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Hospital beds are one of the most critical medical resources. Large hospitals in China have caused bed utilization rates to exceed
100% due to long-term extra beds. To alleviate the contradiction between the supply of high-quality medical resources and the
demand for hospitalization, in this paper, we address the decision of choosing a case mix for a respiratory medicine department.
We aim to generate an optimal admission plan of elective patients with the stochastic length of stay and different resource
consumption. We assume that we can classify elective patients according to their registration information before admission. We
formulated a general integer programming model considering heterogeneous patients and introducing patient priority
constraints. The mathematical model is used to generate a scientific and reasonable admission planning, determining the best
admission mix for multitype patients in a period. Compared with model II that does not consider priority constraints, model I
proposed in this paper is better in terms of admissions and revenue. The proposed model I can adjust the priority parameters to
meet the optimal output under different goals and scenarios. The daily admission planning for each type of patient obtained by
model I can be used to assist the patient admission management in large general hospitals.

1. Introduction

The balance between the supply and demand of medical
resources is a problem faced by the whole world. When a hos-
pital is faced with a discrepancy between supply and demand,
it can employ one of two strategies. The first strategy is to
expand capacity by increasing staffing or fully developing
operating room capabilities; the second is to formulate an
admission plan that selects the best mix of patients and gives
priority to patients who can be treated effectively. This
approach is called patient mix optimization [1]. When the
patient mix is combined with the framework of production
planning and control, three questions arise. (1) The strategic
problem is based on the annual cycle, making decisions about
the number of patients to be served each year considering the
mix of different types of patients. (2) The decision cycle of the
tactical layer is generally from month to week. (3) The opera-
tion layer is mainly involved in the determination of the
patients to be served every day and when they enter the hospi-

tal [2]. These decisions are aimed towards allocating different
types of patients to resources involved in inpatient services.

As the demand for medical resources increases year by
year, the unlimited expansion of capacity is not possible,
especially in the context of China’s medical system. The med-
ical resources of China’s large general hospitals are often
overloaded. The bed utilization rate of public tertiary hospi-
tals in China in 2019 was as high as 97.5%. In our hospital,
due to the long-term addition of beds, the bed utilization rate
in some departments exceeded 100% [3].

In China, large general hospitals mainly provide medical
services for acute, severe, and complex diseases, and commu-
nity hospitals are used to treat chronic and mild diseases.
However, due to the absence of a gatekeeper system, Chinese
patients are free to choose which hospitals to attend for treat-
ment. Patients tend to go to large hospitals first, rather than
to community hospitals. As a result, large hospitals are often
overcrowded, while the medical resources of primary hospi-
tals are relatively idle. According to the data of the 2019
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China Health and Family Planning Development Bulletin
published by the National Health Planning Commission,
the number of admissions to tertiary hospitals increased
from 92.92 million in 2018 to 104.83 million in 2019, while
the number of admissions to primary health care institutions
decreased from 43.76 million to 42.95 million [4].

Therefore, for large general hospitals in China in which
resources have been overloaded and cannot increase rapidly
in the short term, formulation of an admission plan can allevi-
ate the mismatch between supply and demand. The goal of
admission planning is to achieve an acceptable match between
demand and capacity, to improve the efficiency of high-quality
medical services. From a demand perspective, when a large
number of inpatients cannot be admitted due to the scarcity
of hospital beds, a feasible solution is to give priority to
patients who need more inpatient services [5]. This arrange-
ment not only ensures the fairness of the distribution of med-
ical resources but also reduces the waste of high-quality
resources and improves resource utilization. For hospitals,
the matching of demand and capacity is important. When
general hospitals face different admission needs, they can opti-
mize admission planning by constructing a mathematical
planning model which optimizes the allocation of limited
medical resources. This problem is the focus of this article.

This paper is relevant to the current literature from two
perspectives. The first is that we conducted research into the
combination of patient mix with resource scheduling. Part of
the literature focuses on the follow-up scheduling of medical
resources by introducing the concept of patient mix. Patient
mix involves dividing patients into several categories and then
assigning patients to different follow-ups, a situation which
belongs to the scope of hospital operation management. This
type of literature primarily includes research into resource
scheduling optimization for multipriority patients [6]. Meisami
et al. [7] used mortality risk-based metrics and a data-driven
mixed integer model to conduct research into patient admis-
sion management in intensive care units. Roshanaei et al. [8]
developed the first exact decomposition approaches for multi-
level operating room planning and scheduling that integrates
case mix planning, master surgical scheduling, and surgery
sequencing in the presence of multiple surgical specialties.

