. A. Ortiz et al.,35 2023 Glass-box No Retrospective and observational study, data from Instituto Bernabeu, Alicante, Spain,
2013.01–2020.12.

No

F. Chen et al.,36 2023 Matte-box Yes Retrospective study, data from Reproductive Centre of The First Affiliated Hospital of Sun Yat-sen
University, 2020.02–2021.05.

No

V. S. Jiang et al.,37 2023 Matte-box NR Retrospective study, data from Massachusetts General Hospital Fertility Centre in Boston,
Massachusetts, 2019–2022.

No

S. Rajendran et al.,38 2023 Matte-box Yes NR, data from Weill Cornell Medicine’s Centre for Reproductive Medicine, IVI Valencia, Spain, and IVF
Florida, USA, 2018–2020.

No

L. Sun et al.,39 2024 Black-box or Matte-box Yes Most data were collected retrospectively (2010.03–2018.12.31), with additional data collected
prospectively (2019–2023) from Guangzhou Women and Children’s Hospital and Jiangmen Central
Hospital, China.

No

N. Handayani et al.,40 2024 Black-box Yes Single-centre cohort study, data from private online data-base of Morula IVF Jakarta Clinic, Jakarta,
Indonesia, 2021.01–2022.10.

No

B. X. Ma et al.,41 2024 Black-box or Matte-box Yes Retrospective cohort study, data from Reproductive Medicine Centre, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 2018–2021.

No

H. He et al.,42 2024 Glass-box No Retrospective study, data from Reproductive Medicine Centre at Tongji Hospital, 2020.09–2021.09 No

DSS: Decision Support Systems; NR: not reported. aStudies (n = 12) included in the meta-analysis.

Table 4: Type of Al-driven DSS, study design, source of data and sample period for the 20 included studies.

Articles

10
The majority of the studies (n = 16) were retro-
spective, with only two employing prospective data
collection for the double-blind evaluation of the final
AI model, two remaining studies did not specify the
type of research conducted. None of the studies uti-
lized images from open-access databases. Eight studies
excluded low-quality images, whereas the remaining
twelve did not mention this process. External valida-
tion using non-sample datasets was conducted in
seven studies. The distribution of research on AI al-
gorithms in this study is as follows: DL was used in ten
studies, ML in five, and both DL and ML in five. Ac-
cording to different annotation extraction and ploidy
prediction steps, AI-driven DSSs are categorized into
three types: 1. Black-box: Refers to AI models that
directly make predictions from raw image data without
transparency in the decision-making process. The in-
ternal workings are not interpretable. 2. Matte-box: It
involves an intermediate step where data, either
manually or automatically annotated, is input into a
black-box model. This approach enhances perfor-
mance but still lacks interpretability in the final pre-
diction stage. 3. Glass-box: Combines manual or
automatic annotation with interpretable ML models in
the prediction step. This allows the prediction process
to be transparent and explainable, offering insights
into how specific decisions are made.17 The number of
studies for each type was black-box (n = 4), matte-box
(n = 5), glass-box (n = 5), black-box or matte-box
(n = 4), matte-box or glass-box (n = 2). Table 1
through 4 present detailed characteristics of the
studies included in the analysis.
www.thelancet.com Vol 77 November, 2024
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Fig. 1: PRISMA flowchart of study selection.

Articles
Pooled performance of AI algorithms
The SROC curves for 12 included studies encompassing
124 contingency tables are provided in Fig. 2a, showing
individual studies and summary estimates of diagnostic
accuracy, the combined Se and Sp for all AI algorithms
were 0.67 (95% CI: 0.64–0.70) and 0.58 (95%
CI:0.54–0.61), respectively, with an AUC of 0.67 (95%
CI: 0.62–0.71). When selecting the contingency table
with the highest accuracy from these studies, the pooled
Se and Sp improved to 0.71 (95% CI: 0.59–0.81) and
0.75 (95% CI: 0.69–0.80), respectively, with an AUC of
0.80 (95% CI: 0.76–0.83) (Fig. 2b), indicates that the AI
model demonstrates good accuracy, suggesting its po-
tential for clinical application.

