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Abstract 

Amentoflavone (AF), a plant biflavone isolated from Selaginella sinensis ethanol extract, is characterized by anti-
inflammatory and anti-oxidant properties. According to previous studies, inflammation and oxidative stress are 
closely related to the pathophysiology of osteoarthritis (OA). However, the effects and mechanisms of AF on OA have 
not been elucidated.To investigate the inhibitory effects and its molecular mechanism of AF on extracellular matrix 
(ECM) degradation stimulated by IL-1β as well as subchondral bone loss induced by RANKL in mice chondrocytes. 
Quantitative PCR was used to detect the mRNA expression of genes related to inflammation, ECM, and osteoclast 
differentiation. Protein expression level of iNOS, COX-2, MMP13, ADAMTS5, COL2A1, SOX9, NFATc1, c-fos, JNK, ERK, P65, 
IκBα was measured by western blotting. The levels of TNF-α and IL-6 in the supernatants were measured by ELISA. 
The amount of ECM in chondrocytes was measured using toluidine blue staining. The levels of Aggrecan and Col2a1 
in chondrocytes were measured using immunofluorescence. Tartrate-resistant acid phosphatase (TRAP) staining, 
F-actin staining and immunofluorescence were used to detect the effect of AF on osteoclast differentiation and bone 
resorption. The effect of AF on destabilization of the medial meniscus (DMM)-induced OA mice can be detected 
in hematoxylin–eosin (H&E) staining, Safranin O green staining and immunohistochemistry.AF might drastically atten-
uated IL-1β-stimulated inflammation and reduction of ECM formation by blocking ERK and NF-κB signaling pathways 
in chondrocytes. Meanwhile, AF suppressed the formation of osteoclasts and the resorption of bone function induced 
by RANKL. In vivo, AF played a protective role by stabilizing cartilage ECM and inhibiting subchondral bone loss 
in destabilization of the medial meniscus (DMM)-induced OA mice, further proving its protective effect in the devel-
opment of OA. Our study show that AF alleviated OA by suppressing ERK, JNK and NF-κB signaling pathways in OA 
models in vitro and DMM-induced OA mice, suggesting that AF might be a potential therapeutic agent in the treat-
ment of OA.
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Introduction
Osteoarthritis (OA), a chronic bone disease leading to 
disability and increased economic burden in the elderly 
[1].Osteoarthritis affects articular cartilage, subchondral 
bone, synovium, and other joint structures [2]. As an 
illustration, in the beginning phases of osteoarthritis, the 
subchondral bone plate will become thinner and more 
loose, and the cartilage begins to disintegrate. In the late 
stages of OA, the calcified cartilage and subchondral 
bone plate thicken, the cartilage gradually deteriorates, 
and osteophytes multiply [3]. In addition, the synovial 
tissue in the joint will eventually develop “synovitis” 
characteristics such as synovial intimal hyperplasia, mac-
rophage and lymphocyte infiltration, and pannus devel-
opment [4].

Although the pathophysiology of the development of 
osteoarthritis disease is not fully understood, the essen-
tial roles of inflammation and inflammatory factors 
have been confirmed in the progression of OA. Inflam-
matory factors can increase the generation of inflam-
matory mediators and accelerate the articular cartilage 
destruction [5]. To our great knowledge, IL-1β figures 
prominently in cartilage ECM degradation because it can 
stimulate the expression of matrix metalloproteinases 
(MMPs), as well as disintegrin and metalloproteinase 
with thrombospondin motifs (ADAMTS) [6, 7]. Moreo-
ver, IL-1β directly promotes the formation of prosta-
glandin E2 (PGE2) and nitric oxide (NO) by releasing 
cyclooxygenase-2 (COX-2) and inducible nitric oxide 
synthase (iNOS), thereby playing an inflammatory role 
[8]. The major goal of OA treatment is to relieve joint 
pain, reduce stiffness, maintain cartilage function, and 
improve the quality of life [9, 10]. However, in terms of 
OA treatment, due to the limited effective approaches, 
there exists an urgent requirement for safe and effective 
medication.

To date, an increasing number of studies show that 
subchondral bone remodeling is crucial to the patho-
genesis of OA [11, 12]. The primary function of sub-
chondral bone, which includes subchondral trabecular 
bone and subchondral cortical plate, is to support carti-
lage mechanically and nutritionally. Subchondral bone 
has considerable compositional and structural organi-
zation changes with OA progresses, which have a nega-
tive impact on the biomechanical environment of the 
overlaying cartilage [13, 14]. Osteoclast, as a unique 
bone resorptive cell, is one of the key cells involved in 
subchondral bone remodeling [15]. Therefore, reducing 
subchondral bone remodeling by inhibiting osteoclast 
differentiation and activation is expected to become a 
new target for the treatment of OA.