The second is the research status of admission planning.
Part of the literature is concerned with the number of patients
and the optimization of patient mix from a tactical and strate-
gic level, to assist the hospital in determining the best mix of
admitted patients, thereby improving the utilization of medical
resources. The main problem is patient admission planning,
including ensuring an optimal patient mix, which matches
available capacity with demand. This type of patient admission
planning includes the selection of the best patient mix and the
matching of available capacity and demand [9, 10]. Adan and
Vissers [11] conducted a study on the best way in which to for-
mulate admission planning to meet patient throughput and
maximize resource utilization when capacity is limited. Their
study was the earliest investigation into patient admission plan-
ning. Later, stochastic resource requirements were considered
in further research into patient admission planning [12]. Since
then, many scholars have conducted studies into patient
admission planning [13–15]. Ma and Demeulemeester [16]

proposed a comprehensive multilevel approach to the study
of a hospital’s patient mix and capacity planning, to improve
resource efficiency and improve patient service. Their method
addresses three aspects: the case mix, main surgery scheduling,
and performance evaluation. Freeman et al. [17] developed a
multiphase approach that utilizes mathematical programming
and simulation to generate a pool of candidate solutions for
case mix planning. McRae and Brunner [18] formulated a
mixed integer programmingmodel for case mix planning, with
different stochastic and deterministic extensions.

In summary, the main contributions of this article to the
current literature are as follows:

(i) The introduction of constraints with which to prior-
itize patients. Most current admission management
studies only consider a single medical resource [19,
20]. Based on data from large general hospitals in
China, this paper introduces constraints that can
quantify the priority of patients. This article also
considers the tactical issue of how to execute reason-
able admission planning for a hospital through
patient mix optimization when the hospital encoun-
ters patient groups with different priorities, to ensure
effective use of multiple medical resources

(ii) The model is flexible and adaptable and can be
dynamically adjusted. Although the management
of admission planning has received tremendous
attention, in terms of practicality, some models are
subject to specific assumptions, and the applicability
of those studies needs to be strengthened [21–23].
Taking into account the differences in the character-
istics and resource consumption of different types of
patients, this paper describes the construction of a
mathematical planning model with multitype
patients and priority constraints to generate an opti-
mal plan for patient admission. Through sensitivity
analysis, we have obtained results in different sce-
narios. Different types of hospitals can assist patient
admission management according to their actual
conditions by personalizing the parameters such as
the upper and lower bounds of priority weight, pri-
ority score, and target resource utilization

(iii) The patient admission planning in this article is a
follow-up study based on data-driven patient classi-
fication. The current mainstream method abroad is
to develop a scoring system for specific diseases
and then apply it to patient prioritization [24, 25].
However, due to the imperfect indicators of this
method, the results may be biased in determining
the priority of patients. Data-driven demand classifi-
cation has become a new research trend [26–28].
The patient types in this article are based on our pre-
vious research results. The study uses the patient’s
admission information as input and incorporates
machine learning methods to build classification
models and scientifically classifies the preadmission
elective patients [29]
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The remainder of this paper is structured as follows. In
Section 2, we describe the background of the research. Sec-
tion 3 builds the model of admission planning for elective
patients. In Section 4, a case study is described, and the sen-
sitivity analysis and model comparison analysis are described
in Section 5. In the final section, a conclusion is drawn.

2. Problem Description

In this section, we consider the patient admission planning of
large general hospitals under China’s national conditions, in
order to provide policy recommendations for the hospital’s
tactical decision-making. The problems considered in this
paper are described as follows.

2.1. Background. West China Hospital (WCH) is a large ter-
tiary hospital in China, which has totally 4300 beds and 43
specialized units. WCH is a national-level treatment center
for intractable diseases, but the waiting list for elective patients,
who could have been treated in community hospitals, also
sought admission into general hospitals. To a certain extent,
such patients occupy the admission quota of patients with
severe illness, which further aggravates the imbalance between
supply and demand of admission services in general hospitals.
WCH is a typical and representative tertiary hospital in China.
The above issue that this article focuses on is also the common
challenge faced by other large tertiary hospitals. This article
chooses WCH as a research case to study such major research
question: how to reasonably allocate high-quality resources
among different types of patients.

2.2. Research Question and Purpose. We abstract the above-
mentioned practical problems as part of patient admission
planning. In this paper, the issue of admission planning of
elective patients refers to the decision on the number of elec-
tive patients and the best mix of patients with different prior-
ities given the constraints of access to medical resources. The
objective of this study is to generate an optimal admission
plan of elective patients with stochastic length of stay and
the resource consumption of each type of patients.