Fig. 3 presents a crosshairs plot illustrating the re-
ported point estimates and confidence intervals. This
figure integrates elements from both ROC and forest
plots to illustrate the bivariate relationship between
sensitivity and specificity. It also captures the extent of
heterogeneity among studies, as evidenced by the
www.thelancet.com Vol 77 November, 2024
variability in arm lengths and the distribution of data
points throughout the plot.55

To investigate the clinical utility of AI, a Fagan
nomogram was generated. Assuming a 46% prevalence
of euploid embryos, the Fagan nomogram shows that
the posterior probability of euploid embryos was 71% if
the test was positive, and the posterior probability of
euploid embryos was 25% if the test was negative
(Fig. 4). Consequently, the positive predictive value
(PPV) was 71%, and the negative predictive value (NPV)
was 75%.

Quality assessment
The quality of the studies included in this analysis was
assessed using the QUADAS-AI tool, as shown in
Supplementary Fig. S1. Detailed assessment results are
depicted in Supplementary Fig. S2. Notably, 19 studies
exhibited a high or unclear risk of bias in patient se-
lection, while 13 studies showed a similar risk con-
cerning the index test. This was primarily attributed to
11
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Fig. 2: SROC for sensitivity, specificity and diagnostic accuracy of AI model for prediction of embryonic ploidy. a: SROC curves of all studies
included in the meta-analysis (12 studies with 124 tables). b: SROC curves of studies when selecting contingency tables reporting the highest
accuracy (12 studies with 12 tables). Abbreviations: SROC: summary receiver operating characteristic; SENS: summary sensitivity; SPEC: summary
specificity.

Articles

12
the absence of data from open sources and the lack of
rigorous external validation.

Heterogeneity analysis
Heterogeneity was estimated in the forest plot
(Supplementary Fig. S21), where sensitivity and speci-
ficity exhibited substantial heterogeneity (I2 = 97.72 (95%
CI: 97.08–98.36), p < 0.0001, and I2 = 92.24 (95% CI:
89.07–95.41), p < 0.0001, respectively). However, no
Fig. 3: Cross-hair Plot for sensitivity and false positive rate of AI model
included in the meta-analysis (12 studies with 124 tables). b: Cross-hair Pl
accuracy (12 studies with 12 tables).
article with a relevant impact on heterogeneity was found
using sensitivity analysis (Supplementary Fig. S32).

The threshold effect analysis indicated a significant
threshold effect contributing to the observed heteroge-
neity within this study (Spearman correlation esti-
mate = 0.606, p < 0.001). This suggests that variations in
the cutoff values used for diagnosing euploid embryos
in PGT-A represent a potential source of heterogeneity
in the research findings.
for prediction of embryonic ploidy. a: Cross-hair Plot of all studies
ot of studies when selecting contingency tables reporting the highest
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Fig. 4: Fagan normogram for the prediction of euploid embryos
based on embryonic images. Abbreviations: Post_Prob_Pos: positive
posterior probability; Post_Prob_Neg: negative posterior probability;
LR: likelihood ratio.

Articles
Multivariable meta-regression was performed to
explore the sources of heterogeneity among the studies,
with the detailed findings presented in Table 5. The
results indicate that Algorithm (p < 0.001), type of AI-
driven DSS (p = 0.03), type of annotation (p < 0.001),
external validation (p = 0.02), risk of bias (p = 0.01),
maternal age (p < 0.001), sample size (p < 0.001), and
year of publication (p = 0.01) contribute to the hetero-
geneity in sensitivity, while, type of AI-driven DSS
(p < 0.001), external validation (p < 0.001), risk of bias
(p < 0.001), geographical distribution (p < 0.001), and
year of publication (p < 0.001) are sources of heteroge-
neity in specificity.

Bivariate boxplot visualizations (Supplementary
Fig. S31) were used to illustrate the interdependence
and potential negative correlation between sensitivity
and specificity. Sensitivity was found to be slightly
higher than specificity, consistent with the common
inverse relationship observed in diagnostic test accuracy
studies.56 Moreover, Deek’s funnel plot asymmetry test
www.thelancet.com Vol 77 November, 2024
indicated no significant evidence of publication bias
(p = 0.85) (Supplementary Fig. S33).

Subgroup meta-analyses
To further explore the potential sources of heterogene-
ity, we conducted subgroup meta-analyses stratified by
algorithm type, AI-driven DSS categories, annotation
methods, model validation techniques, risk of bias,
maternal age, geographical region, sample size, and year
of publication.