Amentoflavone, isolated from the ethanol extract 
of Selaginella sinensis, is a bi-flavonoid molecule with 

anti-viral and anti-inflammatory properties. For instance, 
amentoflavone was discovered to restrict the forma-
tion of nitric oxide and suppress the expression of iNOS 
in macrophages induced by lipopolysaccharide (LPS) 
[16]. In addition, amentoflavone was capable of prevent-
ing acetic acid-induced ulcerative colitis by maintaining 
the oxidation/antioxidant balance [17]. In glioblastoma, 
amentoflavone could inhibit tumor growth by modulat-
ing the ERK/NF-κB signaling pathway [18]. Furthermore, 
amentoflavone reduced epileptogenesis and displayed 
neuroprotective benefits by suppressing the NLRP3 
inflammasome in PTZ-induced kindling mice [19]. In 
view of the vague effects of AF for OA, we investigate the 
effects and subtle mechanisms of AF on IL-1β-induced 
mouse chondrocytes and RANKL-induced osteoclasts.

Materials and methods
Chemicals and reagents
Amentoflavone (AF) (purity 98.08%), was purchased 
from MedChemExpress (Shanghai, China; Cat. No.: 
HY-N0662, CAS No.: 1617-53-4), dissolved in Dime-
thyl sulfoxide to yield a stock solution (10  mM), and 
stored at − 80  °C. Dulbecco’s modified Eagle’s medium 
(DMEM)-high glucose and fetal bovine serum (FBS) 
were provided by Gibco (NewYork, US). Cell Counting 
Kit-8 (CCK-8) was acquired from Servicebio (Wuhan, 
China). Toluidine blue solution was from Solarbio 
(Beijing, China). Primary antibodies against MMP13, 
ADAMTS-5, COL2A1, iNOS, COX-2, NFATc1, c-fos 
and GAPDH were obtained from Abcam (Shanghai, 
China). Primary antibodies against P65, phospho-P65(p-
P65), ERK, p-ERK, JNK, p-JNK, I-κBα and phospho-I-κB 
(p-I-κBα) were obtained from Cell Signaling Technol-
ogy (Danvers, United States). The 4′,6‐diamidino‐2phe-
nylindole (DAPI) was provided by Beyotime (Shanghai, 
China). The staining kit for tartrate-resistant acid phos-
phatase (TRAP) was from Sigma-Aldrich (St. Louis, MO, 
United States), recombinant mouse RANKL and Recom-
binant human macrophage colonystimulating factor 
(M-CSF) were from BestBio (Shanghai, China).

Cell isolation and culture
Primary chondrocytes were harvested from the both 
knee articular surface of C57BL/6 mice. Briefly, bilateral 
knee joints of mice were dissected into 1 × 1 × 1   mm3 
slices and rinsed three times in PBS. Subsequently, 
slices of articular cartilage were first treated with 0.25% 
trypsin–EDTA solution and digested at 37  °C for 1  h. 
After treatment of 0.25% trypsin–EDTA, digestion was 
performed with 0.2% collagenase type II at 37  °C for 
4 h. After centrifugation, the supernatant was discarded 
to obtain the intracellular aggregates and suspended in 
DMEM-high glucose with 10% FBS and 1% penicillin/ 
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streptomycin. Finally, chondrocytes were inoculated at a 
density of 1 × 105 cells/ml in T-75 cell culture flasks and 
cultured at 37  °C in a humidified 5%CO2 environment. 
From the bone marrow of C57BL/6 mice (4–6  weeks 
old), primary bone marrow macrophage cells (BMMs) 
were isolated (4–6  weeks old). In a nutshell, cells were 
extracted from the femur bone marrow and cultivated for 
24 h in a T75 flask using DMEM with M-CSF (30 ng/ml), 
FBS (10%), and penicillin/streptomycin (1%). Following 
the removal of non-adherent cells, adherent cells were 
continued to be cultivated for an additional 3–4  days 
until they reached complete confluence. The first-passage 
chondrocytes were utilized in this study. In this experi-
ment, cells were treated with IL-1β (10 ng/ml) 48 h.

Cell viability assay
Chondrocyte viability was detected by Cell Counting 
Kit-8 (CCK-8) according to the manufacturer’s instruc-
tions. Briefly, we inoculated the chondrocytes in 96‐well 
plates (70,00 cells/cm2) for 24  h. Afterwards, cells were 
incubated with various concentrations of AF (0, 1, 2, 5, 
10, 20 and 40 μM) for 24 h, 48 h and 72 h, respectively. 
10 μl of CCK-8 was added to each well of the plates and 
incubated at 37 °C in a humidified 5%CO2 environment. 
After 2 h, the optimal density (OD) value was read at 
450  nm with microplate reader (Bio-Tek Instruments, 
USA). Similarly, CCK-8 assay was used to test the cyto-
toxic effect of AF on BMMs. All experiments were car-
ried out thrice.

