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Abstract

Background: Increasing evidence indicates that dysregulated TNF-α and oxidative stress (OxS) contribute to the
pathophysiology of schizophrenia. Additionally, previous evidence has demonstrated sex differences in many
aspects of schizophrenia including clinical characteristics, cytokines, and OxS markers. However, to the best of our
knowledge, there is no study investigating sex differences in the association between TNF-α, the OxS system, and
their interaction with clinical symptoms in schizophrenia patients, especially in first-episode drug-naïve (FEDN)
patients.

Methods: A total of 119 FEDN schizophrenia patients and 135 healthy controls were recruited for this study. Serum
TNF-α, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA)
were measured. The Positive and Negative Syndrome Scale (PANSS) was applied to evaluate psychotic symptoms.
Two-way ANOVA, partial correlation analysis, and multivariate regression analysis were performed.

Results: A sex difference in MDA levels was demonstrated only in healthy controls (F = 7.06, pBonferroni = 0.045) and
not seen in patients. Furthermore, only male patients had higher MDA levels than male controls (F = 8.19, pBonferroni
= 0.03). Additionally, sex differences were observed in the association of TNF-α and MDA levels with psychotic
symptoms (all pBonferroni < 0.05). The interaction of TNF-α and MDA was only associated with general psychopathology
symptom in male patients (B = − 0.07, p = 0.02).

Conclusion: Our results demonstrate the sex difference in the relationship between TNF-α, MDA, and their interaction
with psychopathological symptoms of patients with schizophrenia.
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Introduction
Schizophrenia is a chronic and severe mental disorder
characterized by psychopathological symptoms. The
exact mechanisms of schizophrenia are still unclear [1].
Growing evidence suggests that the etiology of schizo-
phrenia may be associated with dysregulated inflamma-
tory pathways and oxidative stress (OxS) [2–4].
The activation of the inflammatory system as seen in

cytokine activity may be closely related to susceptibility
to schizophrenia [5–7]. TNF-α is one of the most im-
portant pro-inflammatory cytokines and contributes
heavily to the pathophysiological process of schizophre-
nia [8, 9]. The abnormal expression of TNF-α pathway
in schizophrenia patients has been well documented in
the existing literature [10, 11]. OxS also plays an import-
ant role in the pathogenesis of schizophrenia [12]. Cadet
and Lohr firstly suggested the role of oxidative mecha-
nisms in schizophrenia in the 1980s [13] and noted the
role of oxidative stress in brain dopamine (DA) systems,
which are involved in the pathogenesis of schizophrenia
[14]. Then, amounting studies have subsequently docu-
mented increased OxS and oxidative injury as well as an
impaired antioxidant defense system in patients with
schizophrenia [15, 16], such as superoxide dismutase
(SOD), glutathione peroxidase (GSH-Px), catalase
(CAT), and malondialdehyde (MDA). The dopamine
system has been one of the most enduring and central
hypotheses of schizophrenia. In neurons, DA can be
auto-oxidized and causes the production of ROS includ-
ing DA-quinones and superoxide [17, 18], which was
supposed to be involved in the pathophysiology of
schizophrenia [19]. On the other hand, previous evi-
dence has suggested that spontaneous abnormal invol-
untary movements, a part of the symptoms of
schizophrenia, might be associated with the pathophysi-
ology of the disease itself without exposure to antipsy-
chotics [20, 21]. The course and the progression of
schizophrenia may share the same process with the
development of abnormal movements [22].
In addition, it is worthy of note that the OxS sys-

tem plays a central role through its interaction with
the inflammatory system [23]. Reciprocal interactions
between OxS and inflammatory systems have been
established in previous studies [24, 25]. Previous re-
search has revealed that the mechanism of certain
brain developmental disorders caused by the activa-
tion of maternal immune systems may be closely re-
lated to OxS [26]. The activation of immune cells
can secrete OxS mediators, while OxS mediators can
also activate and enhance various inflammatory mol-
ecules and the immune responses [27]. Additionally,
a corresponding relationship between the intensity of
immune response and the level of OxS in schizo-
phrenia has been demonstrated in a previous study

