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Abstract

Metagenomic sequencing is becoming widespread in biomedical and environmental

research, and the pace is increasing even more thanks to nanopore sequencing. With a ris-

ing number of samples and data per sample, the challenge of efficiently comparing results

within a specimen and between specimens arises. Reagents, laboratory, and host related

contaminants complicate such analysis. Contamination is particularly critical in low microbial

biomass body sites and environments, where it can comprise most of a sample if not all.

Recentrifuge implements a robust method for the removal of negative-control and crossover

taxa from the rest of samples. With Recentrifuge, researchers can analyze results from tax-

onomic classifiers using interactive charts with emphasis on the confidence level of the clas-

sifications. In addition to contamination-subtracted samples, Recentrifuge provides shared

and exclusive taxa per sample, thus enabling robust contamination removal and compara-

tive analysis in environmental and clinical metagenomics. Regarding the first area, Recentri-

fuge’s novel approach has already demonstrated its benefits showing that microbiomes of

Arctic and Antarctic solar panels display similar taxonomic profiles. In the clinical field, to

confirm Recentrifuge’s ability to analyze complex metagenomes, we challenged it with data

coming from a metagenomic investigation of RNA in plasma that suffered from critical con-

tamination to the point of preventing any positive conclusion. Recentrifuge provided results

that yielded new biological insight into the problem, supporting the growing evidence of a

blood microbiota even in healthy individuals, mostly translocated from the gut, the oral cav-

ity, and the genitourinary tract. We also developed a synthetic dataset carefully designed to

rate the robust contamination removal algorithm, which demonstrated a significant improve-

ment in specificity while retaining a high sensitivity even in the presence of cross-contami-

nants. Recentrifuge’s official website is www.recentrifuge.org. The data and source code

are anonymously and freely available on GitHub and PyPI. The computing code is licensed

under the AGPLv3. The Recentrifuge Wiki is the most extensive and continually-updated

source of documentation for Recentrifuge, covering installation, use cases, testing, and

other useful topics.
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Author summary

Whether in a clinical or environmental sample, metagenomics can reveal what microor-

ganisms exist and what they do. It is indeed a powerful tool for the study of microbial

communities which requires equally powerful methods of analysis. Current challenges in

the analysis of metagenomic data include the comparative study of samples, the degree of

uncertainty in the results, and the removal of contamination. The scarcer the microbes

are in an environment, the more essential it is to have solutions to these issues. Examples

of sites with few microbes are not only habitats with low levels of nutrients, but also many

body tissues and fluids. Recentrifuge’s novel approach combines statistical, mathematical

and computational methods to tackle those challenges with efficiency and robustness: it

seamlessly removes diverse contamination, provides a confidence level for every result,

and unveils the generalities and specificities in the metagenomic samples.

This is a PLOS Computational Biology Software paper.

Introduction

Studies of microbial communities by metagenomics are becoming more popular in different

biological arenas, like environmental, clinical, food and forensic studies [1–3]. New DNA and

RNA sequencing technologies are boosting these works by dramatically decreasing the cost

per sequenced base. Scientists can now analyze sets of sequences belonging to microbial

communities from different sources and times to unravel longitudinal (spatial or temporal)

patterns in the microbiota (see S1 Fig for an example model). In shotgun metagenomic

sequencing (SMS) studies, researchers extract and purify nucleic acids from each sample,

sequence them, and analyze the sequences through a bioinformatics pipeline (see S2 and S3

Figs for detailed examples). With the development of nanopore sequencing, portable and

affordable real-time SMS is a reality [4].

Contamination in metagenomics

In the case of low microbial biomass samples, there is very little native DNA from microbes;

the library preparation and sequencing methods will return sequences whose principal source

is contamination [5, 6]. Sequencing of RNA requiring additional steps introduces still further

biases and artifacts [7], which in case of low microbial biomass studies translates into a severe

problem of contamination and spurious taxa detection [8]. The clinical metagenomics com-

munity is stressing the importance of negative controls in metagenomics workflows and,

recently, raised a fundamental concern about how to subtract the contaminants from the

results [9].

From the data science perspective, this is just another instance of the importance of keeping

a good signal-to-noise ratio [10]. When the signal (inherent DNA/RNA, target of the sampling)

approaches the order of magnitude of the noise (acquired DNA/RNA from contamination and

artifacts), particular methods are required to tell them apart.

The roots of contaminating sequences are diverse, as they can be traced back to nucleic acid

extraction kits (the kitome) [11, 12], reagents and diluents [13, 14], the host [15], and the post-
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sampling environment [16], where contamination arises from different origins such as air-

borne particles, crossovers between current samples or DNA remains from past sequencing

runs [17]. Variable amounts of DNA from these sources are sequenced simultaneously with

native microbial DNA, which could lead to severe bias in magnitudes like abundance and

coverage, particularly in low microbial biomass situations [18]. If multiplex sequencing uses

simple-indexing, false assignments could be easily beyond acceptable rates [19]. Even the

metagenomic reference databases have a non-negligible amount of cross-contamination [15,

17, 20].

Regarding the kitome, it varies even within different lots of the same products. For example,

the DNeasy PowerSoil Kit (formerly known as PowerSoil DNA Isolation Kit), a product that

usually provides significant amounts of DNA and has been widely used, including Earth

Microbiome Project and Human Microbiome Project, often yields a background contamina-

tion by no means negligible [6]. The lower the biomass in the samples, the more essential it

is to collect negative control samples to help in the contamination background assessment

because, without them, it would be almost impossible to distinguish inherent microbiota in a

specimen —signal— from contamination —noise—.

Assuming that the native and contaminating DNA are accurately separated, the problem of

performing a reliable comparison between samples remains. In general, the taxonomic classifi-

cation engine assigns the reads from a sequencing run to different taxonomic ranks, especially

if the method uses a more conservative approach like the lowest common ancestor (LCA) [21].