Extraction of RNA and quantitative RT‑PCR analysis
Chondrocytes (2 × 105 cells/well) were seed in 6-well 
plates and treated with IL-1β for 48  h, with or without 
AF (1, 5, 10 μM). BMMs (1 × 105 cells/ well) were seeded 
in 6-well plates and stimulated with RANKL (50  ng/
ml) and M-CSF (30  ng/ ml) in the presence or absence 
of AF (5 μM) for 5–7 days. Total RNA of chondrocytes 
was extracted with TRIzol (TaKaRa Bio, Otsu, Japan) 
according to the manufacturer’s instructions. The A260/
A280 was measured to detect purity and quality. Tran-
scribed complementary DNA was reversed from total 
RNA (1000 ng) using reverse transcriptase (TaKaRa Bio, 
Otsu, Japan) according to the manufacturer’s instruc-
tions. LightCycler®480 (Roche, Germany) with FastStart 
Universal SYBR Green Master Mix (Roche, Germany) 
was used to perform real-time PCR under the follow-
ing conditions: denaturation at 94 °C for 5 s, then exten-
sion at 60 °C for 30 s, lasting for 40 cycles. Target mRNA 
levels were normalized to GAPDH levels and compared 
with the control group. The specific primers used were 
as follows: TNF‐αforward5′-GTC AGA TCA TCT TCT 
CGA ACC‐3′ and reverse 5′‐CAG ATA GAT GGG C TCA 
TAC C‐3′, IL‐6 forward 5′‐GAC AGC CAC TCA CCT CTT 

CA‐3′ and reverse 5′‐TTC ACC AGG CAA GTC TCC 
TC‐3′. iNOS forward 5′-CTC TTC GAC GAC CCA 
GAA AAC-3′ and reverse 5′-CAA GGC CAT GAA 
GTG AGG CTT- 3′, COX-2 forward 5′-CAC CCT GAC 
ATA GAC AGT GAAAG-3′ and reverse 5′-CTG GGT 
CAC GTT GGA TGA GG-3′, MMP13 forward 5′-TGT 
TTG CAG AGC ACT ACT TGAA-3′and reverse 5′-CAG 
TCA CCT CTA AGC CAA AGAAA-3′, ADAMTS-5 for-
ward 5′-GCA GAA CAT CGA CCA ACT CTA CTC -3′and 
reverse 5′-CCA GCA ATG CCC ACC GAA C-3′, COL2A1 
forward 5′-CTC AAG TCG CTG AAC AAC CA-3′and 
reverse 5′-GTC TCC GCT CTT CCA CTC TG-3′, SOX9 
forward 5′-GCA GGC GGA GGC AGA GGA G-3′ and 
reverse 5′-GGA GGA GGA GTG TGG CGA GTC-3′, c-fos 
Forward 5ʹ-CCA GTC AAG AGC ATC AGC AA-3′and 
Reverse 5ʹ-AAG TAG TGC AGC CCG GAG TA-3′, NFATc1 
Forward 5ʹ-GAG TAC ACC TTC CAG CAC CTT-3′and 
Reverse 5ʹ-TAT GAT GTC GGG GAA AGA GA-3′, TRAP 
Forward 5ʹ-TCA TGG GTG GTG CTGCT-3′ and Reverse 
5ʹ-GCC CAC AGC CAC AAA TCT -3′, DC-STAMP For-
ward 5ʹ-AAA ACC CTT GGG CTG TTC TT-3 and Reverse 
5ʹ-AAT CAT GGA CGA CTC CTT GG-3, V-ATPase d2 For-
ward 5ʹ-AAG CCT TTG TTT GAC GCT GT-3′ and Reverse 
5ʹ-TTC GAT GCC TCT GTG AGA TG-3′, Calcitonin recep-
tor Forward 5ʹ-TGC AGA CAA CTC TTG GTT GG-3ʹ and 
Reverse 5ʹ-TCG GTT TCT TCT CCT CTG GA-3ʹ,

GAPDH forward 5′-TCT CCT CTG ACT TCA ACA 
GCGAC-3′and reverse 5′-CCC TGT TGC TGT AGC CAA 
ATTC-3′.

Each gene was analyzed in triplicate.