Subgroup analyses revealed that DL models out-
performed ML models in terms of AUC (0.71 vs. 0.63).
Studies using both image and non-image data
demonstrated better predictive performance compared
to image-only studies (AUC 0.71 vs. 0.62). External
validation and lower risk of bias were associated with
more reliable results (AUC 0.70 vs. 0.64 and 0.71 vs.
0.61, respectively), and including maternal age
improved model performance (0.71 vs. 0.62). Larger
sample sizes generally produced higher specificity and
AUC values. Publication year also influenced out-
comes, with more recent studies showing improve-
ments in specificity and AUC (Table 5, Supplementary
Figs. S3–S11, and S22–S30).
Discussion
Although PGT-A is highly accurate in detecting chro-
mosomal abnormalities and is frequently employed by
clinics to enhance pregnancy outcomes, its associated
risks remain contentious.57 Recent evidence indicates
that invasive genetic testing may increase the risk of
preeclampsia (adjusted OR = 3.02; 95% CI: 1.10–8.29)
and placenta previa (adjusted OR = 4.56; 95% CI:
0.93–22.44),58 while may not significantly improve
pregnancy or live birth rates, questioning its clinical
utility.59 Thus, due to the invasive nature of PGT-A and
its clinical controversies, there is a need for accurate
non-invasive methods to predict embryo ploidy.

AI has been extensively applied across various clinical
fields.60–63 In assisted reproduction, the integration of AI
offers a standardized and potentially more objective
method for evaluating embryos.64,65 To our knowledge,
this is the first systematic review and meta-analysis
focused on using AI to predict embryo ploidy based on
imaging data. In alignment with established guidelines
for diagnostic reviews,61 we conducted an exhaustive
literature search spanning medical, engineering, and
technology databases to ensure methodological rigor and
interdisciplinary analysis. In this study, twenty eligible
studies were identified with twelve studies included in
the meta-analysis. The pooled Se, Sp, and AUC for AI-
based prediction of embryonic euploidy were 0.71 (95%
CI: 0.59–0.81), 0.75 (95% CI: 0.69–0.80), and 0.80 (95%
CI: 0.76–0.83), respectively, based on a total of 6879
embryos (3110 euploid and 3769 aneuploid).
13
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No. of studies
(tables)

Sensitivity p
valueb

Specificity p
valueb

AUC

Sensitivity p valuea I2 (95%CI) Specificity p valuea I2 (95%CI)

Overall 12 (124) 0.67 (0.63–0.70) <0.0001 95.71 (95.27–96.15) 0.58 (0.54–0.61) <0.0001 95.72 (95.28–96.17) 0.67 (0.62–0.71)

Algorithm <0.001 0.46

Machine learning 6 (73) 0.69 (0.64–0.73) <0.0001 94.98 [94.27–95.68) 0.50 (0.44–0.55) <0.0001 96.34 [95.87–96.81) 0.63 [0.58–0.67]

Deep learning 8 (51) 0.64 (0.60–0.67) <0.0001 96.37 (95.81–96.92) 0.68 (0.65–0.70) <0.0001 93.81 (92.70–94.93) 0.71 (0.67–0.75)

Type of Al-driven DSS 0.03 <0.001

Black-box 5 (21) 0.64 (0.57–0.70) <0.0001 96.51 (95.67–97.34) 0.68 (0.64–0.71) <0.0001 88.41 (84.44–92.38) 0.71 (0.67–0.75)

Matte-box 5 (30) 0.64 (0.59–0.68) <0.0001 96.24 (95.48–97.00) 0.68 (0.64–0.71) <0.0001 95.36 (94.35–96.36) 0.71 (0.67–0.74)

Glass-box 6 (73) 0.69 (0.64–0.73) <0.0001 94.98 (94.27–95.68) 0.50 (0.44–0.55) <0.0001 96.34 (95.87–96.81) 0.63 (0.58–0.67)

Type of annotation <0.001 0.99

Image annotation 8 (65) 0.66 (0.60–0.70) <0.0001 95.08 (94.35–95.81) 0.52 (0.46–0.57) <0.0001 94.75 (93.95–95.54) 0.62 (0.58–0.66)

Image plus clinical
annotation

9 (59) 0.68 (0.64–0.72) <0.0001 95.69 (95.04–96.33) 0.64 (0.60–0.68) <0.0001 96.13 (95.57–96.69) 0.71 (0.67–0.75)