While LCA drastically reduces the risk of false positives, it usually spreads the taxonomic level

of the classifications from the more specific to the more general. Even if the taxonomic classi-

fier does not use the LCA strategy, each read is usually assigned a particular score or confi-

dence level, which should be taken into account by any downstream application as a reliability

estimator of the classification.

On top of these difficulties, it is still more challenging to compare samples with very differ-

ent DNA yields, for instance, low microbial biomass samples versus high biomass ones,

because of the different resolution in the taxonomic levels. This sort of problem also arises

when the samples, even with DNA yields in the same order of magnitude, have an entirely

different microbial structure so that the minority and majority microbes are fundamentally

different between them [18]. Finally, a closely related problem emerges in metagenomic bio-

forensic studies and environmental surveillance, where it is essential to have a method pre-

pared to detect the slightest presence of a particular taxon [3, 22, 23] and provide quantitative

results with both precision and accuracy.

Comparison and validation of metagenomic results

From the beginning, the application of SMS to environmental samples supplied biologists with

an insight of microbial communities not obtainable from the sequencing of Bacterial Artificial

Chromosome (BAC) clones or 16S rRNA [24, 25]. The scientific community soon underlined

the need and challenges of comparative metagenomics [26, 27]. MEGAN [28], one of the first

metagenomic data analysis tools, provided in its initial release a very basic comparison of sam-

ples, which has improved with an interactive approach in more recent versions [29]. In gen-

eral, metagenomic classification and assembly software is more intra- than inter-sample

oriented [30]. Several tools have tried to fill this gap, starting with CoMet [31], a web-based

tool for comparative functional profiling that combines different methods such as multi-

dimensional scaling and hierarchical clustering analysis to predict functional differences in a

collection of metagenomic samples. Soon after, a different approach appeared with the discov-

ery of the crAssphage thanks to the crAss software [32], which provides reference-independent

Recentrifuge: Robust comparative analysis and contamination removal for metagenomics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006967 April 8, 2019 3 / 24

https://doi.org/10.1371/journal.pcbi.1006967


comparative metagenomics using cross-assembly. The following year, Community-analyzer

was released, a tool for visually comparing microbial community structure across microbiomes

using correlation-based graphs to infer differences in the samples and predict microbial inter-

actions [33]. In 2014, yet another alternative came, COMMET [34], a piece of software that

goes a step further by enabling the combination of numerous metagenomic datasets through a

scalable method based on efficient indexing. Two years later, a parallel computation method

called Simka was published [35], which performs de novo comparative metagenomics by

counting k-mers concurrently in multiple datasets.

In 2015, a highly publicized report on the metagenomics of the New York subway suggested

that the plague and anthrax pathogens were part of the normal subway microbiome. Soon

afterward, several critics arose [36] and, later, reanalysis of the New York subway data with

appropriate methods did not detect the pathogens [37]. As a consequence of this and other

similar problems involving metagenomic studies, a work directed by Rob Knight [38] empha-

sized the importance of validation in metagenomic results and issued a tool based on BLAST

(Platypus Conquistador). This software confirms the presence or absence of a taxon of interest

within SMS datasets by relying on two reference sequence databases: one for inclusions, with

the sequences of interest, and the other for exclusions, with any known sequence background.

Another BLAST-based method for validating the assignments made by less precise sequence

classification programs has been recently announced [22].

The approach of Recentrifuge to increased confidence in the results of taxonomic classifica-

tion engines follows a dual strategy. Firstly, it accounts for the score level of the classifications

in every single step. Secondly, it uses a robust contamination removal algorithm that detects

and selectively eliminates various types of contaminants, including crossovers. Recentrifuge

directly supports the following high-performance taxonomic classifiers: Centrifuge [7], LMAT

[21], CLARK [39], CLARK-S [40], and Kraken [41]. Other classification software is supported

through a generic parser. The interactive interface of Recentrifuge enables researchers to ana-

lyze the results of those taxonomic classifiers using scored Krona-like charts [42]. In addition

to the plots for the raw samples, Recentrifuge generates four different sets of scored charts for

each taxonomic level of interest: control-subtracted samples, shared taxa (with and without

subtracting the controls), and exclusive taxa per sample. This battery of analysis and plots per-

mits robust comparative analysis of multiple samples in metagenomic studies, especially useful

in case of low microbial biomass environments or body sites.

Recentrifuge’s novel approach

Recentrifuge enables robust contamination removal and score-oriented comparative analysis

of multiple samples, especially in low microbial biomass metagenomic studies, where contami-

nation removal is a must.

Just as it is essential to accompany any physical measurement by a statement of the associ-

ated uncertainty, it is desirable to attend any read classification with a confidence estimation

of the assigned taxon. Recentrifuge reads the score given by a taxonomic classification software

to the reads and uses this valuable information to calculate an average confidence level for

each taxon in the taxonomic tree associated with the sample analyzed. This value may also be a

function of further parameters, such as read quality or length, which is especially useful in case

of significant variations in the length of the reads, like in the datasets generated by nanopore

sequencers.

Only a few codes, such as Krona [42] and MetaTreeMap [43], are hitherto able to handle

a score assigned to the classification nodes. In Recentrifuge, the calculated score propagates

to all the downstream analysis and comparisons, including the interface, an interactive
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framework for a straightforward assessment of the validity of the taxonomic assignments. That

is an essential advantage of Recentrifuge over other metagenomic dataset analysis tools.

Design and implementation

Scored taxonomic trees

For each sample, according to the NCBI Taxonomy [44], Recentrifuge populates a logical taxo-

nomic tree, with the leaves usually belonging to the lower taxonomic levels like species, variety

or form. The methods involving trees were implemented as recursive functions for compact-

ness and robustness, making the code less error-prone. One of such methods is essential for

understanding the way Recentrifuge prepares samples before any comparison or operation

such as control subtraction. It recursively ‘folds the tree’ for any sample if the number of

assigned reads to a taxon is under the mintaxa setting (minimum reads assigned to a taxon

to exist in its own), or because the taxonomic level of interest is over the assigned taxid (taxo-

nomic identifier). See Fig 1A for a working example of the method in action for two samples.