Western blot analysis
Total proteins were extracted using RIPA lysis buffer. 
After centrifugation, the protein concentration was meas-
ured using the BCA protein detection kit in accordance 
with the manufacturer’s instructions. The same amounts 
of protein (40 ng) were isolated by 10% SDS-PAGE and 
transferred onto PVDF membrane (0.45  μm, Millipore, 
Bedford, MA, United States). After being sealed with 5% 
defatted milk for 1 h at room temperature, the membrane 
was incubated with the corresponding primary antibod-
ies at 4  °C overnight. The membrane was then cleaned 
trice with TBST and incubated with secondary antibod-
ies (1:5000) for 2 h at room temperature. Eventually, the 
bands on the membranes were detected using Enhanced 
Chemiluminescence (ECL) kit and ImageJ software 
(National Institutes of Health, Bethesda, MD, United 
States) was used to quantify.

High‑density culture and toluidine blue staining
To determine the level of chondrocyte ECM in mice, 
approximately 12 ×  106 primary chondrocytes were 
digested with trypsin and suspended. 10ul cell suspension 



Page 4 of 15Liang et al. Journal of Orthopaedic Surgery and Research          (2024) 19:662 

was inculated into each well. Chondrocytes were adhered 
to the bottom for approximately 1 h at 37  °C. 500 ml of 
DMEM medium with 10% FBS was then added into each 
well for 24 h. IL-1β and different concentrations of AF (0, 
1, 5, and 10 μM) were added, respectively. After 7–9 days, 
the cells were fixed in 4% paraformaldehyde about 30 min 
and stained with toluidine blue. The staining intensity 
was determined using ImageJ software.

Immunofluorescence staining
Chondrocytes at a density of 3 ×  104 cells were inoculated 
on 24-well plates and incubated for 48 h. Chondrocytes 
were then fixed at room temperature for 30  min and 
treated with 0.1% Triton × -100(Sigma Aldrich, Germany) 
for 10 min. After 30 min of blockage with 1% BSA (Sigma 
Aldrich, Germany), The primary antibody against Aggre-
can (1:500), primary antibody against Col2a1 (1:500) and 
primary antibody againstP65 (1:400) were incubated at 
4 °C overnight. Afterward, chondrocytes were incubated 
with goat anti-rabbit IgG antibody (1:500) at room tem-
perature for 1 h. Finally, chondrocytes were observed and 
photographed with Leica fluorescence microscope.

Osteoclast differentiation assay
BMMs were seeded in a 96-well plate at a density of 
8 × 103  cells/well in DMEM with 30  ng/mL M-CSF, 
50 ng/mLRANKL and different concentrations of AF (0, 
1, 5, and 10 μM) for 5 days. Every two days, a new cul-
ture media was replaced. When a significant number of 
mature osteoclasts emerged in the control well, the oste-
oclasts were selectively stained using the TRAP kit. We 
counted TRAP-positive cells (≥ 3 nuclei) and measured 
their area.

F‑actin ring formation evaluation
BMMs were cultured on glass coverslips and treated 
with RANKL (50  ng/mL) and 0, 1, 5, 10  μM AF. Fol-
lowing 5–7  days of cell culture, we fixed the mature 
osteoclasts in 4% paraformaldehyde for 20  min, per-
meabilized them with 0.1% (v/v) Triton X100 (Sigma-
Aldrich) for 5  min, and then washed them three times 
with phosphate-buffered saline (PBS). We used 4′, 
6-diamidino-2-phenylindole (DAPI) to stain the nuclei 
and phalloidintetramethylrhodamine isothiocyanate to 
stain the F-actin. The distribution of F-actin rings was 
observed using an LSM5 confocal microscope (Carl 
Zeiss, Oberkochen, Germany), and they were examined 
using Zeiss ZEN software.

DMM‑induced OA mice model
All animal experiment procedures were conducted 
in accordance with the regulations of Animal Eth-
ics Committee of Nanchang University.C57BL/6 mice 

(10 weeks old, n = 18) were anesthetized by intraperito-
neal injection of pentobarbital sodium. We cut the skin 
of the mouse right knee joint with scissors to expose 
the joint capsule, then cut the joint capsule with micro-
surgical scissors to locate the medial meniscotibial liga-
ment (MMTL),Using a micro-surgical knife, the medial 
meniscotibial ligament is broken at its attachment site 
on the tibial plateau, destabilizing the medial meniscus 
(DMM) [20].All animals were randomly divided into 
three groups: non-DMM group, DMM group, DMM 
with 5 mg/kg AF group. In the non-DMM group, only 
the right knee joint was incised without removing the 
tibial ligament of the medical meniscus. Mice in the AF 
group were intraperitoneally injected with 5 mg/kg AF 
every 2 days for 8 weeks. In the non-DMM group and 
DMM group, mice were given the same dose of PBS. 
All mice were euthanized, and their knee tissue samples 
were collected at 8  weeks postoperatively for further 
analysis.