External validation 0.02 <0.001

Yes 5 (43) 0.62 (0.57–0.66) <0.0001 97.93 (97.64–98.22) 0.68 (0.65–0.72) <0.0001 97.32 (96.91–97.72) 0.70 (0.66–0.74)

No 7 (81) 0.69 (0.65–0.73) <0.0001 88.46 (86.48–90.45) 0.51 (0.46–0.56) <0.0001 91.04 (89.62–92.47) 0.64 (0.60–0.68)

Risk of bias 0.01 <0.001

Low 6 (56) 0.63 (0.59–0.66) <0.0001 97.32 (96.97–97.67) 0.68 (0.65–0.71) <0.0001 96.55 (96.05–97.04) 0.71 (0.66–0.74)

High 6 (68) 0.70 (0.65–0.74) <0.0001 90.26 (88.53–92.00) 0.48 (0.42–0.53) <0.0001 91.86 (90.49–93.24) 0.61 (0.57–0.66)

Maternal age <0.001 0.99

Yes 9 (59) 0.68 (0.64–0.72) <0.0001 95.69 (95.04–96.33) 0.64 (0.60–0.68) <0.0001 96.13 (95.57–96.69) 0.71 (0.67–0.75)

No 8 (65) 0.66 (0.60–0.70) <0.0001 95.08 (94.35–95.81) 0.52 (0.46–0.57) <0.0001 94.75 (93.95–95.54) 0.62 (0.58–0.66)

Geographical distribution 0.92 <0.001

Asia 6 (19) 0.53 (0.40–0.65) <0.0001 95.98 (94.92–97.03) 0.72 (0.66–0.78) <0.0001 82.60 (75.56–89.64) 0.70 (0.66–0.74)

Non Asia 6 (105) 0.69 (0.66–0.72) <0.0001 95.68 (95.20–96.17) 0.55 (0.51–0.59) <0.0001 96.18 (95.77–96.59) 0.67 (0.62–0.71)

Sample Size <0.001 0.57

<400 6 (80) 0.69 (0.65–0.73) <0.0001 86.29 (83.80–88.78) 0.51 (0.46–0.56) <0.0001 89.90 (88.22–91.58) 0.64 (0.59–0.68)

≥400 6 (44) 0.63 (0.57–0.67) <0.0001 98.06 (97.79–98.32) 0.68 (0.65–0.72) <0.0001 97.25 (96.84–97.67) 0.71 (0.67–0.74)

Year of publication 0.01 <0.001

Before 2023 6 (68) 0.70 (0.66–0.75) <0.0001 89.19 (87.20–91.18) 0.47 (0.42–0.52) <0.0001 90.67 (89.02–92.31) 0.62 (0.58–0.66)

After 2023 6 (56) 0.62 (0.57–0.66) <0.0001 97.37 (97.02–97.72) 0.68 (0.65–0.71) <0.0001 96.40 (95.87–96.93) 0.71 (0.66–0.74)

ap-value assessing the heterogeneity within each subgroup. bp-value assessing the heterogeneity between subgroups with multivariable meta-regression analysis.

Table 5: Summary estimate of pooled performance of artificial intelligence in Image-based non-invasive prediction of human blastocyst ploidy.
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14
Although AI algorithms present great potential for
predicting embryonic euploidy, the algorithms devel-
oped currently lack the accuracy and robustness
required to replace PGT-A in clinical settings and still
need to be further improved and validated in random-
ized clinical trials before clinical application, with an
ultimate goal of establishing a robust model with high
reliability and accuracy to predict embryo ploidy status.
At present, a more feasible approach to applying AI in
clinical practice is to use it as a decision-support tool,
providing a standardized, non-invasive method to opti-
mize the prioritization of biopsied or transferred
embryos.66