The uniqueness of this article is reflected in three aspects.
(1) Considering multiple medical resource constraints: the
resources included are hospital beds, medical examination
resources, and nursing resources. They are considered as
the most critical for the problem due to limitations in avail-
ability. (2) Data-driven patient classification: based on previ-
ous research results [29], according to the patient’s disease
health status, type of medical insurance, location, and other
personal information, machine learning methods can be used
to predict the probability of patients waiting to be admitted.
The authors of that article divide patients into three catego-
ries based on the probability by the machine learning algo-
rithm: probability of admission to type I p ∈ ½0:8, 1�,
probability of admission to type II p ∈ ð0:5, 0:8Þ, and proba-
bility of admission to type III p ∈ ½0, 0:5�. (3) Introducing
patient priority constraints of large hospitals under China’s
national conditions: heterogeneity of patients implies that
there are different groups of patients, each with their own

resource requirements, length of stay, and unit revenue. We
assign different priority scores to different types of patients.
The higher the admission priority, the higher the score. The
priority of each type of patient is no longer subdivided inter-
nally, that is, the same type of patient is given a uniform score.

2.3. Optimization Process. The objective function is to maxi-
mize revenue, while considering the deviation cost of
resource utilization. Given the ideal target capacity of each
medical resource, an integer programming model can be
constructed to determine the number of patients admitted
to the hospital and the mix of different types of patients in
the cycle. The best patient mix depends upon the characteris-
tics of the patient type and the amount of medical resources
available to the department.

2.4. Expected Results. The result produced by this model is a
tactical hospital admission planning, which describes the
number of hospitalized patients and the proportion of differ-
ent types of patients during the planning cycle. It can be
dynamically adjusted according to the expected utilization
of different medical resources involved. Admission planning
can be used to guide the hospital admission arrangements for
daily operation. The structure of the admission planning for
elective patients with multiple priority is shown in Figure 1.

3. The Proposed Mathematical Model

In this section, we explain the notation used in the model and
then present an admission planning model that considers
multiple types of patients and their priority constraints.

3.1. Sets. I: Set of patient types, i ∈ I,
T : Set of days in planning circle, T = f1, 2,⋯, τg, t ∈ T ,

τ = 28, the planning cycle for this article is 28 days,
R: Set of medical resources, R = f1, 2, 3g, r ∈ R,
r = 1: Bed resources,
r = 2: Medical examination resources,
r = 3: Nursing resources.

3.2. Parameters. ri: Revenues generated by treated a patient
from type i,

n: The total estimated number of patients admitted in a
planning cycle,

ei: The time required for a patient from type i to perform
medical technical examination (cases/hours),

ni: The nursing workload (in hours) required for a patient
from type i (the higher the priority, the greater the nursing
workload),

Pit : Probability that the length of stay is t days of a patient
from type i,

~Pis: Probability that the length of stay is over s days of a
patient from type i,

si: Priority score of patients from type i,
Lp: Lower bound of average priority weight for patients
αi: Lower bound of admission proportion of patients in

type i,
βi: Upper bound of admission proportion of patients in

type i,
ACrt : Available capacity of resource r on day t,
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TCrt : Target capacity of resource r on day t,
c+r : Positive deviation cost of resource r,
c−r : Negative deviation cost of resource r.

3.3. Decision Variables. xit : Number of patients from type i
admitted on day t of the planning cycle.

The following indirect variables are directly related to the
decision variables xit :

Mit : Indirect variables, the total number of patients from
type i on day t,

C+
rt : Auxiliary variable, excess capacity of resource r on

day t,
C−
rt : Auxiliary variable, spare capacity of resource r on day t,

θi: Admission ratio (unit: %) of the patients from type i, it
can be understood as the percentage of each type of patient to
the total planned admissions, which can be obtained by xit :
θi =∑T

t=1xit/∑T
t=1∑

I
i=1xit .

3.4. Objective Function. Given the above parameter informa-
tion, how does the hospital generate an appropriate admission
plan?Themodelconstructedinthisarticle isorganizedas follows.

First of all, the objective function of the model is the max-
imum profit, as shown in

Max Z = 〠
I

i=1
〠
T

t=1
rixit − 〠

R

r=1
〠
T

t=1
c+r C

+
rt − 〠

R

r=1
〠
T

t=1
c−r C

−
rt: ð1Þ

The objective function (1) is described from the perspec-
tive of revenue and cost of resource utilization. The hospital
accepts a patient from type i which will generate certain ben-
efits. When the hospital’s resources are underutilized or over-
used, it brings additional costs, as shown in Figure 2.

There may be two situations between the target capacity
and the actual capacity. One is when the actual capacity
exceeds the target capacity, so the capacity is overutilized,

which we call positive deviation. If the actual capacity is
lower than the target capacity, there will be underutilized
resources, which we call negative deviation.

It should be noted that the revenues discussed in this
paper are related to the criticality of the patient, the rate of
disease recovery after treatment, and the contribution to the
value of the subject. The setting of revenue parameters is
not only for economic considerations but also includes other
factors such as broad social influences. It is a modified price.
We assume that the revenues of serving patients with intrac-
table diseases are higher than those of ordinary patients. This
is not only because of the cost of their diagnosis and treat-
ment but also because the service of critically ill patients is
more in line with the positioning of a general hospital and
contributes to the development of clinical disciplines.