Histological assessment
Knee joints in each group were fixed with 4% paraform-
aldehyde for 24  h. After fixation,  the knee joints were 
decalcified with 10% EDTA for 4 weeks and embedded in 
paraffin. Paraffin blocks containing knee joints from mice 
were cut to a thickness of 5 μm in varied planes. The sec-
tions were then subjected to hematoxylin–eosin (H&E) 
staining, Safranin O-Fast Green staining and immuno-
histochemical staining. Articular cartilage injury was 
assessed by the Osteoarthritis Research Society Interna-
tional (OARSI) scoring system, ranging from 0 (normal) 
to 6 (> 80% loss of cartilage). Xylene was used for dewax-
ing and dehydrated with gradient ethanol. After extract-
ing the antigen in the sodium citrate buffer, the slices 
were incubated with anti-MMP13, anti-Col2a1 anti-
body (BOSTER; 1:200) at 4  °C overnight. After rinsing 
with PBS trice (5 min each time), the tissues were incu-
bated with secondary antibody (1:200, Solarbio, China) 
for 30  min at 37  °C, followed by 3 trice PBS washes. 
Subsequently, 3, 3′-diaminobenzidine tetrahydrochlo-
ride (DAB) kit (ZSGB-BIO, China) was then added and 
stained for 5–7  min to observe the antibody-antigen 
complex. Results were observed under microscope 
(Nikon, Tokyo, Japan).

Statistical analysis
Data were expressed as mean ± standard deviation. All 
experiments were performed at least thrice. All analy-
ses were performed using Student t-test with GraphPad 
Prism 6.02 software. p < 0.05 was considered statistically 
significant.
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Results
Effects of AF on chondrocytes and BMMs viability in mice
The chemical structure of AF was shown in Fig.  1A. 
CCK-8 assay was used to detect the cytotoxicity of AF on 
chondrocytes, and the results showed that AF concen-
trations below 10  μM did not affect cell viability within 
24 h,48 h and 72 h (Fig. 1B), respectively. In addition, the 
effects of AF on precursor of osteoclasts (BMMs) was 

shown in Fig. 1C. Therefore, AF (1, 5, 10 μM) is suitable 
for all subsequent studies.

AF supressed the degradation of extracellular matrix 
in IL1‑β‑induced chondrocytes in mice
To confirm the effect of AF on ECM degradation in 
IL-1β-induced mouse chondrocytes, immunofluores-
cence and toluidine blue staining were exerted to assess 

Fig. 1 The chemical structure of amentoflavone and the cytotoxicity assay of amentoflavone on mice chondrocytes and BMMs. A The chemical 
structure of AF. B, C The cytotoxic effects of AF on chondrocytes and bone marrow macrophages (BMMs) were determined at increasing 
concentrations for 24, 48 and 72 h. The values presented are the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, compared 
with control group
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the ability of chondrocytes to secret ECM. As shown in 
Fig.  2A–C, Immunofluorescence results indicated that 
the levels of Aggrecan and Col2a1 in the IL-1β-stimulated 
group was lower than that in the control group. However, 

AF significantly rescued IL-1β-stimulated Aggrecan 
and Col2a1 degradation. Toluidine blue staining results 
proved that the ability of ECM secretion in chondrocytes 
was significantly decreased after IL-1β treatment, but 

Fig. 2 AF suppress the degradation of extracellular matrix in IL1-β-induced mice chondrocytes. A Aggrecan and Collagen-II in chondrocytes were 
determined using immunofluorescence. B, C The fluorescence intensities of Aggrecan and Collagen‐II were determined using ImageJ software. 
D Toluidine blue staining results for chondrocytes cultured with IL-1β (10 ng/mL) and various concentrations of AF (0,1,5, and 10 μM) for 7–9 days 
by high density culture. E The relative intensity of blue staining. ##p < 0.01 versus the control group and *p < 0.05, **p < 0.01 versus the IL‐1β 
treatment group
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promoted by AF in a dose‐dependent manner (Fig.  2D 
and E). These results indicated the obviously protective 
effect of AF on ECM degradation in IL1-β-induced chon-
drocytes in mice.

AF inhibits osteoclastogenesis induced by RANKL 
and formation of F‑actin rings
To measure the effect of AF on RANKL-induced osteo-
clastogenesis, BMMs were stimulated with M-CSF and 
RANKL in the presence of various concentrations of AF 
(0, 1, 5, and 10 μM). Interestingly, the mature osteoclast 

formation was significantly and concentration-depend-
ently inhibited in the AF-treated BMMs (Fig.  3A–C). 
Additionally, the formation of F-actin rings is essen-
tial for osteoclast function and reflects bone resorptive 
function of osteoclast. Therefore, we started by look-
ing at how AF affected the formation of F-actin rings 
in RANKL-induced osteoclasts derived from BMMs. In 
cells treated with various concentrations of AF, F-actin 
ring formation was suppressed in a concentration-
dependent manner (Fig. 3D and E).