[28]. Therefore, the relationship between cytokines
and OxS mediators must be taken into account. A
recent meta-analysis showed that patients with first-
episode psychosis (FEP) had lower total antioxidant
status, but higher IL6 and TNF-α compared to con-
trols [29]. Correspondingly, our previous studies
have also found that TNF-α, the OxS system, and
their interaction were involved in the pathophysi-
ology of schizophrenia [30].
Another critical concern is that there are sex differ-

ences in many aspects of schizophrenia including inci-
dence rate, onset age, symptoms severity, cognitive
function, response to antipsychotics, comorbidities, and
outcomes [31–36], which may be partly related to psy-
chosocial factors and sex hormones [37]. Furthermore,
there are sex differences in levels of cytokines and OxS
markers in schizophrenia patients [38–40]. For example,
Lee et al. demonstrated sex differences in cytokine bio-
markers of schizophrenia patients [38], including TNF-α
[39]. In addition, previous evidence has shown that fe-
male may be more protected against oxidative stress
[40], and some preclinical studies have also observed sex
differences in oxidative stress markers, including gluta-
thione (GSH), nitrite level, and lipid peroxidation in the
hippocampus or striatum in models of schizophrenia
[41, 42]. However, other studies found no sex differences
in a set of oxidative stress biomarkers, including antioxi-
dant enzymes (GPX and SOD), and MDA levels in either
chronic patients [43, 44] or first-episode schizophrenia
patients when utilizing a small sample size [45, 46].
These inconsistent results might be attributable to dif-
ferent disease stages or antipsychotics exposure. The sex
difference in TNF-α and the OxS system has not yet
been adequately explored. In particular, we have deter-
mined to the best of our knowledge that there is no
current study examining sex differences in the associ-
ation between TNF-α, the OxS system, and their inter-
relationship with clinical symptoms in patients with
schizophrenia. Thus, this study was undertaken to fill
this important knowledge gap.
In this study, first-episode drug-naïve (FEDN) schizo-

phrenia patients were recruited to investigate (1) sex dif-
ferences in cytokine TNF-α and OxS parameters of
FEDN schizophrenia patients and (2) sex differences in
the association of TNF-α, the OxS system, and their
interaction with clinical symptoms.

Participants and methods
Participants
The protocol for this study was reviewed and approved
by Shanghai Mental Health Center and the First Hos-
pital of Shanxi Medical University. Informed consent
was obtained from all participants prior to participation
in this study. Inclusion and exclusion criteria were
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detailed in our previous study [30]. Briefly, inclusion cri-
teria included (i) being Han Chinese; (ii) aged from 18
to 45 years old; (iii) meeting diagnostic criteria for
schizophrenia according to the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV);
(iv) being a first-episode patient without prior exposure
to drugs; and (v) having a duration of illness less than 2
years. Exclusion criteria included (i) individuals with any
other major Axis I disorder and (ii) pregnant women.
Healthy controls were recruited based on having no

major Axis I disorder diagnosis and no family history of
mental disorders. Moreover, participants who had or-
ganic brain diseases, ongoing infections, autoimmune
disorders, other severe physical diseases, or who received
any immunosuppressive treatments were excluded from
this study. A total of 119 FEDN patients with schizo-
phrenia and 135 healthy controls were recruited. The
demographic data were detailed in our previous study
[30]. There were no significant differences in age, sex,
education, body mass index (BMI), or smoking behavior
between patients and healthy controls [30].

Clinical interview and assessments
The Structured Clinical Interview for DSM-IV Axis I
Disorders-Patient Edition (SCID-I/P) was applied by two
psychiatrists to screen the participants. Demographic
and clinical data were collected by a self-designed ques-
tionnaire. The Positive and Negative Syndrome Scale
(PANSS) was applied to evaluate psychotic symptoms.
Inter-rater concordance of assessments was over 0.8.

