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Abstract

Chaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by
buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the
bacterial chaperone GroE (GroELþGroES) affects the evolution of green fluorescent protein (GFP). To this end, we
subjected GFP to multiple rounds of mutation and selection for its color phenotype in four replicate Escherichia coli
populations, and studied its evolutionary dynamics through high-throughput sequencing and mutant engineering. We
evolved GFP both under stabilizing selection for its ancestral (green) phenotype, and to directional selection for a new
(cyan) phenotype. We did so both under low and high expression of the chaperone GroE. In contrast to previous work, we
observe that GroE does not just buffer but also helps purge deleterious (fluorescence reducing) mutations from evolving
populations. In doing so, GroE helps reduce the genetic diversity of evolving populations. In addition, it causes pheno-
typic heterogeneity in mutants with the same genotype, helping to enhance their fluorescence in some cells, and reducing
it in others. Our observations show that chaperones can affect adaptive evolution in more than one way.
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Introduction
In most proteins, the majority of amino acids help provide a
stable structural scaffold, whereas fewer amino acids are di-
rectly responsible for catalysis or other protein activities
(Todd et al. 2002). Protein evolution is thus constrained by
mutations that destabilize a protein’s 3D fold (DePristo et al.
2005; Zeldovich et al. 2007). Such mutations can reduce pro-
tein activity and organismal fitness, for example, by reducing
the amount of correctly folded and thus active protein. They
can also increase a protein’s propensity to form toxic aggre-
gates of misfolded proteins (Fersht 1997; Winklhofer et al.
2008; Hartl 2017). Mutations that create a new protein activ-
ity are especially often destabilizing (Wang et al. 2002;
Tokuriki et al. 2008; Fromer and Shifman 2009; Studer et al.
2014).

Cells encode multiple proteins called chaperones that help
other proteins to fold correctly and to maintain their fold.
Chaperones act via various mechanisms, such as the stabili-
zation of newly synthesized polypeptides, the acceleration of
the folding process, and the refolding of misfolded proteins.
This diversity of mechanisms is reflected in a diversity of

chaperone structures (Kim et al. 2013; Saibil 2013; Ries et al.
2017). Prominent chaperone classes include the protein fam-
ily Hsp60 (heat shock protein with a molecular weight of
60 kDa), the Hsp70, Hsp90, and Hsp100 families, as well as
the trigger factor. Chaperones from all these families exist in
both bacteria and eukaryotes (Kim et al. 2013; Saibil 2013; Ries
et al. 2017).

The GroEL/S complex (GroE) is one of the major chaper-
ones in bacteria. It is composed of the essential proteins
GroEL and GroES (Fayet et al. 1989; Li and Wong 1992),
and belongs to the Hsp60 family. Eukaryotes also express
GroE homologs, which help mitochondrial and chloroplast
proteins fold. Structurally, GroE belongs to a class of chaper-
ones known as chaperonins, which form a cylindrical cage
that entraps an unfolded polypeptide molecule and allows it
to refold (Horwich et al. 2007).

During adaptive evolution, chaperones can facilitate the
evolution of various organismal traits, including the evolution
of proteins with new functions (Rutherford and Lindquist
1998; Cowen and Lindquist 2005; Tokuriki and Tawfik
2009a; Wyganowski et al. 2013; Agozzino and Dill 2018;
Phillips et al. 2018; Alvarez-Ponce et al. 2019). For example,
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Hsp90 accelerates the evolution of drug resistance in fungi
(Cowen and Lindquist 2005). In addition, chaperones can
prevent the erosion of organismal fitness when deleterious
mutations accumulate in an evolving population. For exam-
ple, overexpressing GroE in Escherichia coli (Fares et al. 2002)
and Salmonellla typhimurium (Maisnier-Patin et al. 2005)
populations with large numbers of random genomic DNA
mutations, can improve bacterial population growth.
Relatedly, overexpressing GroE in E. coli populations subject
to periodic bottlenecking reduces the likelihood of popula-
tion extinction (Sabater-Mu~noz et al. 2015).