The same procedure applies to the trees of every sample in the dataset. This method does not

just ‘prune the tree’, on the contrary, it accumulates the counts ni of a taxon in the parent ones

np and recalculates the parent score σp as a weighted average taking into account the counts

and score of both. In general, the new score of parent taxa, s0p is calculated as follows:

s0p ¼
1

np þ
PD

i ni
spnp þ

XD

i

sini

 !

8ðsi; niÞ

where 0< ni< mintaxa and D is the number of descendant taxa that are to be accumulated

in the parent one and σi their respective scores. This is done recursively until the desired condi-

tions are met. This method is applied, at a given taxonomic level, to the trees of every sample

before being compared in search for the shared and exclusive taxa. For a sample, the mintaxa
parameter defaults to the nearest integer of the decimal logarithm of the number of reads pass-

ing the minimum score threshold (minscore) filter, thus growing with the order of magni-

tude of the effective size of the sample. However, the user can modify such automatic value for

mintaxa and set it independently for control and real samples.

Derived samples

In addition to the input samples, Recentrifuge includes some sets of derived samples in its out-

put. After parallel calculations for each taxonomic level of interest, it adds hierarchical pie

plots for CTRL (control subtracted), but also for EXCLUSIVE, SHARED and SHARED_CON-
TROL samples, defined below.

Let Tmean the set of taxids in the NCBI Taxonomy and Ts the collection of taxids

present in a sample s. If Rs stands for the set of reads of a sample s and Cs for the group of

them classifiable, then the taxonomic classification c is a function from Cs to T, i.e., Cs!
c T,

where Cs� Rs and c½Cs� ¼ Ts � T. The set L of the 32 − 1 different taxonomic levels used

in the NCBI Taxonomy (see S5 Fig) [44] is ordered in accordance with the taxonomy, so

(L,<) is a strictly ordered set, since form< variety< subspecies< � � �< domain. Then,

Ts ¼ Tforms [ � � � [ Tdomains ¼ [LTls, where Tls represents the collection of taxa belonging to a

sample s for a particular taxonomic rank or level l. Related with this, we can write as T!ls the

taxa of the sample s for a taxonomic level l once we have applied the ‘tree folding’ to such level

l detailed in the previous subsection (and in Fig 1A).

For a taxonomic rank k of interest, in a series of S samples where there are N< S negative

controls, Recentrifuge computes the sets of taxa in the derived samples CTRL ðCTRLTks Þ,
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Fig 1. Operating with taxonomic trees. (A) Example of the recursive function which ‘folds the tree’ to prepare the taxonomic trees for

further operations, with the parameter mintaxa set to 10 (explicitly for this example), and the minimum rank of interest minrank set

to ‘genus.’ Initially, their trees show the direct taxonomic classification results. Then, recursively, the leaves of the tree are accumulated in

the parent node if their number of assigned reads is under mintaxa (shown in red and bold counts) or if their corresponding taxonomic

rank is below minrank. In this ‘folding’ the parent score is updated with a weighted average of its own score and the ones of the

Recentrifuge: Robust comparative analysis and contamination removal for metagenomics
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EXCLUSIVE ðEXCLTks Þ, SHARED (SHARED Tk) and SHARED_CONTROL (SHARED_CTRL Tk) as:

CTRLTks ¼ T!ks n
[N

n

T!kn

EXCLTks ¼ T!ks n
[S

m6¼s

T!km

SHAREDTk ¼
\S

m

T!km

SHARED CTRLTk ¼
\S

m>N

T!km n
[N

n

T!kn

Please see Fig 1B for examples. Finally, Recentrifuge generates in parallel a set of SUMMARY
samples condensing the results for all the taxonomic levels of interest.

Robust contamination removal

For a taxonomic rank k, after the ‘tree folding’ procedure detailed above, the contamination

removal algorithm retrieves the set of candidates �T!ks to contaminant taxa from theN< S con-

trol samples. Depending on the relative frequency (fi = ni/∑i ni) of these taxa in the control

samples and if they are also present in other specimens, the algorithm classifies them in con-

tamination level groups: critical, severe, mild, and other. Except for the latter group, the con-

taminants are removed from non-control samples. Then, Recentrifuge checks any taxon in

the ‘other contaminants’ group for crossover contamination so that it eliminates any taxon

marked as a crossover from every sample except the one or ones selected as the source of the

pollution. In detail, the algorithm removes any taxon tks 2 �T!ks from a non-control sample

unless it passes the robust crossover check: a statistical test screening for overall outliers

and an order of magnitude test against the control samples. See Fig 2 for an example of this

procedure.

The robust crossover tests are defined as follows:

Outliers statistic test ðtks Þ : ftks > median ftk
1
; . . . ; ftkS

n o
þ dQn

Order of magnitude test ðtks Þ : ftks > 10xmax ftk
1
; ftk

2
; . . . ; ftkN

n o

where Qn [45] is a scale estimator to be discussed below, and δ and ξ are constant parameters

of the robust contamination removal algorithm. The parameter δ is an outliers cutoff factor,

while ξ is setting the difference in order of magnitude between the relative frequency of the

candidate to crossover contaminator in the sample s and the greatest of such values among the

control samples. In Recentrifuge, δ typically ranges from 3 to 5, and ξ from 2 to 3.

descendants that are being accumulated. E.g., after the 1st step, the G1 taxon at the sample is updated with np = 2 + 4 + 2 = 8 counts and

score of sp ¼
1

8
60� 4þ 35� 2þ 45� 2ð Þ ¼ 50. As the counts for G1 are still under mintaxa, in the 2nd step they are accumulated in