In summary, setting the objective function to maximize
revenue is to use price tools in economics to regulate the pro-
cess of resource allocation to optimize efficiency. It is also the
choice to maximize resource efficiency after considering
moral and social factors.

3.5. Restrictions.Hospital beds are limited. Therefore, the total
number of patients that can be admitted to the hospital during
cycle T needs to be restricted. Constraint (2) means that the
number of admissions for all types of patients is less than the
estimated total number of admissions during the T cycle.

〠
I

i=1
〠
T

t=1
xit ≤ n: ð2Þ

In this article, we assume that the hospital divides patients
into i types according to the probability of admission. In order
to meet the positioning of a general public hospital, it is neces-
sary to restrict the admission proportion of different types of
patients. Constraint (3) and constraint (4) stipulate the upper

Waiting list

Patient mix

Optimization

Objective function

• Maximize hospital revenue
• Consider the cost of resource

utilization deviation

Restrictions

•

•

•

Medical resources related: hospital
bed capacity, nursing capacity...
Patient-related: upper and lower
bound, priority...
Time related: length of stay..

... ...

Type I [0.8, 1] Type II (0.5, 0.8) Type III [0, 0.5]

Figure 1: Structure of the admission planning of elective patients.
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and lower bounds of the admission proportion of patients
from type i in the T cycle.

〠
T

t=1
xit ≤ βi 〠

I

i=1
〠
T

t=1
xit , ∀i ∈ I,∀t ∈ T , ð3Þ

〠
T

t=1
xit ≥ αi 〠

I

i=1
〠
T

t=1
xit , ∀i ∈ I,∀t ∈ T: ð4Þ

Since different types of patients get different admission
scores, the higher the priority, the higher the score. We also
set a minimum average priority score for all types of patients
admitted to the hospital. Constraint (5)means that the average
priority score of all admitted patients in the hospital should
meet at least a certain lower bound to meet the needs of
patients with intractable diseases.

〠
I

i=1
si 〠

T

t=1
xit

 !
≥ Lp ⋅ 〠

I

i=1
〠
T

t=1
xit : ð5Þ

We use probability to indicate the length of stay. Different
types of patients have different distributions of length of stay,
which follow discrete distributions. For patients from type i,
suppose the shortest length of stay is 1 day, and the longest
hospital stay is 28 days. Let Pit denote the probability that
the actual length of stay for the patient from type i is t days.
When the patient’s length of stay exceeds s days
(s ∈ f0,⋯, T − 1g), the cumulative probability distribution,
~Pis, can be calculated and used to express the probability that
the length of stay for the patient from type i exceeds s days
after admission. The distribution of length of stay and cumu-
lative length of stay for a patient of type i can be described as
Table 1, and the conversion relationship between Pit and ~Pis
is summarized as ~Pis = 1 −∑s

t=0Pit , s ∈ f0,⋯, T − 1g. Specific
information is shown in Table 1.

Based on the principles discussed above, the intermediate
variableMit can be calculated to indicate the number of patients
in the hospital on day s of type i, expressed as constraint (6).
Constraint (7) means that the actual utilization of the hospital
bed in the T period cannot exceed its available capacity.

Mit = 〠
t−1

s=0
~Pis ⋅ xit , ∀i ∈ I, t ∈ T , ð6Þ

〠
I

i=1
Mit ≤ ACrt , ∀t ∈ T , r = 1: ð7Þ

Constraint (8) and constraint (9) require that the actual
capacity used of inspection resources and nursing resources
cannot exceed the available capacity during the T period.

〠
I

i=1
eixit ≤ ACrt , ∀t ∈ T , r = 2, ð8Þ

〠
I

i=1
niMit ≤ ACrt , ∀t ∈ T , r = 3: ð9Þ

Constraints (10)–(12) are descriptions of auxiliary variables
C+
rt, which represent the excess capacity (positive deviation)

between the actual capacity of each resource and the target
capacity per day. Constraints (13)–(15) are descriptions of aux-
iliary variables C‐

rt, which represent the idle capacity (negative
deviation) between the target capacity of each resource and
the actual capacity used each day. Constraint (16) requires the
decision variable to be a positive integer.

C+
rt = 〠

I

i=1
Mit − TCrt

 !+

, ∀t ∈ T , r = 1, ð10Þ

C+
rt = 〠

I

i=1
eixit − TCrt

 !+

, ∀t ∈ T , r = 2, ð11Þ

C+
rt = 〠

I

i=1
niMit − TCrt

 !+

, ∀t ∈ T , r = 3, ð12Þ

C−
rt = TCrt − 〠

I

i=1
Mit

 !+

, ∀t ∈ T , r = 1, ð13Þ

C−
rt = TCrt − 〠

I

i=1
eixit

 !+

, ∀t ∈ T , r = 2, ð14Þ

Target capacityActual capacity used Actual capacity used

Under-utilized Over-utilized 
Available capacity

Figure 2: The relationship between actual capacity used and target capacity.