Fig. 3 AF inhibits osteoclastogenesis induced by RANKL and formation of F-actin rings. A BMMs were cultured with various concentrations AF (0, 1, 
5 and 10 μM) and RANKL for 5–7 days, stained by Tartrate-resistant acid phosphatase (TRAP). B, C TRAP-positive multinuclear cells numbers and area. 
D Confocal microscopy results of F-actin rings. E Quantification of F-actin rings. The values presented are the mean ± SD of three independent 
experiments. *p < 0.05, **p < 0.01 versus the control group



Page 8 of 15Liang et al. Journal of Orthopaedic Surgery and Research          (2024) 19:662 

AF regulates ECM‑related gene expression 
and osteoclast‑related gene expressions
We assessed the effect of AF on iNOS, COX-2, MMP13 
and COL2A1 mRNA expression as well as COL2A1, 
MMP13 and ADAMTS5 protein expression in IL-1β-
induced mice chondrocytes. The quantitative PCR 
results indicated that compared with control group, 
IL-1β showed a significant upregulation of MMP13, 
COX-2 and iNOS mRNA expressions and downregu-
lation of COL2A1 mRNA expressions. Whereas, AF 
inhibited the IL-1β-induced mRNA expression of 

MMP13, COX-2 and iNOS and upregulated COL2A1 
mRNA expressions (Fig. 4A). the result of western blot 
was basically consistent with the quantitative PCR 
results (Fig.  4C and D). Futhermore, we investigated 
how AF affected the expression of genes involved in 
osteoclast differentiation, such as NFATc1, c-fos, TRAP, 
DC-STAMP, calcitonin receptor, and V-ATPase d2. 
The quantitative PCR results revealed that osteoclast-
specific gene expressions were elevated by M-CSF 
and RANKL treatment. However, AF diminished 
the expression of these genes (Fig.  4B). The result of 

Fig. 4 AF regulates ECM-related gene expression and Osteoclast-related Gene Expressions. A The mRNA expression of iNOS, COX-2, MMP13 
and COL2A1 were analyzed using quantitative PCR. B The osteoclast-related gene expressions (c-fos, NFATc1, TRAP, DCSTAMP, calcitonin receptor, 
and V-ATPase d2) C Mice chondrocytes were pretreated with or without AF for 2 h followed by 0 or 10 ng/ml IL-1β for 48 h. D Quantification 
analysis of western blotting. E BMMs were pretreated with or without AF for 2 h followed by 0 or 50 ng/ml RANKL for 48 h. F Quantification analysis 
of western blotting. ##p < 0.01 versus the control group and *p < 0.05, **p < 0.01 versus the IL‐1β treatment group



Page 9 of 15Liang et al. Journal of Orthopaedic Surgery and Research          (2024) 19:662  

western blot was basically consistent with the quantita-
tive PCR results (Fig. 4E and F).

AF inhibited the activation of JNK, ERK and NF‑κB signaling 
pathways in IL1‑β‑induced mice chondrocytes
On the basis of the crucial roles of JNK, ERK and NF-κB 
signaling pathways in cartilage degeneration, Western 
Blot was used to investigate whether these signaling 
pathways were involved in inflammation response. As 
expected, Western Blot revealed that IL-1β treatment 
dramatically increased the phosphorylation expression 
of P65 and IκBα, and down-regulated the expression of 
IκBα (an inhibitor of NF-κB), suggesting activated NF‐
κB signaling pathway in chondrocytes. In contrast, AF 
strongly diminished the expression of p-P65 and p-IκBα 
and enhanced the expression of IκBα in a dose‐depend-
ent manner in IL1-β-induced chondrocytes in mice 
(Fig. 5A and B). In addition, JNK and ERK phosphoryla-
tion in mice chondrocytes could be greatly promoted by 
IL-1β stimulation, and suppressed by AF treatment at 
various concentrations (Fig.  5C and D). Taken together, 
these results indicated that AF attenuated inflammation 
response in IL‐1β-induced chondrocytes by inhibiting 
NF‐κB JNK and ERK signaling pathways. Similarly, p65 
immunofluorescence staining result revealed that AF 
exposure reduced the nuclear translocation of p65 in 
mice chondrocytes (Fig. 5E).