AI algorithms demonstrate promising potential for
various applications in the field of reproductive medi-
cine. Nonetheless, these technologies do have their
limitations. It is imperative to thoroughly evaluate the
following several methodological concerns affecting
their efficiency and reliability.
First of all, it is necessary to overcome data limita-
tions and promote standardization in AI training. The
efficacy of AI predictive models in clinical applications
is fundamentally contingent upon the construction of
large and high-quality datasets.67 In subgroup analysis
we detected that studies with a sample size greater than
400 reported an AUC of 0.71 (95% CI: 0.67–0.74),
whereas those with a sample size below 400 showed a
lower AUC of 0.64 (95% CI: 0.59–0.68), suggesting that
larger sample sizes contribute to improved precision
and stability of the AUC estimates. Therefore, an
adequate sample size is essential for ensuring the ac-
curacy and credibility of diagnostic models. Current
challenges include the limited, single-centre training
datasets and the lack of standardized image feature
annotation, which hinder the broader adoption of AI
models. To address this, we propose creating a global
network similar to the Lung Image Database Con-
sortium (LIDC) and Image Database Resource Initiative
www.thelancet.com Vol 77 November, 2024
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(IDRI).68 This network would enable data sharing and
identification, facilitating the development of a compre-
hensive, well-annotated dataset. Additionally, AI models
should be trained on large-scale datasets that reflect the
demographic, geographic, and disease diversity of patient
populations to ensure broad applicability. Ensuring
dataset integrity and comprehensiveness is crucial for
maximizing AI’s potential in the medical field.

Traditional ML algorithms, such as random forests,
support vector machines, and regression models, typi-
cally necessitate extensive feature engineering,
requiring manual extraction and selection of features,
and often exhibit poor performance on imbalanced
datasets.69,70 Additionally, labeling complex medical data,
such as patient records, can be time-consuming and
costly. In contrast, DL models are more flexible,
handling unstructured data like images, text, and audio
with less reliance on feature engineering. DL models
use neural networks that compute weighted sums of
inputs across multiple layers, applying nonlinear func-
tions to generate input representations and predict
outcomes.61 However, DL approaches are more prone to
overfitting and generally require larger datasets for
training.71 Therefore, combining ML and DL models is
recommended to leverage their respective strengths: DL
for feature extraction from unstructured data and ML
for final predictions on tabular data. This integrated
approach enhances data processing, mitigates issues
like data imbalance and overfitting, and ensures more
robust clinical outcomes.

In addition, integrating mosaicism reporting into AI
algorithms for embryo ploidy prediction is of great
clinical significance. Many AI models predicting embryo
ploidy status are limited by the omission of mosaicism
reporting in the algorithms, potentially leading to a loss
of vital information and reduced accuracy. The clinical
suitability of mosaic embryos for transfer remains
debated,72,73 with studies suggesting that mosaic di-
agnoses may result from PGT-A amplification methods,
biopsy techniques, or poor embryo quality.73 In fact,
many embryos diagnosed as mosaic are later found to
be euploid following frozen embryo transfer (FET).
Recent studies have demonstrated that mosaic blasto-
cysts exhibit potential for self-correction, leading to
successful pregnancies and healthy live births,74,75

especially in low-level mosaic embryos, which have
outcomes similar to euploid embryos.76 Professional
societies recommended prioritizing low-level mosaic
transfers when no euploid embryos are available.77

Given the reproductive potential exhibited by mosaic
embryos, future algorithms should contemplate incor-
porating mosaic embryos in model training and pre-
diction, which could be particularly beneficial in cycles
lacking euploid embryos.

External validation, which uses independent datasets
to evaluate the reliability and generalizability of diag-
nostic models across diverse clinical settings, is
www.thelancet.com Vol 77 November, 2024
essential for ensuring their broader adoption.78,79 Among
the 20 studies reviewed, only 7 conducted external
validation, indicating a significant gap in understanding
model performance in real-world environments. Sub-
group analysis showed that studies with external vali-
dation had higher diagnostic accuracy (AUC: 0.70, 95%
CI: 0.66–0.74) compared to those without (AUC: 0.64,
95% CI: 0.60–0.68). Ramspek et al.80 also underscore the
importance of external validation in evaluating the
reproducibility and transportability of predictive models.
Therefore, more research incorporating external valida-
tion is urgently needed to refine models, enhance
diagnostic accuracy, bolster the confidence of healthcare
professionals in these models, and ultimately enhance
their application and efficacy in clinical decision-
making.