Table 1: Description of the distribution of LOS and cumulative LOS
of patients from type i.

t 1 2 3 … T

Pit Pi1 Pi2 Pi3 … Pit

s 0 1 2 … T − 1
~Pis 1 1 − ~Pi1 + ~Pi2

� �
1 − ~Pi1 + ~Pi2
� �

… 1 −〠s

t=0
~Pit
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C−
rt = TCrt − 〠

I

i=1
niMit

 !+

, ∀t ∈ T , r = 3, ð15Þ

xit ∈ 0, 1, 2,⋯, nf g, ∀i ∈ I, ∀t ∈ 1,⋯, Tf g: ð16Þ

Finally, the integer programming model of this article is
summarized as follows:

Max Z = 〠
I

i=1
〠
T

t=1
rixit − 〠

R

r=1
〠
T

t=1
c+r C

+
rt − 〠

R

r=1
〠
T

t=1
c−r C

−
rt

s:t: 〠
I

i=1
〠
T

t=1
xit ≤ n

 〠
T

t=1
xit ≤ βi 〠

I

i=1
〠
T

t=1
xit , ∀i ∈ I,∀t ∈ T

 〠
T

t=1
xit ≥ αi 〠

I

i=1
〠
T

t=1
xit , ∀i ∈ I,∀t ∈ T

 〠
I

i=1
si 〠

T

t=1
xit

 !
≥ Lp ⋅ 〠

I

i=1
〠
T

t=1
xit

 Mit = 〠
t−1

s=0
~Pis ⋅ xit , ∀i ∈ I

 〠
I

i=1
Mit ≤ ACrt , ∀t ∈ T , r = 1

 〠
I

i=1
eixit ≤ ACrt , ∀t ∈ T , r = 2

 〠
I

i=1
niMit ≤ ACrt , ∀t ∈ T , r = 3

 C+
rt = 〠

I

i=1
Mit − TCrt

 !+

, ∀t ∈ T , r = 1

 C+
rt = 〠

I

i=1
eixit − TCrt

 !+

, ∀t ∈ T , r = 2

 C+
rt = 〠

I

i=1
niMit − TCrt

 !+

, ∀t ∈ T , r = 3

 C−
rt = TCrt − 〠

I

i=1
Mit

 !+

, ∀t ∈ T , r = 1

 C−
rt = TCrt − 〠

I

i=1
eixit

 !+

, ∀t ∈ T , r = 2

 C−
rt = TCrt − 〠

I

i=1
niMit

 !+

, ∀t ∈ T , r = 3

 xit ∈ 0, 1, 2,⋯, nf g, ∀i ∈ I,∀t ∈ 1,⋯, Tf g:

ð17Þ

Table 2: Cumulative probability distribution ~Pis of length of stay in
the three types of patients.

s Type I Type II Type III

0 1 1 1

1 0.99 0.99 0.99

2 0.98 0.98 0.98

3 0.97 0.97 0.97

4 0.95 0.96 0.93

5 0.91 0.94 0.9

6 0.85 0.88 0.83

7 0.77 0.79 0.72

8 0.68 0.7 0.64

9 0.61 0.64 0.63

10 0.54 0.58 0.57

11 0.48 0.51 0.48

12 0.41 0.44 0.46

13 0.34 0.36 0.39

14 0.27 0.29 0.3

15 0.23 0.25 0.27

16 0.2 0.22 0.24

17 0.17 0.19 0.21

18 0.14 0.16 0.17

19 0.12 0.14 0.15

20 0.1 0.12 0.13

21 0.08 0.1 0.1

22 0.07 0.08 0.09

23 0.06 0.07 0.07

24 0.05 0.05 0.06

25 0.04 0.04 0.05

26 0.03 0.03 0.04

27 0.02 0.02 0.03

Table 3: Parameters related to patients.

Type I Type II Type III

ri 170 160 150

ei 1.5 1 1.5

ni 1.5 1 0.5

si 9 6.5 3

αi, βi½ � [0.7, 0.5] [0.2, 0.1] [0.1, 0]

Table 4: Parameters related to medical resources.

Medical resources ACr TCr c+r c−r
Hospital bed 203 183 20 30

Medical examination 201.6 181 20 30

Nursing 561 512 20 30
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4. Case Study

The numerical experiment was performed using an Intel®
Core™ i7-7700 CPU@3.60GHz, 3.6Gb. We used the optimi-
zation software ILOG CPLEX12.8 to solve the exact solution
of the mixed integer linear programming model.