F1 and its score updated to 1

10
50� 8þ 100� 2ð Þ ¼ 60. (B) Continuing with the example in (A), at genus level, there are two derived

samples: the right one with the control removed from Sample1, the left one with the exclusive taxa of Sample2 (those taxa not present in

the rest of samples, in this case, the control and Sample1).

https://doi.org/10.1371/journal.pcbi.1006967.g001
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Qn is the chosen scale estimator for screening the data for outliers because of its remarkably

general robustness and other advantages compared to other estimators [45, 46], like the MAD

(median absolute deviation) or the k-stepM-estimators. It has a 50% breakpoint point, a

smooth influence function, very high asymptotic efficiency at Gaussian distributions and is

suitable for asymmetric distributions, which is our case, all at a reasonable computational com-

plexity, as low as O(n) for space and O(n log n) for time. So, here:

Qn ¼ d
�
�
�ftki � ftkj

�
�
�
i<j�S

� �

ðmÞ
: m ¼

S
2
þ 1

2

� �

¼
G S

2
þ 2

� �

2G S
2

� � ¼
S
4

S
2
þ 1

� �

where d = 3.4760 is a constant selected for asymmetric non-gaussian models similar to the neg-

ative exponential distribution,m refers to themth order statistics of the pairwise distances and

Γ is the Gamma function.

Parallel computation

Recentrifuge is a metagenomics analysis software with two different main parts: the computing

kernel, implemented and parallelized from scratch using Python, and the interactive interface,

based on interactive hierarchical pie charts by extending the Krona [42] 2.0 JavaScript library

Fig 2. Robust contamination removal. This is a hypothetic example with 5 samples and 6 dominant taxa to illustrate how the

algorithm works. The top and bottom part of the figure shows the absolute frequency of reads assigned to the taxa before and after

the contamination removal, respectively. There are two control samples, not modified throughout the process. In the rest of

specimens, the general contaminants (those taxa present in the controls and other samples, like ContaminantA and ContaminantB)

are removed, except in case of crossover contamination: those taxa are kept in the source sample or samples (Sample1 here) and

removed from other real samples (Sample2 and Sample3 in this example). The algorithm parameter ξ is set to 2.

https://doi.org/10.1371/journal.pcbi.1006967.g002
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developed at the Battelle National Biodefense Institute. Recentrifuge’s novel approach com-

bines robust statistics, arithmetic of scored taxonomic trees, and concurrent computational

algorithms to achieve its goals. Fig 3 is a flow diagram of Recentrifuge that clearly shows three

parallel regions in the code. In each of them, the work divides into concurrent processes

attending to different variables: control and regular samples in the first region, the taxonomic

ranks in the second, and the specimen along with the type of analysis in the last parallel region,

which summarizes the results.

Components design and implementation

In any SMS study with related samples, including negative controls, Recentrifuge generates

four additional sets of scored charts: the samples with the contamination subtracted, the

exclusive taxa per sample, and the shared taxa with and without control taxa subtracted (see

S4 Fig). Fig 4 summarizes the package context and data flows. Recentrifuge straightforwardly

accepts output files from various taxonomic classifiers, thus enabling a scored-oriented taxo-

nomic visualization for metagenomics. Recentrifuge directly supports output from Centri-

fuge [7], LMAT [21], CLARK [39], CLARK-S [40], and Kraken [41]. Alternative taxonomic

classifiers are supported through a generic interface developed to handle different file for-

mats with comma-separated values (CSV), tab-separated values (TSV), or space-separated

values (SSV). The software also includes support for LMAT plasmid assignment system [15].

For implementation details of the Recentrifuge computing kernel please see S1 Appendix, S5

and S6 Figs.

To ensure the broadest portability for the interactive visualization of the results, the central

outcome of Recentrifuge is a stand-alone HTML file which can be loaded by any JavaScript-

enabled browser. Fig 5 shows a labeled screenshot of the corresponding Recentrifuge web

interface for an example of SMS study (see S1 Fig). A vectorial screenshot in SVG format with

the original font scheme is available for any sample using the “Screenshot” button of the user

interface. The package also provides comprehensive statistics about the reads and their classifi-

cation performance. Another Recentrifuge output is a spreadsheet collection detailing all the

classification results in a compact way. This format is adequate for further data mining on the

data, for example, as input for applications such as longitudinal (time or space) series analyzers

like Dynomics (in development). Besides, the user can choose between different score visuali-

zation algorithms, some of which are more interesting for datasets containing variable length

reads, for example, the ones generated by Oxford Nanopore sequencers.

Finally, some filters are available, like the minimum score threshold (minscore), which

can be set independently for the control and real samples. The minscore filter can be used

to generate different output sets from a single run of the classifier with a low minimum hit

length (MHL) setting, saving computational resources. Other filters are mintaxa, described

in the scored taxonomic trees subsection, and the lists of identifiers to exclude or include a

taxon and all its children in the taxonomic tree.

The additional tools in the Recentrifuge package (see Fig 4) can generate further products

and results. Rextract is a script which helps in extracting a subset of classified reads of interest

from the single or paired-ends FASTQ input files. This set of reads can be used in any down-

stream application, such as genome visualization and assembling. Remock is a script for easily

creating mock Centrifuge samples, which is useful not only for testing and validation purposes

but also for introducing a list of previously known contaminants to be taken into account by

the robust contamination removal algorithm. Retest is the code used for continuous integra-

tion (CI) testing and algorithm verification procedures (see Section 2 of S4 Appendix for fur-

ther details and S10 Fig for its flowchart).
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Fig 3. Recentrifuge’s flowchart. The three parallel regions in the code are delimited and labeled. The dashed lines

indicate data or steps that are optional. For example, Recentrifuge loads and checks plasmids only in case of LMAT

samples, and if the plasmids file of LMAT is present in the file system.

https://doi.org/10.1371/journal.pcbi.1006967.g003
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Results and discussion

Recentrifuge accurately removes cross-contamination

We developed a synthetic dataset carefully designed to challenge the Recentrifuge algorithms

(see S13 Fig and Section 2.3 of S4 Appendix for details), thus enabling a quantitative assess-

ment of the capability of the method to cope with different kinds of contaminants. We also

devised this mock dataset in order to evaluate the ability of the method to deal with cross-

Fig 4. Outline of the Recentrifuge package with its ecosystem and main data flows. Recentrifuge (rcf) accepts output files from

diverse taxonomic classifiers such as Centrifuge [7], LMAT [21], CLARK [39], CLARK-S [40], Kraken [41], and others, enabling a

robust taxonomic analysis for metagenomics. Recentrifuge is also supporting LMAT plasmids assignment system [15]. The

additional output of Recentrifuge to different text field formats enable further longitudinal (time or space) series analysis, for

example, usingDynomics (in development). The NCBI Taxonomy dump databases [44] are easily retrieved using Retaxdump.