A main mechanism by which chaperones may facilitate
adaptive evolution is the buffering of deleterious mutational
effects on protein stability, and in consequence, on organis-
mal fitness (Fares et al. 2002; Wyganowski et al. 2013; Karras
et al. 2017; Phillips et al. 2018). It is caused by a chaperone’s
ability to help a protein with a destabilizing mutation fold
correctly. This mechanism is especially well documented for
GroE (Tokuriki and Tawfik 2009a; Bershtein et al. 2013; Sadat
et al. 2020). For example, GroE directly improves the folding
rate and the fluorescence of a green fluorescent protein (GFP)
variant whose fluorescence is compromised by the mutation
K45E (a lysine [K] to glutamate [E] change at position 45)
(Sadat et al. 2020). Additionally, GroE overexpression can
promote the evolution of new protein functions by stabilizing
proteins (Tokuriki and Tawfik 2009a; Wyganowski et al. 2013).
For example, the F306L mutation that improves the catalytic
activity of the enzyme phosphotriesterase on a novel sub-
strate, destabilizes the protein, but this destabilizing effect can
be mitigated by GroE (Wyganowski et al. 2013).

Despite the plausibility of this buffering mechanism, sev-
eral reports on Hsp90 suggest that this chaperone can also
have the opposite effect. That is, it can “potentiate” or en-
hance the effect of a mutation (Xu et al. 1999; Cowen and
Lindquist 2005; Whitesell et al. 2014; Geiler-Samerotte et al.
2016; Dorrity et al. 2018). For example, Hsp90 can help am-
plify the oncogenic activity of the viral oncogene v-Src (Xu
et al. 1999). More generally, Hsp90 has been reported to both
buffer (Rutherford and Lindquist 1998; Queitsch et al. 2002;
Sangster, Salathia, Lee, et al. 2008; Sangster, Salathia,
Undurraga, et al. 2008; Karras et al. 2017) and potentiate
(Cowen and Lindquist 2005; Whitesell et al. 2014; Geiler-
Samerotte et al. 2016; Dorrity et al. 2018) mutational effects.
This is possible because a chaperone that promotes protein
folding can increase the stability and foldability both of pro-
tein variants with a new phenotype and of variants with an
ancestral phenotype. Existing work aiming to distinguish
Hsp90-mediated buffering from potentiation focuses on
complex morphological traits in the yeast Saccharomyces

cerevisiae (Geiler-Samerotte et al. 2016). Here, we take a com-
plementary approach by studying the influence of a chaper-
one on the directed evolution of a single protein.

One related previous study has used saturation mutagen-
esis and selection to exhaustively understand the effect of
Hsp90 on mutations in a yeast transcription factor that con-
trols the two mutually exclusive organismal phenotypes of
mating and invasion (Dorrity et al. 2018). The study showed
that temperature stress enhances invasion in some Hsp90
dependent mutants. It does so at the expense of mating,
suggesting that buffering and potentiation are context depen-
dent. Our experiments are superficially similar in that they
combine mutagenesis, high-throughput sequencing, and pro-
tein engineering to study a chaperone’s effects at the molec-
ular level. However, they are also fundamentally different
from single step high-throughput screening experiments, be-
cause they aim to understand how a chaperone can affect the
dynamics of protein evolution over multiple cycles of muta-
tion and selection. In addition, they focus on the bacterial
chaperone GroE, for which buffering but not potentiation has
been demonstrated.

Most existing experiments on GroE buffering in individual
proteins rely on single amino acid mutations (Bershtein et al.
2013; Sadat et al. 2020) or on small populations of protein
variants (Tokuriki and Tawfik 2009a; Wyganowski et al. 2013).
In contrast, we maintained large populations of more than
105 individuals in which many variants can segregate during
multiple rounds of directed evolution. The large population
size allows many different variants to compete. In addition, it
also reduces the effect of genetic drift and enhances that of
selection on evolution.

Specifically, we studied the influence of GroE on the adap-
tive evolution of GFP in E. coli cells that overexpress GroE. We
subjected GFP to directed evolution experiments in which we
alternated cycles of (PCR-mediated) mutation with selection
imposed by fluorescence-activated cell sorting (FACS), both
with and without overexpression of GroE. In phase 1 of our
experiments, we performed five rounds (generations) of evo-
lution under stabilizing selection on the ancestral green fluo-
rescent phenotype. We followed this phase 1 by a phase 2, in
which we imposed directional selection on the new color
phenotype of cyan fluorescence during an additional five
generations. We studied both stabilizing and directional se-
lection, because a chaperone might have different effects un-
der different types of selection.