We hoped to achieve the following goals through case
analysis: (1) determine the optimal patient mix for the
department to maximize the revenue, (2) analyze the impact
of different patient mixes and medical resources on revenue
and admissions, and (3) evaluate admission planning strate-
gies under different scenarios to provide recommendations
for the hospital.

4.1. Parameter Settings. The parameters were derived from
historical data from the Department of Respiratory Medicine
of WCH. The respiratory department has a total of 290 beds.
The working hours of the examination equipment, doctors,
and nurses are eight hours per day, and the planned time
interval was 28 days. The proportion of emergency to elective
patients in the respiratory medicine department ofWCHwas
1 : 2. Considering a reservation strategy for emergency
patients, we reserved 30% of the capacity for emergency
admissions, based on the proportion of patients. The contri-
bution of the hospital includes not only the benefits of diag-
nosis and treatment but also the contribution to the
development of the discipline during the treatment process.
Therefore, the higher the priority, the higher the benefit to
the hospital for patients. For specific parameter settings, see
Tables 2–4.

4.2. Results. In this section, we present the results of a four-
week patient admission planning using the model, as shown
in Figure 3. Because the model restricts the admission pro-
portion and priority of each type of patient, the total number
of patients of type I is more than those of type II, and type II
has more patients than type III. The objective function of the
model is 6462.4. The total number of admissions is 570, of
which the number of admissions of the three types of patients

and their proportions are 399 (70%), 114 (20%), and 57
(10%), respectively.

5. Discussion

5.1. Sensitivity Analysis. Sensitivity analysis was used mainly
to observe the impact of changes in the decision-making
environment on the results. The decision-making environ-
ment here is a parameter that is prone to change in practice.
In this section, we analyze the results from three aspects: unit
resource consumption, priority constraints, and target capac-
ity changes. The sensitivity analysis is carried out from the
following four perspectives.

5.1.1. Impact of Nursing Capacity on Outcomes. Resource
consumption mostly involves changes in the length of stay,
changes in the time of medical examinations, and the work-
load of nursing care. Because the length of stay in this paper
is expressed as a probability, it is inherently random, so this
article takes the nursing duration parameter as an example
for sensitivity analysis. The medical examinations can refer
to the change of nursing duration and so will not be repeated.

The nursing time of the three types of patients set by the
basic model is 1.5, 1, and 0.5 hours, respectively. Scenarios 1–
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Figure 3: Number of admissions for multitype patients.

Table 5: Value of objective function under the change of nursing
capacity.

Scenario Type I Type II Type III Revenue Admissions

1 1.75 1 0.5 6418.4 550

2 1.5 1 0.5 6462.4 570

3 1.25 1 0.5 6311.9 580

4 1.5 1.25 0.5 6745 580

5 1.5 1 0.5 6462.4 570

6 1.5 0.75 0.5 6415 570

7 1.5 1 0.75 6684 580

8 1.5 1 0.5 6462.4 570

9 1.5 1 0.25 6837 580

Note: scenarios 2, 5, and 8 are the benchmark parameters of the model.
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3 are aimed at adjusting the parameters of nursing time of
type I, after fixing the unit nursing time of type II and type
III. Similar processing for scenarios 4–6 and scenarios 7–9
adjusts the parameters of the unit nursing time of type II
and type III.

From Table 5 and Figure 4, the following can be seen:

(1) In scenarios 1–3, compared with the results of the
benchmark parameters (scenario 2), after increasing
the length of care for the first type of patients, the
number of admissions decreases, and the income
slightly decreases. Scenario 3 reflects the situation
when the length of care for the first type of patients
is reduced, the number of admissions showed an
upward trend, but the income declined

(2) In scenarios 4–6, after increasing the length of care for
patients in type II, compared with the results of the
benchmark parameter (scenario 5), the number of
admissions and benefits of scenario 4 have increased.
Scenario 6 reduces the length of care for patients in type
II, the number of admissions remained unchanged, but
the income dropped slightly

(3) In scenarios 7–9, compared with the results of the
benchmark parameter (scenario 8), when the length
of the third type of nursing is increased, the benefits
and the total number of admissions increase; when
the length of the third type of nursing is reduced,
the income and the total number of admissions have
increased slightly

5.1.2. Impact of Admission Proportion on Outcome. The
admission proportion of each type of patient is restricted by
the parameters αi and βi to control the upper and lower
bounds. Table 6 shows the changes in αi and βi when other
parameters remain unchanged. We can use this as the input
for sensitivity analysis.