Rextract utility extracts a subset of reads of interest from single or paired-ends FASTQ input files, which can be used in any

downstream application, like genome assembling and visualization. Remock easily creates mock Centrifuge samples, useful for code

validation but also for including previously known contaminants. Retest is the script in charge of testing (denoted by dashed lines)

the other components of the package. The dotted lines indicate software and procedures beyond Recentrifuge.

https://doi.org/10.1371/journal.pcbi.1006967.g004
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contamination between samples. This feature of Recentrifuge is one of the advantages of this

novel approach. In addition, this synthetic dataset serves the purpose of the continuous inte-

gration framework of the software, as the results of processing these data are compared with a

standard to check the reliability of the method after any change in the source code.

Fig 6 shows a comparison of abundances of taxa included in the synthetic dataset before

and after the Recentrifuge robust contamination removal algorithm. The taxa belong to species

or below in the NCBI taxonomy. The left column of the figure shows the abundance histogram

for seven raw samples: four real samples (smpl1 to smpl4) plus three negative control sam-

ples (ctrl1 to ctrl3). Similarly, the right column shows the results after the algorithm

intervention for the species taxonomic level, i.e., the corresponding CTRL_species samples

(see ‘Derived samples’ subsection in Design and implementation). Native taxa are green-col-

ored, crossover contaminants are colored in purple, and other colors indicate different classes

of contaminants. The legend of S13 Fig details the complete color code.

We see in Fig 6 that Recentrifuge cleared the CTRL_species samples of the different

contaminants (species and below) found in the negative control samples while retaining the

particular native taxa, which accumulated up to the species level (see ‘Scored taxonomic trees’

subsection in Design and implementation for details). Examples of important contaminants

Fig 5. Layout of the Recentrifuge interface. This figure is an explained screenshot of the Recentrifuge web interface for an SMS

study (see S1 Fig for details of the example). It highlights the principal parts of the interface, which are also labeled. The sample 2A5

was selected (see the sample selection box in the top left under the Recentrifuge logo), so the key statistics for this sample appeared in

the bottom left of the view. In the center, there was the corresponding hierarchical pie chart, with zoom in the phylum

Euryarchaeota. For each taxon, the background color reflected the average confidence level of the taxonomic classification following

the scale plotted in the bottom left of the figure, where there were also buttons for the score navigator. Since the interface had the

option disabled, Recentrifuge did not sort the taxa according to the average confidence level. In this particular case, the taxon

Methanosarcina soligelidi was selected in the pie chart, thus prompting the display of taxon-related statistics and links in the top right

of the figure. The current links were to Google Scholar and NCBI Taxonomic Browser. The statistics included: the number of reads

assigned to this or lower taxonomic levels (Count) and their average confidence (Score —avg—), the number of reads just assigned

to this level (Unassigned), the NCBI taxid (TaxID) and rank (Rank), and some information about relative frequencies.

https://doi.org/10.1371/journal.pcbi.1006967.g005
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Fig 6. Comparison of abundance histograms for some taxa (species or below) in the synthetic dataset before (raw

samples) and after the robust contamination removal (CTRL_species samples). Data shown for samples smpl1 to

smpl4 and the negative control samples (ctrl1 to ctrl3), which were used by the contamination clearing process

without modification. The legend of S13 Fig details the color code of the taxa. Here, the legend contains the name of each

taxon followed by a note given in brackets; this remark is indicating either the type of contaminant, or which is the native
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removed were human reads and those belonging to Cutibacterium acnes. The algorithm also

deleted more subtle contamination, such as the reads assigned toMalassezia globosa. Cross-

over contamination requires special mention. On the one hand,Methanosarcina mazei was

ubiquitous among the samples, but it was only native to smpl1 and a contaminant in the rest.

On the other hand,M. barkeri was present in the four real samples despite being only native to

smpl3, but it was scarce in the control samples, even missing from ctrl2. Recentrifuge

accurately detected which were the source sample of bothMethanosarcina species, thus keep-

ing the native reads there and clearing the cross-contamination from the rest of the samples.

Furthermore, we included an additional sample (smplH) in the synthetic dataset contain-

ing the 241 species of a high-complexity dataset used as a gold standard for benchmarking

metagenomic software [47]. As with the other samples, this specimen combined contaminants

as additional taxa. In addition, we spiked the controls with low abundances of native taxa from

this and the other real samples in order to simulate statistical noise in negative control samples

such as low-frequency misclassifications and sequencing errors. We used the complete syn-

thetic dataset to obtain different ROC (receiver operating characteristic) plots. S11 Fig shows

the evolution of the sensitivity and specificity from the raw specimens to the CTRL_species
samples. Basically, this ROC presented a transition from a scenario of very low specificity, on

account of the contamination misidentified as native taxa, to a situation characterized by very

high specificity, thanks to the correct detection of contaminants, including crossovers. For

some samples, this came at the expense of a slight loss in the sensitivity. The reason for that

small decline in the recall rate was the intentional introduction in the synthetic dataset of the

archaeaMethanobacterium formicicum with two different strains, one native to the samples

(M. formicicumDSM 3637) and another a contaminant (M. formicicum JCM 10132). At the

species level, once the cross-contamination situation was ruled out, Recentrifuge followed a

conservative strategy and deemed the archaeal species as a contaminant and, therefore, the

native strain ofM. formicicum became a false negative thus decreasing the sensitivity. For sam-

ples smpl1 to smpl4 and smplH, S12 Fig shows the ROC as a function of the mintaxa
parameter. Results of Fig 6, S11 and S12 Figs can be easily replicated using retest (see Section 2

of S4 Appendix).