We chose GFP in this study for several reasons. First, its
light-emission phenotype can be easily measured at single cell
resolution in a high-throughput manner using flow cytome-
try. Second, it allows us to exert selection in a highly

Highlights

• GroE reduces genetic diversity.
• GroE enhances the effect of deleterious (activity reducing) mutations.
• GroE helps to intensify purifying selection and leads to higher activity of client proteins.
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controlled manner via FACS. Third, GFP is non-native to the
E. coli host, and interferes less with the host’s cell physiology,
growth, and metabolism than native proteins would. Fourth,
GFP is a known GroE client, that is, the chaperone can pro-
mote GFP folding (Makino et al. 1997).

We studied the genotypic and phenotypic evolution of
GFP via high-throughput single molecule real time (SMRT)
sequencing, protein engineering, and phenotypic analysis. We
focused on a key prediction that distinguishes the buffering
and potentiation hypotheses: if a chaperone helps to buffer
the deleterious effects of mutations, then it should help in-
crease genetic diversity in a population over time, because
some mutations that would otherwise be deleterious can be
tolerated in its presence. Conversely, if a chaperone helps to
enhance the effect of such mutations, it should lead to a loss
of genetic diversity, because it renders such mutations more
deleterious. We note that a chaperone may buffer the effect
of some mutations and potentiate that of others. We also
note that the observed effect of chaperone on a mutation
may be categorized as either buffering or potentiating,
depending on the point of view of the observer. For example,
mutations can simultaneously suppress a phenotype and en-
hance another (Dorrity et al. 2018). At the molecular level, a
chaperone may either promote folding of a protein, or in
some cases, help target the misfolded protein for degradation
(Kriegenburg et al. 2014). In our study, we focus on the mo-
lecular phenotypes of fluorescence intensity and spectrum.
To avoid potential confusion between the terms buffering
and potentiation, we instead describe the effect of GroE on
fluorescence. Specifically, we say that GroE may either en-
hance the fluorescence of a GFP variant or reduce it.
Likewise, it may enhance or suppress the color change asso-
ciated with a GFP variant, relative to the ancestral protein.

Our experiments show that GroE can both enhance and
suppress the effects of GFP mutants that coexist in the same
population. However, GroE-mediated enhancement of dele-
terious (fluorescence-reducing) mutational effects far out-
weighs the suppression of such effects during directed
evolution.

Results

Experimental Design
To evolve GFP under conditions of varying GroE
(GroEL þ GroES) expression, we first constructed an E. coli
plasmid (supplementary fig. S2, Supplementary Material on-
line) that expresses GFP constitutively, and that allowed us to
vary chaperone expression via an arabinose-inducible pro-
moter. With this expression system, we studied GFP evolution
at different chaperone expression levels. We note that GroEL
and GroES are essential proteins, such that the chromosomal
genes groS and groL, cannot be deleted. Thus, when we refer
to GroE expression throughout, we strictly refer to overex-
pression of GroE from the expression plasmid. Consistent
with a previous demonstration that GFP is a client of GroE
(Makino et al. 1997), we found that chaperone expression
affects the fluorescence of our ancestral GFP protein (supple-
mentary fig. S4A, Supplementary Material online).

We performed directed evolution in four replicate popula-
tions that overexpressed GroE (condition Gþ) and in four other
populations that did not (G�). In each round (generation) of
evolution and for each population, we introduced random
mutations into GFP via error-prone PCR at a rate of approxi-
mately one nucleotide substitution per GFP-coding gene, cor-
responding to approximately 0.95 amino acid changes per GFP
protein (see Materials and Methods). Our populations com-
prised at least�105 individuals, such that genetic drift plays a
negligible role on the time scale of the experiment.

We selected cells for survival using FACS (fig. 1) under two
selection regimes that distinguish phase 1 from the later phase
2 of our experiments. In phase 1, we selected cells for survival
that showed the native (ancestral) GFP phenotype of green
fluorescence. In phase 2, we selected for the new phenotype of
cyan fluorescence. Each phase consisted of five rounds (gen-
erations) of mutagenesis and selection. In both phases, we
applied weak rather than strong selection for high fluores-
cence, because we reasoned that strong selection may favor
mutants that fold well on their own, may thus not require
chaperone assistance, and would thus subvert the intent of
our study. Specifically, for each selection step, we only required
that cells fluoresce more intensely than the autofluorescence
of cells not expressing GFP. Each phase consisted of five rounds
(generations) of mutagenesis and selection. After each round,
we recorded the phenotype of surviving cells using flow cy-
tometry, and sequenced population samples using SMRT se-
quencing (Pacific Biosciences 2015).