In a review of 20 studies, 12 provided sufficient data
for establishing contingency tables. Various metrics
have been employed to report diagnostic performance in
AI research, with Se, Sp, and accuracy being the most
commonly used. These metrics are essential for con-
structing contingency tables that include TP, FP, FN,
and TN. Additionally, metrics from computer science,
like precision, F1 score, and recall, are sometimes
employed. However, these limited data occasionally
hinder the construction of comprehensive contingency
tables. Many publications fail to effectively communi-
cate their methodologies, often omitting the release of
algorithms and datasets, thereby restricting the ability of
readers to scrutinize results for errors. To improve
replicability and confidence in AI techniques, future
research should prioritize sharing raw data and meth-
odologies comprehensively.69

To enhance the predictive accuracy of models,
several studies incorporated manually annotated mor-
phokinetic parameters and embryo morphology
scores.18,20,26,31,32,35 However, manual annotation is influ-
enced by the researchers’ expertise, leading to variability
in data interpretation and introducing subjective bias.
This may undermine data consistency and limit the
generalizability and applicability of AI models..28 Ideally,
AI models should rely on standardized, reproducible
data rather than non-standardized subjective metrics.
Automatic annotation utilizes AI tools to autonomously
label datasets, reducing the time and errors associated
with manual annotation, thereby improving data quality,
consistency, and model performance. Rajendran et al.38

applied automatic annotation using Bidirectional Long
Short-Term Memory models to assess expansion, inner
cell mass, trophectoderm, and overall blastocyst scores.
F. Chen et al.36 developed the AMCFNet model, which
autonomously extracted features from clinical data and
integrated them with embryonic morphological fea-
tures. This model demonstrated strong predictive ac-
curacy for identifying euploid blastocysts (AUC = 0.729),
assisting embryologists in embryo selection between
days 5 and 7. Automatic annotation technology
15
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significantly improves the efficiency and accuracy of
embryo image data processing, allowing researchers to
effectively select high-quality embryos, which is essen-
tial for developing reliable and interpretable AI
models.81,82

AI-driven DSS for embryonic annotation and ploidy
prediction can be categorized into black-box, matte-box,
and glass-box models, with increasing levels of inter-
pretability.17 Interpretability refers to a model’s ability to
clearly explain its decision-making process in a human-
understandable manner. Ensuring model interpret-
ability is critical for fairness and reliability in embryo
identification. Currently, two main strategies improve
model interpretability. The first integrates clinical pa-
rameters, significantly enhancing both interpretability
and predictive accuracy.32 A subgroup analysis of 12
selected studies revealed that AI models based solely on
imaging data have limited accuracy in predicting em-
bryonic ploidy (AUC 0.62, 95% CI: 0.58–0.66). However,
combining imaging data with clinical annotations
improved accuracy (AUC 0.71, 95% CI: 0.67–0.75),
highlighting the importance of clinical data integration
for predicting euploidy. Moreover, models incorporating
maternal age further increased accuracy (AUC 0.71 vs.
0.62), confirming maternal age as a key predictor. La
Marca et al. emphasized its role in determining the
likelihood and total number of euploid blastocysts.83

Nonetheless, concerns were raised during the May
2023 ESHRE Journal Club discussion that including
maternal age could disproportionately shift model focus
toward patient factors rather than embryo-specific
characteristics.84 This emphasizes the need for
balancing technical improvements in ML models with
clinically relevant variables like female age to optimize
embryo ploidy prediction. The second approach utilizes
Class Activation Maps (CAM), a key technique in
explainable computer vision (XCV). Initially proposed by
Zhou et al.,85 CAM identifies image regions most rele-
vant for category recognition by CNN. It generates
heatmaps by projecting CNN output weights onto
feature maps from convolutional layers, highlighting
areas that significantly influence network decisions.
Such technology enhances model interpretability and
provides deeper insights into the decision-making pro-
cesses of DL models.86 While most studies focus on
integrating clinical parameters for interpretability, only
one20 has applied CAM. Future research should expand
the use of CAM to optimize model design, improve
performance, reduce bias, and strengthen the inter-
pretability and reliability of image and video analysis. In
summary, the integration of clinical data and the
adoption of innovative approaches are encouraged to
improve the interpretability and reliability of models.

Embryo development is a continuous and dynamic
process, presenting significant challenges in predicting
embryo ploidy. Single time-point images provide limited
insight, restricting the predictive power of models.
Time-lapse technology enables continuous observation
of dynamic embryonic development, but manual review
of entire video footage is impractical for embryologists.
To address this issue, researchers have introduced op-
tical flow technology, which automatically assesses the
dynamic changes in embryonic development by esti-
mating the flow vectors of each pixel in image se-
quences.87,88 In this systematic review, only Lee, C.I.
et al. utilized optical flow techniques.30 It is recom-
mended that future research increasingly apply these
techniques to the analysis of video data capturing em-
bryo development.