From Figure 5, the following can be seen:

(1) In scenarios 1–3, after gradually reducing the upper
bound of the admission proportion of type I, the
income and the total number of admissions show a
downward trend

(2) In scenarios 4–6, after gradually changing the lower
bound of the admission proportion of type I, the
income and the total number of admissions show
an upward trend. The upper bound increases, and
the proportion of patients of type I also increases.
Patients of type I in scenarios 1, 2, and 3 are
89.76%, 79.93%, and 70.00%, respectively, while type
I in scenarios 4–6 has always been 70%. That is, the
adjustment of the upper bound has a significant
influence on the result, while the influence of the
lower bound has little influence on the result

(3) Scenarios 6–8 increase the upper bound of the second
type of patients. Although the total number and
income have not changed much, the proportion of
patients has changed. The first type of patients
remains at 69%, while the rate of admission to type
II decreases as the upper bound decreases. Scenarios
8 and 9 have similar results

5.1.3. Impact of Priority Score on Outcome. The priority score
of the patient is an important factor in the admission process.
By giving the lowest average priority score, the admission
level of the entire hospital is constrained. Since formulas (3)
and (4) impose hard constraints on the admission proportion
of each type of patient, we remove constraints (3) and (4) to
discuss the results caused by changes in priority scores, as
shown in Figure 6. The results are as follows:
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Figure 4: The impact of changes in nursing capacity consumption on outcome.

Table 6: Parameter settings of admission proportion.

Scenarios High α1, β1ð Þ Middle α2, β2ð Þ Low α3, β3ð Þ
1 (0.9, 0.5) (0.2, 0.1) (0.1, 0)

2 (0.8, 0.5) (0.2, 0.1) (0.1, 0)

3 (0.7, 0.5) (0.2, 0.1) (0.1, 0)

5 (0.7, 0.6) (0.2, 0.1) (0.1, 0)

6 (0.7, 0.4) (0.2, 0.1) (0.1, 0)

7 (0.7, 0.5) (0.4, 0.1) (0.1, 0)

8 (0.7, 0.5) (0.3, 0.1) (0.1, 0)

9 (0.7, 0.5) (0.2, 0.1) (0.2, 0)

10 (0.7, 0.5) (0.3, 0.1) (0.1, 0.05)

Note: scenario 3 is the benchmark parameter.
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(1) Because there is no hard constraint on the admission
proportion of each type of patient, overall, the out-
come and the number of admissions have increased,
and the unit revenue of the first type of patient is
the highest, Therefore, the model is more inclined
to treat the first type of patients, which can account
for 99%

(2) As the lower bound of the priority score gradually
increases, the proportion of the number of admis-
sions from type I gradually increases. When the aver-
age priority score of the admitted patients is at least 9
points, all of the admitted patients are from type I.
Specifically, 3 points and 8 points are important
threshold. When the score is 1 to 3, there is no change
in the results. Using 3 points as the critical value,
when the priority score increases to 4 to 8, the pro-
portion of patients in type I further increases. At this
time, the revenue increases slightly, but when the
score is increased to 9 points, the hospital only admits
patients of type I

The above results show that the setting of priority scores
cannot be increased indefinitely and should be set according
to the actual situation of the hospital.

5.1.4. Impact of the Adjustment of the Target Capacity on the
Result. We explored different values of the target capacity to
observe the effect on the results. Scenarios 1–7 in Table 7 are

the optimal solutions when the target utilization of resources
is 90%, 91%, 92%, 93%, 94%, 95%, and 96%, respectively.

From Figure 7, it can be seen that, as the target capacity
increases, the utilization rate of resources also increases. At
this time, the hospital’s revenue first declines and then rises
as the target capacity increases. It means that the more the
target production capacity, the better the effect. It is necessary
to make rational use of resources to avoid idleness or
underutilization.

5.2. Comparison with Model II.We compared model I, which
uses the priority constraints proposed in this paper, with
model II. Model II eliminates the restriction on the propor-
tion of each type of patient in the cycle, as described in for-
mulae (3) and (4). The restriction on the priority of the
patients is according to formula (5), and patients are
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Figure 5: Outcome under different admission proportions.
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Figure 6: Impact of priority scores on outcome.

Table 7: Results under different target capacities.

Scenario Target capacity Proportion Revenue Admissions

1 183 90% 6462.4 570

2 185 91% 6623.65 580

3 187 92% 6551.65 580

4 189 93% 6513.8 580

5 191 94% 5716.15 540

6 193 95% 6248.5 570

7 195 96% 6370.45 580

Note: scenario 1 is the base scenario.
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homogenized. Model II is a simplified model after removing
the priority constraints in model I. The details of the differ-
ence between models I and II are shown in Table 8.

A comparative analysis of model I and model II was car-
ried out to evaluate the advantages and effectiveness of model
I, as proposed in this paper. The results of model II and
model I under the three scenarios can be seen in Table 9
and Figures 8 and 9.