Peripheral blood sampling and serum biochemical assays
After fasting overnight for at least 12 h, peripheral ven-
ous blood samples of 5 ml volume were collected be-
tween 07:00 and 09:00 am. Serum was isolated and was
stored at − 80 °C until the assays were performed. The
levels of TNF-α, SOD, GSH-Px, CAT, and MDA were
measured through Enzyme-linked immunosorbent as-
says (ELISAs) (R&D Systems, USA). The researchers
conducted this experiment according to the manufac-
turer’s protocol and they were blind to clinical data of
samples. All samples were run in duplicate. Random
samples were measured to verify the reproducibility of
the assay. The intra-assay and inter-assay coefficients of
variation were 6.8–7.6% and 6.2–7.4%, respectively.

Statistical analysis
The Kolmogorov-Smirnov test was applied to detect the
distribution normality of variables. As serum TNF-α
levels distribute non-normally, this measure was trans-
formed to a natural logarithm. Either a Fisher’s exact test
or chi-squared test was conducted for nominal variables.
Analysis of variance (ANOVA) was conducted for con-
tinuous variables.

To investigate sex differences in TNF-α, SOD, GSH-
Px, CAT, and MDA levels, two-way ANOVA (diagnosis
× sex) was applied, with each index as a dependent vari-
able, setting diagnosis, and sex as fixed factors and
adjusting for confounding variables. The main effects of
diagnosis, sex, and diagnosis × sex interaction were cal-
culated in each model. Then, an analysis of covariance
(ANCOVA) was applied to examine individual univariate
effects.
To examine the association between each serum par-

ameter with clinical psychotic symptoms in male and fe-
male patients, a partial correlation analysis was
performed, controlling for age, BMI, smoking, education,
and onset age. Furthermore, to investigate the associ-
ation of the interaction between TNF-α and OxS param-
eters with clinical psychotic symptoms in male and
female patients, multivariate regression analysis was per-
formed. In this multivariate regression analysis, each
PANSS total or subscale score was set as a dependent
variable, each interaction (TNF-α × SOD, TNF-α ×
GSH-Px, TNF-α × CAT, and TNF-α × MDA) as an in-
dependent variable, and age, BMI, smoking, education,
and onset age were adjusted as covariates. Multiple com-
parisons were corrected by Bonferroni corrections. Data
were analyzed using SPSS version 23.0. The α level of
significance was set to p < 0.05 (two-tailed).

Results
Sex difference in demography and clinical characteristics
of patients
As shown in Table 1, there were significant sex and
diagnosis × sex effects on education (both p < 0.001). An
ANOVA demonstrated that male and female patients
had lower education than male and female controls, re-
spectively (F = 33.74, p < 0.001; F = 10.28, p = 0.002).
Furthermore, male controls had higher education than
female controls (F = 106.98, p < 0.001). Education was
adjusted for in the following analysis. There was a sig-
nificant diagnosis × sex effect on BMI (F = 7.44, p =
0.007). An ANOVA showed that male patients had a
lower average BMI than female patients (F = 7.22, p =
0.008). BMI was adjusted for in the following analysis.
As shown in Table 2, female patients had an earlier

average onset age than male patients (F = 7.22, p =
0.01). Onset age was controlled in the following analysis.
There were no significant differences in total score and
subscale scores of PANSS between male and female
patients (all p > 0.05).