New biological insight into a highly contaminated plasma study

To confirm Recentrifuge’s ability to analyze complex metagenomes and provide new biological

insight, we considered an ambitious but severely contaminated SMS study of RNA in plasma

from individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), alter-

natively diagnosed chronic Lyme syndrome (ADCLS), and systemic Lupus erythematosus

(SLE) [48]. This research suffered from large batch and contamination effects and was unable

to find a positive association between the plasma microbial content of sick individuals, thus

highlighting the relevance of technical controls in metagenomics. More than 240 giga-base-

pairs of raw genomic data distributed in 67 samples with paired-ends sequences were down-

loaded and analyzed using Bowtie2 [49], Centrifuge [7], and SAMtools [50] (see S2 Appendix

for the procedure details). Recentrifuge analyzed the different datasets in this study using stric-

ter parameters than the default ones: sequencing of RNA required extra steps than sequencing

of DNA, including the reverse transcription of RNA and further purifications [48], which were

additional sources of artifacts and contamination. In this case, an increase in the matching

strain of a species, or the native source for cross-contamination. Finally, the mintaxa level is drawn as a red line crossing all

the samples.

https://doi.org/10.1371/journal.pcbi.1006967.g006

Recentrifuge: Robust comparative analysis and contamination removal for metagenomics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006967 April 8, 2019 14 / 24

https://doi.org/10.1371/journal.pcbi.1006967.g006
https://doi.org/10.1371/journal.pcbi.1006967


length to 60 was advisable [7], so Recentrifuge filtered the Centrifuge output with minscore
raised to an even stricter value of 75 (unless otherwise indicated).

To further illustrate the difficulty of the dataset of the SMS study of plasma in ME/CFS

patients regarding the contamination, just a couple of results. First, affecting the sequencing

batch one, Recentrifuge detected crossover contamination in the negative control samples

with the source in the positive control, consisting of human metapneumovirus (hMPV). Sec-

ond, Recentrifuge reported quite more different taxa in the negative controls than in the nor-

mal samples: 65% and 22% more on average, respectively, for the batch two and three. The

presence of generalized crossover contamination complicates the removal of the contaminants

in the samples by merely excluding the taxa present in the controls. Here it is when the robust

contamination removal algorithm of Recentrifuge is of great help: it detects the crossover

contaminants (hMPV and other taxa) and removes them from all the samples except for the

inferred source. Therefore, the positive control is still positive for hMPV after the contamina-

tion removal, as expected (see S7 Fig).

The Recentrifuge analysis of the entire collection of 67 samples revealed the presence of

ubiquitous contaminants able to spread over different sequencing batches and type of samples

(see S8 Fig). Most of the contaminating bacteria are known contaminants belonging to the

kitome [11]. Other pervasive pollutants belong to the fungi orders Eurotiales, Helotiales, Hypo-

creales, Pleosporales, and Saccharomycetales. The contamination by Apicomplexa, in general,

and Plasmodium vivax and Besnoitia, in particular, can be linked to database contamination

[15, 20] and seems a negative hallmark of SMS RNA studies related to body fluids [8]. An

interesting complementary analysis consisted of retrieving those taxa that are contaminating

the negative control samples exclusively. S9 Fig shows the genera contaminating all the control

samples but no other specimen along the second batch, representing contaminants which

entered the workflow in some procedure or material exclusive to the control samples.

In concordance with the main conclusion of the study of plasma in individuals with ME/

CFS [48], Recentrifuge did not find shared taxa after control removal (CONTROL_SHARED
empty) when analyzing the samples rearranged in different batches and pathology/healthy

groups. Nevertheless, the individual analysis of the samples after contamination removal pres-

ents interesting features in a case-per-case review. That is the case of sample 56 in Fig 7, which

belongs to an ADCLS patient. It shows a collection of taxa with a high average score (114) in

the classification, implying that a majority of sequences mapped in both reads from the pair,

except for the contaminant genus Besnoitia, the lowest-scored one. This set of microbes seems

compatible with bacteria translocated from the buccopharyngeal cavity into blood, apparently

because of an oral chronic inflammatory polymicrobial disease. However, the clinically rele-

vant taxa in this study go far beyond those of sample 56 shown in Fig 7. S3 Appendix portrays

other representative bacteria, viruses, and fungi, present in the samples.

Research in recent years is overturning the commonly accepted paradigm which stated

that, in healthy individuals, the tissues and body fluids not in contact with the environment

are sterile. Healthy organs once thought to be free of microbes are crawling with bacteria,

archaea, viruses, and eukaryotes. The shift of paradigm has spread to more and more tissues

and fluids, like the deepest layers of the skin [51], the placenta [52], the urine [53], the blood

[54, 55], the breast milk, or others [54, 56, 57].

The plasma is the part of the blood with the lower proportion of bacterial DNA, only 0.03%

[55]. In the reanalyzed study of plasma in individuals with ME/CFS [48], the intrinsic difficul-

ties of ultra-low microbial biomass joined the handicap of an RNA sequencing technique

prone to further artifacts and biases, which resulted in severe widespread contamination. With

the results of the research, the classical paradigm might seem supported, that is, the idea of the

absence of a plasma microbiota in healthy individuals. However, the authors of the study
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believed that the limitation of the current techniques prevented them from revealing the

microbial component in human plasma. Indeed, with the noise in the same order of magnitude

of the signal, a robust method for contamination removal was required to tackle this complex

dataset. Despite all the difficulties, the analysis with Recentrifuge has unveiled a meaningful

plasma microbiota in the samples (Fig 7 and S3 Appendix). The results are in line with the

recent research in the field, which points out the gut, the oral cavity, and the genitourinary

tract as the primary sources of the blood microbiome [55, 58, 59].