(1) Admissions: without priority constraints, the total
number of patients in model II was 570. The admis-
sions in model I in scenarios 1, 2, and 3 were 586,
583, and 500, respectively. The admission propor-
tions in scenario 1 were 89.76%, 10.07%, and 0.17%,
respectively, while those of scenario 2 were 69.64%,
29.33%, and 1.03% and those of scenario 3
were70.00%, 20.00%, and 10.00%, respectively

(2) Objective function: without the constraint of priority,
the revenue of model II was 6462.4. The objective
function values of the three scenarios of model I were
7138.1, 6815.55, and 6673.95

(3) Patient admission status: we found that in model I
under the three scenarios, the total number of patient
and revenue were better than model II without prior-
ity. ① Patients in model I are heterogeneous. Taking
scenario 3 as an example, we plotted the admission
status of each type of patient every day, as shown in

Figure 9. The model assumes that the initial state of
the hospital is empty and admits patients. Because
of the priority constraints, the admission curves of
the three types of patients in the figure are admitted
strictly in accordance with the constraints. Model I
admits patients according to the severity of the
patient’s disease. The hospital’s goals can be achieved
by adjusting the admission proportion of each type of
patient. ② The patients in model II are homoge-
neous, and there is no subdivision, so there is only
an independent curve to represent the number of
admissions per day. Model II admits patients accord-
ing to the first-come, first-served rule. In a relatively
average situation, more patients are admitted

(4) Application scenario: in the results of model I, the first
type of patients accounts for a higher proportion (at
least 50% or more), and the third type of patients
accounts for a smaller proportion. Therefore, the
results of model I are more in line with the positioning
of a general hospital. Model II is more suitable for com-
munity hospitals that are not sensitive to patient types

The insights into management obtained from the above
results are as follows:

(1) There is a trade-off between admissions and revenue.
If the hospital wants as many admissions as possible,
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Figure 7: Outcomes under different target capacity.

Table 8: Details of model I and model II.

Model Objective function Constraints Features/differences

Model I Formula (1) Formulas (2)–(16) Consider priority constraints

Model II Formula (1) Formulas (2) and (6)–(16) Regardless of priority, parameter setting does not consider the nature of priority

Table 9: Parameters and results under three scenarios.

Scenarios αi, βið Þ Revenue Admission Proportion

1 (0.9, 0.5) (0.2, 0.1) (0.1, 0) 7138.1 586 89.76%, 10.07%, 0.17%

2 (0.7, 0.5) (0.3, 0.1) (0.1, 0) 6815.55 583 69.64%, 29.33%, 1.03%

3 (0.7, 0.5) (0.3, 0.1) (0.1, 0.05) 6673.95 580 70.00%, 20.00%, 10.00%
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it will need to treat more patients of type III and sac-
rifice the number of patients in type I. Because
patients of type I occupy more medical resources,
although their unit income is more than other types
of patients, type III patients often occupy fewer beds
and nursing resources, and their turnover rate is
higher, so more type III patients can be admitted at
the same time. Compared with type I patients, the
patients of type III create more benefits

(2) China’s public general hospitals do not always take
revenue as the most important goal. In order to bal-
ance income and the treatment of critically ill
patients, efficient and reasonable use of high-quality
medical resources in general hospitals is the key issue.
For general hospitals, the revenue lies not only in eco-
nomic profit but also in the patient’s contribution to
scientific research, discipline development, and other
aspects. Therefore, for general hospitals in China, the
benefit is not the more the better. However, it is
important to determine reasonable admission pro-
portions for different types of patients under the con-
dition of ensuring a certain benefit, to ensure that
high-quality medical resources are matched with
high-quality patients

6. Conclusions

The optimization of patient mix has become an important
tool for hospital management. By planning and arranging
admissions for different types of patients, this approach
can effectively guide the admission of patients with daily
operations. This paper discusses the best way in which to
obtain optimal admission planning through patient mix
optimization when the hospital’s medical resource capacity
is limited in a certain planning cycle, so as to achieve spe-
cific resource utilization goals and maximize revenue when
faced with different types of patients. The main conclu-
sions are as follows:

(1) The consumption of medical resources will cause
changes in the total number of patients and income.
It is necessary to formulate a reasonable unit resource
consumption to avoid underutilization or overuse of
resources

(2) The admission proportion and priority score are
important constraints, which are not as high as possi-
ble. Hospital managers should determine a reason-
able upper and lower bound for proportions and
priority scores, based on the expected goals
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(3) Model I can adjust the priority parameters to meet
the optimal output under different goals and scenar-
ios. Therefore, compared with model I, the revenue
and admissions of model II are lower than model I

In the future, we shall investigate the patient mix optimi-
zation under more complex situation, such as the arrival of
emergency patients and overutilization of medical resources.
In particular, this study provides a research basis for further
research on the admission planning issue of how to match
infected patients of different severity with limited medical
resources during the COVID-19 pandemic. Applying the
patient mix optimization in this article to the scenario of
COVID-19 pandemic is a good research direction.
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