Sex difference in levels of TNF-α and OxS parameters
between patients and healthy controls
As shown in Fig. 1, a two-way ANOVA that was ad-
justed for education and BMI demonstrated a main ef-
fect of diagnosis on TNF-α, GSH-Px, CAT, and MDA
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(all p < 0.05), indicating differences in the levels of TNF-
α, GSH-Px, CAT, and MDA between patients and
healthy controls. There was a main effect of sex on CAT
levels indicating sex difference in CAT levels (F = 5.53, p
= 0.02). Also, there was a significant diagnosis × sex ef-
fect on MDA levels (F = 3.78, p = 0.05), indicating that
sex differences in the levels of MDA observed were dif-
ferent between patients and controls. Further, ANCOVA
showed that MDA levels were higher in female healthy
controls than in male healthy controls (F = 7.06, p =
0.009, pBonferroni = 0.045) and that MDA levels were
higher in male patients than in male healthy controls (F
= 8.19, p = 0.005, pBonferroni = 0.03). There was no differ-
ence in levels of MDA between female patients and fe-
male healthy controls (F = 0.01, p = 0.92, pBonferroni>
0.05).

Differences in the relationship between TNF-α and OxS
parameters and psychotic symptoms as categorized by
sex
As shown in Fig. 2A, controlling for the covariates age,
BMI, education, smoking, and onset age, partial correl-
ation showed that TNF-α levels were associated with
PANSS positive score in female patients (r = − 0.49, p =
0.002, pBonferroni= 0.008). However, there was no associ-
ation of TNF-α levels with PANSS positive score in male
patients (r = − 0.11, p = 0.36, pBonferroni > 0.05). As
shown in Fig. 2B, partial correlation showed that TNF-α
levels were associated with PANSS negative score in fe-
male patients (r = 0.37, p = 0.02) and in male patients (r
= 0.31, p = 0.01). However, after Bonferroni correction,

significance remained only for male patients (pBonferroni=
0.04). As shown in Fig. 2C, MDA levels were associated
with PANSS general psychopathology scores in male pa-
tients (r = − 0.32, p = 0.007, pBonferroni= 0.03), but no as-
sociation in female patients (r = 0.02, p = 0.92,
pBonferroni> 0.05) was found.

Differences in the relationships of TNF-α and OxS
interactions with psychotic symptoms as categorized by
sex
To examine sex differences in the association of inter-
action between TNF-α × SOD, TNF-α × GSH-Px, TNF-
α × CAT, or TNF-α × MDA with psychotic symptoms,
multivariate regression analysis was applied in male and
female patient populations, separately. After controlling
for the covariates age, BMI, education, smoking, and on-
set age, multivariate regression analysis showed that
TNF-α × MDA was associated with PANSS general psy-
chopathology scores in male patients (B = − 0.07, t =
2.46, p = 0.02) but not in female patients (B = 0.03, t =
0.81, p = 0.43). Moreover, there was no association of
interaction between TNF-α × SOD, TNF-α × GSH-Px,
or TNF-α × CAT with any PANSS subscale or total
score (all p > 0.05).

Discussion
To the best of our knowledge, this study was the first to
examine sex differences in TNF-α, OxS, and their inter-
actions in FEDN schizophrenia patients. The main find-
ings of this study were as follows: (i) There was no sex
difference in psychopathology symptoms of the patients.

Table 1 Sex difference in demographic information between healthy controls and schizophrenia patients

Controls Patients Diagnosis,
F (p)

Sex, F (p) Diagnosis ×
sex, F (p)Male (n = 80) Female (n = 55) Male (n = 76) Female (n = 43)

Age (years) 28.65 ± 7.63 29.69 ± 7.87 29.68 ± 6.96 28.83 ± 7.67 0.009 (0.93) 0.02 (0.92) 0.95 (0.33)

Education (years)a,b,c 13.92 ± 2.07 9.69 ± 2.65 11.55 ± 2.90 11.86 ± 3.98 0.07 (0.80) 28.37 (< 0.001) 37.99 (< 0.001)

BMId 23.57 ± 3.62 22.72 ± 3.24 22.21 ± 2.92 23.71 ± 3.61 0.19(0.67) 0.56 (0.45) 7.44 (0.007)

Smokinge 8 (10.0%) 1 (1.8%) 11 (14.5%) 1 (2.3%) - - -

2 × 2 ANCOVA was applied to compare sex difference in each variable
aSignificant differences between male patients and male controls
bSignificant differences between female patients and female controls
cSignificant differences between male and female controls
dSignificant differences between male and female patients
eFisher’s exact test