In conclusion, thanks to the robust contamination removal and the score-oriented compar-

ative analysis of multiple samples in metagenomics, Recentrifuge can play a key role, firstly, in

the study of oligotrophic microbes in environmental samples, as it did by showing that micro-

biomes of Arctic and Antartic solar panels display similar taxonomic profiles [60]; secondly, in

Fig 7. Taxa after contamination removal in a sample of the SMS study of plasma in ME/CFS patients. This is for an ADCLS

patient (sample 56), showing a high average score (114) in the classification. The microbial distribution seems compatible with

bacteria translocated from the oral cavity into blood, probably because of a chronic inflammatory polymicrobial disease.

https://doi.org/10.1371/journal.pcbi.1006967.g007
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the more reliable detection of minority organisms in clinical or forensic samples. The relevant

organisms found with a high score in the SMS study of plasma in ME/CFS patients [48] after

the robust contamination removal are good examples. Finally, the mock dataset confirmed the

worthiness of the developed methods, which demonstrated a radical improvement in specific-

ity while retaining high sensitivity rates even in the presence of cross-contaminants.

Availability and future directions

Recentrifuge’s main website is www.recentrifuge.org. The data and source code are anony-

mously and freely available on GitHub at https://github.com/khyox/recentrifuge and PyPI at

https://pypi.org/project/recentrifuge. The Recentrifuge computing code is licensed under the

GNU Affero General Public License Version 3 (www.gnu.org/licenses/agpl.html). Recentri-

fuge’s continuous integration (CI) information is public on Travis CI at https://travis-ci.org/

khyox/recentrifuge.

The wiki (https://github.com/khyox/recentrifuge/wiki) is the most extensive and updated

source of documentation for Recentrifuge, including installation, testing, quick-start, and

comprehensive use cases for the different taxonomic classification engines supported. In addi-

tion, Recentrifuge’s installation is explained in Section 1 of S4 Appendix, testing is detailed in

Section 2 of S4 Appendix, and running Recentrifuge for Centrifuge, LMAT, CLARK flavors,

Kraken, and other taxonomic classifiers are subsections of Section 3 of S4 Appendix. Similarly,

Sections 4 and 5 of S4 Appendix describe running Rextract and the Recentrifuge command

line, respectively. Finally, Section 6 of S4 Appendix includes troubleshooting subsections.

The full Centrifuge output and the detailed Recentrifuge results for the SMS study of plasma

in individuals with ME/CFS are publicly available at som1.uv.es/plasmaCFS.

Just as the biochemical profile and cell count are currently usual blood tests, metagenomic

analysis of the blood will probably become a standard in a few years. The methods that will

pave the way for a well-established clinical practice of metagenomics are still to come. As an

open-source project, the participation of the computational biology and clinical metagenomics

community will determine the future of Recentrifuge considerably.

An important extension to Recentrifuge is under active development and will be released

soon. It is “Regentrifuge”, the counterpart of Recentrifuge in the area of metagenomic func-

tional analysis.

Supporting information

S1 Fig. Example of longitudinal SMS study. In longitudinal metagenomics, scientists retrieve

and analyze sets of sequences belonging to microbial communities from different sources,

times, patients, or body sites to unravel spatial, temporal or clinical patterns in the microbiota.

This figure is an example outlining the problem of comparing different but related samples in

a longitudinal SMS study. The sample named 2A is subdivided longitudinally into six subsam-

ples whose DNA/RNA is extracted along with negative control samples. The purified DNA/

RNA is then sequenced, and the generated sequencing reads are processed through a metage-

nomics analysis pipeline, such as the one detailed in S2 Fig. A collection of different datasets

are finally produced, which should be adequately compared to elucidate lengthwise patterns in

the microbiota within the 2A sample.

(PDF)

S2 Fig. Typical steps of an SMS study. A longitudinal study involving SMS, like the one illus-

trated by S1 Fig, spans in some stages to obtain valuable field-domain information starting

from the original samples. For each specimen, the researcher extracts DNA/RNA using a
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commercial kit, a custom protocol optimized for the type of sample, or a combination of both.

Next, a technician prepares a library matching the target sequencing technology with the puri-

fied DNA/RNA, which is then sequenced. A bioinformatics pipeline processes the reads that

the sequencer provides. We could roughly separate such process in three consecutive steps.

First, in the pre-analysis, codes like FastQC (Babraham Bioinformatics, 2016) and MultiQC

[61] quality-check the reads. Second, in the analysis stage, the most computationally intensive

one, software packages like LMAT [21], Kraken [41], CLARK [39], Centrifuge [7], and

CLARK-S [40] (see S3 Fig for details) classify the reads taxonomically or functionally. Finally,

in the post-analysis step, different tools like Krona [42], Pavian [62], or Recentrifuge further

process the results to enable more in-depth analysis and improved visualization.

(PDF)

S3 Fig. Computational analysis in an SMS study. The core phase of a metagenomics analysis

pipeline (see S1 and S2 Figs for the outline of the bioinformatic phases) is carried out by

high performance computing software. These are intensive codes in both CPU and memory

(sometimes, they are input/output intensive too), such as LMAT [21], Kraken [41] and, more

recently, CLARK-S [40] and Centrifuge [7]. All these tools are performing taxonomic classifi-

cation and abundance estimation, whereas LMAT is also able to annotate genes. For the taxo-

nomic classification, both LMAT and Kraken use an exact k-mer matching algorithm with

large databases (~100 GiB) while Centrifuge use compression algorithms to reduce the data-

bases size (~10 GiB) but at some speed expense. CLARK-S use discriminative spaced k-mers to

improve the sensitivity but with a toll on the performance. The most complete LMAT database

is approaching half terabyte of required memory while the Centrifuge database generated in-

house in March 2018 from the NCBI Nucleotide [63]nt database (~170 GiB) occupied just 105

GiB. The equivalent spaced k-mers database of CLARK-S generated in May 2018 took 267 GiB

of disk space.