AF blocked JNK、ERK and NF‑κB signaling pathways 
in BMMs
Given the significance of NF-κB, JNK and ERK path-
ways in osteoclastogenesis, Western Blot and immuno-
fluorescence staining were used to investigate whether 
AF inhibited osteoclast differentiation through these 
signaling pathways. Compared with the control group, 
the protein level of IκBα, an inhibitor of NF-κB, was sig-
nificantly increased in the AF group, indicating that AF 
inhibited the NF-κB pathway. We further investigated 
how AF affected the activation of ERK and JNK in BMMs 
because these signaling pathways are equally crucial for 
osteoclast differentiation. When compared to control 
group, phosphorylated ERK and JNK were both greatly 
diminished after AF treatment (Fig.  6A and B). Mean-
while, immunofluorescence staining result indicated that 
AF greatly inhibited the nuclear translocation of p65 in 
BMMs (Fig. 6C). Collectively, these data suggest that AF 
blocks osteoclastogenesis via NF-κB, JNK and ERK sign-
aling pathways.

AF ameliorated OA progression in DMM‑induced OA mice 
model
DMM-induced OA mice model was established to inves-
tigate the impact of AF on OA in vivo. Knee joint samples 

were subjected to hematoxylin–eosin (H&E) staining, 
Safranin O-Fast Green staining and immunohistochemi-
cal staining. H&E staining and Safranin O-Fast Green 
staining revealed more proteoglycan loss and carti-
lage erosion in the DMM group than those in the sham 
group. Curiously, AF significantly inhibited proteogly-
can loss and cartilage destruction compared with the 
DMM group (Fig. 7A and B). Consistent with the staining 
results, the OARSI score of the DMM group was higher 
than that of the sham group, and that of the AF treated 
group was lower than that of the DMM group (Fig. 7E). 
Immunohistochemical staining was performed to exam-
ine the effects of AF on ECM during OA, and AF was 
found to inhibit the degradation of MMP13 and Col2a1 
(Fig. 7C and D). The percentags of MMP13 and Col2a1‐
positive cells in each section were quantified by Image 
J(Fig.  7F and F), suggesting that AF can ameliorate the 
development of OA in DMM-induced OA mice model.

Discussion
OA, a chronic joint disease, is characterized by degen-
eration of articular cartilage, joint dysfunction and pain 
[21]. Persistent inflammatory response features in OA 
progression, which can be hastened by various inflam-
matory factors [22]. OA has been identified as one of 
the leading causes of impairment in the elderly. Cur-
rently, medications figure prominently in OA treatment. 
Despite the successfully reduced short-term pain by sev-
eral oral drugs, the major side effects still remain, such 
as digestive system disorders, kidney damage, cardiovas-
cular disease, etc. [23, 24]. Consequently, it is of urgent 
requirement for novel drugs to prevent or relieve the 
pain and symptoms of OA, as well as side effects dur-
ing the treatment [25]. Recent studies have found the 
essential role of plant-derived chemicals in the treatment 
of inflammation-related disorders. As an illustration, 
amentoflavone, has exhibited its anti-apoptotic, anti-
oxidative, and anti-inflammatory properties in various 
diseases. Pharmacological effects of AF on numerous dis-
eases have been reported in vivo and in vitro experimen-
tal models. Amentoflavone protects rats from ulcerative 
colitis by altering cytokine profiles and NF-κB signaling 
pathway [17]. The anti-apoptotic, anti-inflammatory, and 
antioxidatant properties of amentoflavone can protect 
hippocampus neurons and prevent seizures in epilep-
tic mice [26]. In addition, amentoflavone can also slow 
down tumor development in hepatocellular carcinoma by 
blocking ERK signaling pathway [27] and enhance apop-
tosis in breast cancer cells by inhibiting fatty acid pro-
duction [28]. However, the pharmacological effects of AF 
on OA remain unclear. In our study, we investigated the 
effects of amentoflavone on IL-1β-induced chondrocyte 
inflammation and RANKL-induced osteoclastogenesis, 
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Fig. 5 Effect of AF on NF-κB, JNK and ERK signaling pathways in IL-1β-stimulated mice chondrocytes. A, B The levels of p-p65, p65 IκBα and p-IκBα 
were examined by western blot and quantification analysis. C, D The levels of JNK, p-JNK, ERK and p-ERK were examined by western blot 
and quantification analysis. E Nuclear translocation of p65 in mice chondrocytes was determined using immunofluorescence. ##p < 0.01 vs. control 
group; **p < 0.01 vs IL-1β-stimulated group
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Fig. 6 AF blocked JNK、ERK and NF-κB signaling pathways in BMMs. A The levels of IκBα JNK, p-JNK, ERK and p-ERK were examined by western 
blot B Quantification analysis of western blotting. C Nuclear translocation of p65 in BMMs was determined using immunofluorescence. (*p < 0.05; 
**p < 0.01)
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we found that amentoflavone suppressed IL-1β-induced 
inflammatory responses and RANKL-induced osteoclas-
togenesis in mice by targeting the NF-κB, JNK and ERK 
signaling pathways. The potential protective mechanism 
is illustrated in Fig.  8. In addition, in  vivo studies have 
confirmed that AF slow down the OA progression in 
DMM mice models. As a result, AF has potential applica-
tion value in OA treatment.