Table 2 Clinical characteristics of male and female patients with schizophrenia

Variable Male (n = 76) Female (n = 43) F p

Onset age (years) 22.11 ± 7.69 19.47 ± 9.92 6.96 0.01

PANSS score

Positive symptoms 19.15 ± 8.77 18.95 ± 8.43 0.93 0.34

Negative symptoms 26.24 ± 7.29 28.04 ± 7.36 1.35 0.25

General psychopathology 42.36 ± 8.88 40.47 ± 7.92 0.95 0.33

Total score 87.74 ± 15.38 87.47 ± 11.83 0.32 0.57
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(ii) There were sex differences in MDA levels of healthy
controls, but not of schizophrenia patients. MDA levels
of female controls were higher than those of male con-
trols, but MDA levels of female patients were similar to
those of male patients. (iii) There were sex differences in
the association between TNF-α and MDA levels and
psychotic symptoms. The interaction between TNF-α
and MDA correlated with general psychopathology
symptom in male patients only.
Our previous study has shown that FEDN patients

had higher TNF-α and MDA levels than in healthy
controls. Amounting evidence has revealed the acti-
vated TNF pathway in schizophrenia [11]. The
immune-neurotoxicity of peripheral TNF-α is associ-
ated with psychotic symptoms and cognitive deficits
of schizophrenia patients [47]. There are several paths

for exchanging cytokines between the periphery and
CNS, such as through leakage of the blood-brain bar-
rier (BBB), vagus afferents, and cross-talk between
peripheral circulation and central nervous system
[48–51]. Furthermore, previous clinical and preclinical
studies have shown that prenatal exposure to infec-
tion increased the risk of schizophrenia, and TNF-α
decreased the nodes, total dendritic length and inhibit
cortical neuron dendrite development, which sug-
gested that brain TNF-α could impair neuronal sur-
vival and development [52, 53]. However, the
increased TNF-α in the periphery and the brain
which acts through indirect and direct pathways may
be complex. Klaus et al. reported that both peripheral
and brain region-specific increases in TNF could
cause abnormal behaviors through different pathways

Fig. 1 Sex difference in levels of SOD, GSH-Px, CAT, MDA, and TNF-α between patients and healthy controls (mean ± SEM). Male patients (N =
76), male controls (N = 80), female patients (N = 43), and female controls (N = 55). The two-way ANOVA adjusted for education and BMI showed
significant main effects of diagnosis on GSH-Px (F = 9.09, p = 0.003), CAT (F = 4. 96, p = 0.03), MDA (F = 4.99, p = 0.03), and TNF-α (F = 4.15, p =
0.04), except SOD (F = 0.01, p = 0.92) (A–E). There was a significant diagnosis × sex effect on MDA levels (F = 3.78, p = 0.05). Then, ANCOVA
showed that MDA levels were higher in female healthy controls than in male healthy controls (F = 7.06, p = 0.009, pBonferroni = 0.045), and that
MDA levels were higher in male patients than in male healthy controls (F = 8.19, p = 0.005, pBonferroni = 0.03) (A). There was a main effect of sex
on CAT levels indicating sex difference in CAT levels (F = 5.53, p = 0.02) (B). SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; CAT,
catalase; MDA, malondialdehyde
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[54]. In addition, dopamine metabolism, involved in
the pathophysiology of schizophrenia, is strongly asso-
ciated with oxidative stress due to its degradation and
autooxidation [55]. Besides oxidative stress, DAergic
neurons can also release chemoattractants, both of
which can lead to microglia activation and inflamma-
tory responses [55].
In this study, we found no sex differences in psycho-

pathological symptoms of FEDN patients, which was
consistent with previous studies [56, 57]. However, our
results regarding sex differences in symptoms of schizo-
phrenia were not consistent with the current literature.
Several studies have shown that males have more nega-
tive symptoms than females [58]. González-Rodríguez
et al. [59] pointed out that differences in methodology,
sample size, and a lack of a systematic and homogenous
assessment of psychopathological symptoms may have
contributed to the observed discrepancies.
We found that MDA levels of female controls were