(PDF)

S4 Fig. Summary of advantages of Recentrifuge. This figure summarizes the immediate ben-

efits of applying Recentrifuge to a study involving SMS of different but related samples, includ-

ing negative controls (see S1 Fig). Recentrifuge generates four different sets of scored charts

for each taxonomic level of interest in addition to the scored plots for the raw samples: samples

with the control taxa subtracted, the exclusive taxa per sample and the shared taxa with and

without control taxa subtracted. This battery of analysis and plots permits robust comparative

analysis of multiple samples in low microbial biomass metagenomic studies.

(PDF)

S5 Fig. Hierarchy of the NCBI Taxonomy. All the 32 ranks are supported by Recentrifuge.

This illustration is based on the 9-rank hierarchy publicly released by Peter Halasz.

(PDF)

S6 Fig. UML class diagram of Recentrifuge. This graph summarizes the relationships

between developed classes in the Recentrifuge core package. The classes in the figure with a

colored border are the parent classes from which the Recentrifuge ones derive. Those belong

to the Python Standard Library (red border) and BioPython (green border).

(PDF)

S7 Fig. Positive control with human metapneumovirus (hMPV). Screenshots of the Recentri-

fuge web interface showing results for samples with paired-ends sequences for the batch 1 of the

SMS study of plasma in ME/CFS patients [48]. The 1st batch samples with paired-ends sequences

are two negative controls (samples S018 and S036) and the positive control (sample S008) with
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hMPV. In the figure, the top chart plots the control sample S018 (Ctrl1_S018_B1_Neg),

highlighting the hMPV contamination. The bottom chart shows the summary sample for the

positive control after the robust contamination removal (S008_B1_MPV_CTRL_SUMMARY),

which kept the hMPV reads although hMPV contaminates the negative control S018. The

filtering parameters for Recentrifuge were selected for allowing only high-scored taxa, with

minscore of 75.

(PDF)

S8 Fig. Global shared taxa. This scored pie chart shows the taxa shared between the 67 sam-

ples with paired-ends sequences of the ME/CFS plasma study [48]: those are ubiquitous con-

taminants able to spread over different sequencing batches and type of samples. For this

analysis, Recentrifuge ran with minscore set to 25 in order to provide a more comprehen-

sive detection of contaminants.

(PNG)

S9 Fig. Control samples exclusive taxa. This plot shows the taxa (contaminants) exclusive

to the four negative control samples of the 2nd sequencing batch of the ME/CFS plasma study,

at genus level, compared with the 28 non-control samples of the batch. These genera contami-

nate all the control samples but no other sample in the batch, so they should have been intro-

duced in some step exclusive to the negative control samples. Ordered by score, we found the

following bacterial genera with both score over 60 and relative frequency over 1%: Aureimo-
nas, Caulobacter, Kytococcus, Lawsonella, Gramella, Dermacoccus, Duganella, Dickeya, Exiguo-
bacterium, Altererythrobacter, Citrobacter, and Rhodobacter. In the eukaryotic domain, the

melanized meristematic fungus Pseudotaeniolina globosa stood out because of its high average

score. Recentrifuge ran with minscore set to 25 in order to provide a more precise detection

of the exclusive contaminants of the control samples.

(PNG)

S10 Fig. Retest flowchart diagram. The dotted lines indicate procedures previously completed

to prepare the standard needed for comparisons in some stages of the testing workflow. The

dashed lines denote optional procedures that are detailed in Section 2.2.2 of S4 Appendix.

(PDF)

S11 Fig. ROC generated by retest showing the impact of the robust contamination removal.

The ROC (receiver operating characteristic) plot is using the test results of Recentrifuge and

the information in the mock dataset to calculate the evolution of the sensitivity and specificity

from the raw specimens to the CTRL_species samples.

(PDF)

S12 Fig. ROC generated by retest in order to study the dependence on the mintaxa
parameter. The ROC (receiver operating characteristic) plot is using the test results of many

executions of Recentrifuge and the information in the mock dataset to follow the evolution

of the sensitivity and specificity of the CTRL_species samples when forcing different

mintaxa values, some of them indicated by the numbers at the base of the arrows.

(PDF)

S13 Fig. Rationale and design of the mock community. The synthetic community contains

diverse contaminant and native taxa, whose precise role is indicated by the characteristic back-

ground color shown in the legend. For example, green background characterizes native taxa,

while purple background indicates crossover contaminants (those contaminating the samples

except the source sample, where they are native). Such color code is also observed by the

detailed output of the robust contamination removal algorithm. The taxa are mainly species or
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below, but there are also taxa belonging to other more general levels. Spread over different

orders of magnitude, the abundances are fine-tuned to challenge Recentrifuge algorithms and

easily detect any problem during the testing. In addition, the sample smplH includes the 241

species and proportions of a high-complexity dataset used as a gold standard for benchmark-

ing metagenomic software [47]. In the spreadsheet, the black rectangles surround the areas

simulating statistical noise in negative control samples such as low-frequency misclassifica-

tions and sequencing errors. The constants shown in the legend are contamination classifica-

tion parameters of the robust contamination removal algorithm. Retest triggers the parsing of

these worksheets by remock to create the mock dataset that rcf analyzes during its testing.
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55. Païssé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive description of

blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfu-

sion. 2016; 56(5):1138–1147. https://doi.org/10.1111/trf.13477 PMID: 26865079

56. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Medicine. 2016; 8

(1):51. https://doi.org/10.1186/s13073-016-0307-y PMID: 27122046
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