Chondrocytes maintain a balance between synthesis 
and degradation of extracellular matrix (ECM) in nor-
mal joints [29]. ECM is composed of type II collagen 
and aggrecan, which is responsible for cartilage struc-
ture [30]. Previous research has shown that blocking the 
production of inflammatory mediators NO and PGE2 
could contribute to delaying the onset of OA [31]. Induc-
ible nitric oxide synthase (iNOS) and cyclooxygenase-2 
(COX-2) can inhibit type II collagen and proteoglycan 
synthesis while activating MMPs, which are considered 
to be important contributors to OA [32, 33]. MMPs are 
a group of proteolytic enzymes working in tissue remod-
eling [34]. Among the MMPs, MMP13 has been impli-
cated in the progression of OA since it effectively and 
irreversibly tears down type II collagen, the major struc-
ture of ECM [35]. In addition, IL-1β also promotes the 
degradation of aggregated proteoglycans by regulating 
the expression of ADAMTS [36]. In the process of OA, 

IL-1β-stimulated inflammatory responses is involved in 
several signaling pathways, such as PI3K/AKT/mTOR 
pathway [37], ROS/MAPK/Nrf2 Signaling Pathway [38], 
Wnt/β-catenin signaling pathway [39] and JAK2/STAT3 
signaling pathway [40]. These signaling pathways have 
potential mechanism of action during OA in previous 
studies.

There is substantial evidence that subchondral bone 
remodeling and articular cartilage are both involved in 
the development of OA [2, 41]. Osteoclasts, as unique 
bone resorptive cells, are the main contributors to sub-
chondral bone remodeling [42]. As a result, focusing only 
on articular cartilage may not be enough to prevent the 
progression of OA. suppressing osteoclast differentiation 
and activation has emerged as a novel therapeutic strat-
egy for the treatment of OA [43]. In this study, when 
RANKL binds to its receptor RANK during osteoclast 
differentiation, NF-κB, ERK and ERK signaling can be 
triggered, which causes the activation and nuclear trans-
location of osteoclast transcription factors. However, AF 
significantly inhibit the activation of NF-κB, ERK and 
ERK signaling pathways, as well as nuclear translocation 
of P65.

Furthermore, NF-κB, JNK and ERK signaling pathways 
have been extensively studied in IL-1β-stimulated inflam-
matory responses [44–46]. Based on the protective effects 

Fig. 7 AF ameliorated OA progression in DMM-Induced OA mice model. A, B The effect of AF on DMM-stimulated cartilage degeneration 
was observed by HE Staining and Safranin O-Fast Green staining. E Quantitative analysis of OARSI scores. C, D Immunohistochemical (MMP13 
and Col2a1) staining of mice chondrocytes in articular cartilage and quantitative analysis. (*p < 0.05; **p < 0.01)
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of AF on inflammatory responses, we aimed to investi-
gate NF-κB, JNK and ERK signaling pathways, which are 
known to play a vital role in the regulation of inflamma-
tory response [47–49]. Inhibition of NF-κB activation has 
been shown to have a therapeutic impact on OA in previ-
ous investigations [50]. NF-κB inhibitor (IκBs) commonly 
binds to NF-B, which ordinarily exists in cytoplasm. IκB 
protein is phosphorylated and destroyed in response to 
IL-1β activation, and p65 is translocated from the cyto-
plasm to nucleus to regulate inflammatory mediators 
[51–53]. In this study, AF was found to suppress the acti-
vation of the NF-κB, JNK and ERK signaling pathways 
in mouse chondrocytes by drastically reducing p65, JNK 
and ERK phosphorylation. However, whether other path-
ways are implicated in AF in the evolution of OA remains 
to be elucidated.

The mice DMM model was established to explore the 
chondroprotective impact of AF on OA. AF treatment 
effectively retard the progression of OA. Immunohis-
tochemistry revealed a considerable increase in aggre-
can levels and a decrease in MMP13 levels, indicating 
the alterations in the ECM of cartilage. Ex-vivo mod-
els should be established in the future, so as to prefer-
ably understand the underlying mechanism of AF in OA. 
Moreover, we should also attempt to clarify whether AF 
impacts the progression of OA through other signaling 
pathways.
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