higher than those of male controls, but those female pa-
tients had the same level of MDA as male patients. At
present, the results of studies on the differences in MDA
levels between men and women are not yet in agree-
ment. However, Kharb et al. [60] found that female
healthy controls had higher serum MDA levels than
male healthy controls, which corresponds to our find-
ings. Consistent to our findings, several studies have
demonstrated no sex difference in MDA levels of first-
episode schizophrenia [61] or chronic schizophrenia pa-
tients who received stable antipsychotic drugs [62]. The
possible reason may be attributable to the following rea-
sons. First, testosterone is an important male sex hor-
mone secreted mainly by male testes. Previous studies
have found that testosterone has the effect of antioxida-
tive stress [63, 64]. Wang et al. [65] reported that

testosterone supplementation significantly decreased the
concentration of MDA in the hippocampus, which ex-
plains the higher MDA levels observed in female con-
trols when compared to male healthy controls. Second,
in regards to the patients with schizophrenia, increased
dopamine in the nigra-striatal pathway is considered to
be a driving force of psychosis [66, 67], and the effective-
ness of antipsychotics that block the dopamine D2 re-
ceptor in relieving hallucinations and delusions is well
established [68]. One of the direct dopamine agonists,
amphetamine stimulates the release of dopamine [69,
70] and has been reported to inhibit testosterone release
in male rats [71, 72]. This suggests that hyperfunction of
the dopamine system in schizophrenia patients may in-
hibit the release of testosterone, which may explain the
reasons for having no sex difference in the level of MDA
in schizophrenia patients in comparison to controls.
Interestingly, Qu et al. [48] recently found that in
healthy controls, women had lower MDA levels than
men. This contrary result regarding MDA levels in male
and female healthy controls might be explained by the
characteristics of the samples used. For example, male
and female healthy controls had significant differences
in age and BMI in that study, which may have influenced
the results. In agreement to this, previous reports have
shown that oxidative stress is associated with aging and
BMI [73]. The level of reactive oxygen species (ROS) in-
creases with the advancement of age [74] and was asso-
ciated with BMI [75]. In addition, unlike the result of
MDA, there was a main effect of sex on CAT levels, but
no diagnosis × sex effect indicating sex difference in
CAT levels in both patients and controls.
Previous evidence has shown a strong interaction be-

tween OxS and the inflammatory system. Astrocytes and
microglia can be activated by OxS, causing inflammatory