The integration of AI into reproductive medicine
poses ethical, patient acceptance, data privacy, and reg-
ulatory challenges. Ethical concerns include ensuring
informed consent, addressing potential risks to
offspring, and clarifying responsibility in the event of
errors.89 Patient acceptance is crucial for successful AI
adoption in healthcare, yet current applications often fail
to consider patient perspectives. Engaging patients in AI
tool design and ensuring transparency may foster trust
and broader adoption.90 AI systems require large
amounts of patient data, raising concerns about data
privacy, ownership, and protection.91 Regulatory frame-
works, though evolving, remain insufficient to address
AI’s complexities, particularly concerning its capacity
for autonomous learning and real-time adaptation. A
move towards global regulatory convergence, beyond the
current soft-law approaches, is essential to ensure the
safe, ethical, and effective deployment of AI in repro-
ductive medicine.92 Moreover, in this study, we observed
that diagnostic accuracy reported in studies published
after 2023 showed an improved AUC of 0.71 (95% CI:
0.66–0.74), compared to an AUC of 0.62 (95% CI:
0.58–0.66) in studies published prior to 2023. This
suggests that AI models are rapidly evolving, and we can
reasonably expect further improvements in diagnostic
accuracy as these models continue to advance over time.

To the best of our knowledge, this is the first sys-
tematic review and meta-analysis evaluating the perfor-
mance of AI in predicting embryo ploidy, with a
comprehensive search of relevant studies in databases
spanning medicine, engineering, and technology. In
addition, no publication bias was detected in the present
study, which enhances the reliability while reducing the
risk of skewed conclusions by including both positive
and negative results. This balanced approach improves
the credibility and generalizability of our findings. Of
greater importance, we employed QUADAS-AI, a dedi-
cated risk assessment tool designed for AI diagnostic
test studies, to critically assess study quality and risk of
bias, which is the strength of this systematic review.

It is important to acknowledge the limitations of the
present study when interpreting the results. This meta-
analysis exhibited significant heterogeneity, which is
common in meta-analyses of diagnostic tests due to the
inherent difficulty in controlling for all potential
www.thelancet.com Vol 77 November, 2024
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confounding factors. To account for this, we applied a
random-effects model, acknowledging the heterogeneity
among studies. Furthermore, subgroup analyses and
meta-regression were conducted to investigate the
sources of the heterogeneity and identified the type of
AI-driven DSS, model validation methods, risk of bias,
and year of publication as the primary contributors. It is
worth noting that the results of this analysis are based
on significant heterogeneity, suggesting that these
findings may only apply to specific patient populations.
There remain practical challenges that need to be
addressed before widespread clinical implementation
can be considered. Clinicians should take these
contextual factors into account when interpreting AI-
based predictions of embryonic ploidy. Future
research should focus on standardizing methodologies
to improve the consistency and broader applicability of
AI models in clinical practice.

In addition, this review encompasses studies with
limited sample sizes. Insufficient sample sizes may lead
to increased risks of overfitting, decreased generaliz-
ability, and constraints on model complexity.93,94

Furthermore, the majority of studies are single-centre
and retrospective in nature, which may increase the
potential for selection bias. To address these issues, AI
developers can employ strategies such as data
augmentation, transfer learning, cross-validation, and
external validation to enhance model robustness and
reliability, thereby mitigating the evaluation errors
associated with small sample sizes.95–97 Future research
should prioritize multi-centre, prospective studies to
minimize selection bias and improve the generaliz-
ability of the models.

In conclusion, this review systematically examined
current studies on AI for predicting embryonic ploidy.
Our findings indicated that while the current AI models
developed cannot entirely replace invasive methods for
determining embryo ploidy, AI demonstrates promise
as an auxiliary decision-making tool for embryo selec-
tion by predicting ploidy, which may help avoid un-
necessary biopsies. Furthermore, we advocate for the
development and integration of extensive databases, and
the conduct of large-sample, multicentre, prospective
studies to facilitate the clinical application of AI.
Healthcare professionals should become familiar with
AI concepts, metrics, and potential applications,
embracing the increasing integration of AI into modern
medicine.
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