GroE Expression Slows the Decay of Fluorescence
under Weak Stabilizing Selection
The vast majority of protein mutations that affect protein
evolution are deleterious to protein activity (Bershtein et al.
2006; Eyre-Walker and Keightley 2007; Tokuriki and Tawfik
2009b). We emphasize that we here use the term
“deleterious” to strictly mean a reduction in protein activity,
that is, in fluorescence, although the term is often used to
describe a reduction in cellular growth and fitness (Fares et al.
2002; Maisnier-Patin et al. 2005). When describing mutations
that affect both protein activity and cellular fitness (see
Materials and Methods), we use the terms “growth-
enhancing” or “growth-reducing” for the latter effect.

Because phase 1 evolution involved only weak selection on
our ancestral green fluorescence phenotype, we would expect
that deleterious mutations accumulate in our phase 1 pop-
ulations. This was indeed the case. We measured the distri-
bution of green fluorescence of 105 single cells from Gþ and
G� populations at the end of each round of phase 1 evolu-
tion. During all five generations, green fluorescence consis-
tently declined in all populations relative to the ancestor
(fig. 2). However, the median fluorescence of Gþ populations
declined significantly more slowly than that of G� popula-
tions (P ¼ 10�7, linear mixed effects model [LMM], type-III
analysis of variance [ANOVA] using Satterthwaite’s method;
see Materials and Methods). As a result, at the end of phase 1
evolution, all Gþ populations showed significantly higher me-
dian green fluorescence than G� populations (P¼ 0.0088,
one-tailed Mann–Whitney U test).
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GroE Slows Genetic Diversification under Weak
Stabilizing Selection
We next turned to the question how the chaperone helps
slows down the decay of green fluorescence. If chaperone ex-
pression helps to suppress the effects of deleterious (fluores-
cence-reducing) mutations, then it should help increase
genetic diversity over time, because some mutations that
would otherwise be eliminated by purifying selection could
remain in the population. Conversely, if chaperone expression
mostly helps to enhance the effect of deleterious mutations, it
should help to reduce genetic diversity, because more such

mutations would be subject to purifying selection. We note
that both these effects may occur simultaneously in the same
population, that is, GroE may enhance the effect of some
mutations while suppressing the effect of others. To find out
which process dominates in its effect on genetic diversity, we
sequenced the GFP coding regions from each of the phase 1
populations to a coverage of 1,000–3,300 (average 2,155) single
molecule reads, depending on the population (supplementary
table S6A, Supplementary Material online). From the sequenc-
ing reads, we calculated the frequencies of point mutations
and multimutant genotypes at the amino acid level.

Although synonymous mutations may affect cotransla-
tional folding (Buhr et al. 2016), they are unlikely to affect
post-translational folding. Thus, our main analyses focus on
nonsynonymous mutations because GroEL is known to bind
to proteins after translation (see section 10, Supplementary
Material online for an analysis of synonymous mutations).
Figure 3A shows how the mean number of amino acid
changes in GFP relative to ancestral GFP, evolves over time.
Not surprisingly, both Gþ and G� populations diverged sig-
nificantly from the ancestor during evolution (LMM:
ANOVA, P < 10�15). However, the rate of increase of diver-
gence of Gþ populations was significantly lower than that of
G� populations (LMM: ANOVA, P < 10�5). We performed
analogous analyses for the average pairwise distance between
the genotypes in the same population (fig. 3B), and for the
Shannon entropy (fig. 3C), an information-theoretic measure
of genetic diversity. We found that both these diversity met-
rics also increase more slowly in Gþ populations (LMM:
ANOVA, P< 0.0012).

In sum, GroE reduces genetic diversity in our evolving
populations. This supports the view that it predominantly
helps to enhance rather than suppress the effects of delete-
rious mutations, and thus helps purge such mutations.

In addition to affecting the overall amount of genetic di-
versity, GroE may cause different kinds of genotypes to ac-
cumulate. To find out whether this is the case, we randomly
sampled 200 sequences from each population, and displayed
the location of these sequences in genotype space using
principal component analysis (PCA), a widely used dimen-
sionality reduction method (Bratulic et al. 2017). This analysis
shows that Gþ and G� populations cluster in different
regions of genotype space (supplementary fig. S9A,
Supplementary Material online). A complementary PCA on
the frequencies of individual amino acid alleles shows anal-
ogous differences (supplementary fig. S9B, Supplementary
Material online). Populations evolving with and without
GroE expression, harbor different sets of GFP variants.