Fig. 2 The association of TNF-α and MDA levels with psychotic symptoms categorized by sex. A partial correlation analysis was applied. The
green dotted curve presents 95% confidence interval. A The association between TNF-α levels and positive symptoms in female patients with
schizophrenia (N = 43). TNF-α levels were associated with PANSS positive score in female patients (r = − 0.49, p = 0.002, pBonferroni= 0.008). B The
association between TNF-α levels and positive symptoms in male patients with schizophrenia (N = 76). TNF-α levels were associated with PANSS
negative score in male patients (r = 0.31, p = 0.01, pBonferroni= 0.04). C The association between MDA levels and general psychopathology
symptom in male patients with schizophrenia (N = 76). MDA levels were associated with PANSS general psychopathology scores in male patients
(r = − 0.32, p = 0.007, pBonferroni= 0.03)
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response dysfunction, while the OxS system in nonpha-
gocytic cells can be activated by cytokines including
TNF-α [76, 77]. Buelna-Chonta et al. pointed out that
the complicated interaction between inflammation and
OxS is partly determined by the interaction between the
transcription factor Nf-kappaB with Nrf2 [78]. More-
over, previous evidence suggested that neuroinflamma-
tion and persistent OxS are critical aspects in the
pathophysiology of neurodegenerative diseases [77]. Be-
cause of the close relationship between these two sys-
tems, Steullet et al. [23] believed that the neuroimmune
system, OxS, and glutamatergic system constitute a
“central hub,” and that the disturbance of these “hub”
systems may lead to the abnormality of parvalbumin in-
terneurons and white matter in patients with schizo-
phrenia through the dysfunction of macro-circuits and
micro-circuits. This dysfunction, in turn, affects the
symptoms of patients. However, the interaction of TNF-
α and OxS on the susceptibility and clinical characteris-
tics of schizophrenia has not been investigated well. We
previously reported that the interaction between TNF-α
and MDA increased the risk for the occurrence of
schizophrenia by 1.61 times, but no significant inter-
active effects were found on any domain of the PANSS
[30]. A recent study also showed that TNF-α was associ-
ated with lowered IgM/MDA [47]. In this study, after
patients were stratified by sex, we found that the inter-
action between TNF-α and MDA activities was associ-
ated with the severity of general psychopathology in
male schizophrenia patients, suggesting that TNF-α and
MDA have an interactive effect on the psychopatho-
logical symptoms only in male patients. The possible
mechanisms may also be associated with testosterone,
which can affect the MDA expression. Additionally, tes-
tosterone can also affect the expression of inflammatory
markers, including TNF-α. Preclinical studies have
shown that high testosterone levels during embryonic
development have adverse effects on immune function
[79]. Furthermore, the use of testosterone significantly
reduced the level of inflammatory markers in men [80].
It has been found that the level of TNF-α is higher in
adult men with lower testosterone levels [81], while the
expression of TNF-α is inhibited by testosterone in men
with hypogonadism [82]. A study conducted by Delfino
et al. pointed out that TNF-α and NF-kappaB, which
may be involved in the interaction between oxidative
stress and inflammation [78], could stimulate the expres-
sion of androgen receptors in Sertoli cells, and this may
be an important mechanism for increasing the response
of Sertoli cells to testosterone [83]. This suggests that
androgen may have complex interactions with the im-
mune system and OxS, which may explain the reasons
for the interaction existence between TNF-α and MDA
only in male FEDN schizophrenia patients. Moreover,

there were sex differences in the association between
TNF-α and MDA levels and psychotic symptoms. The
underlying mechanisms should be further investigated in
future studies.
Interestingly, there are sex differences in the preva-

lence of Parkinson’s disease, a disorder that also involves
dopaminergic neuron, which is also mainly due to sex
hormones [84, 85]. Most importantly, it is well estab-
lished that methamphetamine exposure can lead to
psychotic syndrome similar to schizophrenia mainly
through dopaminergic neurotransmission, and repeated
methamphetamine administration was used to build an
animal model of schizophrenia [86, 87]. Furthermore,
oxidative stress and inflammation may both play an
important role in the pathophysiology of
methamphetamine-associated psychosis [88]. On the
other hand, there were also sex-dependent differences in
methamphetamine exposure and toxicity [89, 90]. For
example, Daiwile et al. demonstrated the sex difference
in behavior and gene expression induced by metham-
phetamine exposure [91].
There were several limitations in this study. Firstly, it

is not clear whether peripheral levels of TNF-α and OxS
parameters are related to levels present in the brain.
However, previous studies suggested that brain immune
cells can monitor the peripheral innate immune re-
sponse through a variety of parallel pathways, including
afferent nerves, the humoral pathway, cytokine trans-
porters at the blood-brain barrier, and IL-1 receptors on
microvascular cells of the cerebral vein [92]. In addition,
central neurons are highly sensitive to OxS exposure,
and peripheral OxS can affect the activation of OxS re-
sponse in brain neurons [93]. There are also extensive
interactions between OxS and some other cytokines
which should be investigated in future studies.

Conclusion
Our results support the presence of sex differences in
the association between TNF-α, MDA, and their inter-
action with psychopathological symptoms of patients
with schizophrenia. Further study with a larger sample
size should be conducted to validate our results.
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