GroE Helps to Suppress the Effect of at Least Some
Deleterious Mutations in Phase 1 Populations
Our preceding analyses do not address the question whether
GroE enhances the effects of all deleterious mutations, or
whether it may suppress the effects of at least some such
mutations. To find out, we focused on another likely observa-
tion if GroE helps to suppress the effects of deleterious muta-
tions. In this case, the fluorescence intensity of phase 1
populations should increase with GroE expression, and

FIG. 1. Experimental design. We selected cells for green fluorescence
in phase 1 and cyan fluorescence in phase 2. Each phase consisted of
five rounds (generations) of directed evolution. We sequenced the
GFP gene from plasmids that survived each round of directed evolu-
tion using SMRT sequencing.

FIG. 2. GroE expression reduces the decay of green fluorescence dur-
ing phase 1 evolution. The vertical axis denotes logarithmically (base
10) transformed median green fluorescence (arbitrary units) of Gþ

(red) and G� (blue) populations. The horizontal axis indicates time in
generations (rounds of evolution), with zero referring to the ancestral
GFP protein. Dotted lines denote the median fluorescence of indi-
vidual replicate populations. Solid lines denote the median fluores-
cence when all four replicate populations are pooled.
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deleterious mutations would be more likely to remain in the
population. If many such mutants persist in the populations,
the net fluorescence of populations at the end of phase 1
should also increase with GroE expression. That is, if we quan-
tify the fluorescence intensity of Gþ populations during phase 1
in two conditions, one where the chaperone is not overex-
pressed and one where it is, then fluorescence should be higher
when the chaperone is overexpressed. This is not necessarily
expected if a chaperone helps to enhance the effect of delete-
rious mutations. In that case, the chaperone may have simply
helped eliminate deleterious mutations, and the activity of the
remaining variants may or may not be chaperone dependent.
In addition, the chaperone may also decrease the fluorescence
of some of the GFP variants that remain in the final population.

To find out whether fluorescence at the end of phase 1
evolution is chaperone dependent, we measured the fluores-
cence of those populations that had evolved while GroE was
overexpressed, both with and without the induction of the
chaperone (fig. 4), and compared their median fluorescence
using a Mann–Whitney U test. In three out of four popula-
tions chaperone expression increased fluorescence
(P < 1:5� 10�4), and in one (replicate 3) it decreased fluo-
rescence (P < 10�15). Although these differences are statis-
tically highly significant because of the large number of
individuals we analyzed (N> 77,000), we also note that
they are small in magnitude, ranging from 2% to 11%. They
contrast with the much greater differences that emerge in
fluorescence during evolution (fig. 2), most of which must be
caused by GroE-mediated enhancement of deleterious muta-
tional effects. In sum, GroE may mitigate the effect of some
deleterious mutations in evolving populations but its effect
on overall fluorescence is small. This conclusion is reinforced
by specific candidates for buffered mutants that we engi-
neered and analyzed phenotypically (section 9,
Supplementary Material online).

GroE Disfavors the Accumulation of Deleterious
Mutations
To further validate the hypothesis that GroE helps purge
deleterious mutations by enhancing their phenotypic effects,

we examined our sequence data for single amino acid variants
that attained significantly lower frequency in Gþ than in G�

populations at the end of phase 1 (see Materials and
Methods). To keep this analysis tractable, and to restrict our-
selves to those mutations that are likely to affect fluorescence
most strongly, we restricted this analysis to variants whose
frequency exceeded 3.5% at the end of evolution in at least
one replicate population (supplementary fig. S11,
Supplementary Material online). We note that this frequency
threshold is higher than the expected frequency of any one
variant due to mutation pressure alone (N ¼ 105; P < 10�5,
Monte–Carlo simulations).

In total, we identified seven such variants (generalized lin-
ear model [GLM]: likelihood ratio test [LRT], P < 10�15 for
the null hypothesis that they have equal frequency in Gþ and
G� populations). Specifically, these are the variants: M1I, M1L,
M1V, S2G, K52R, I128T, and N198D. Of these seven variants,
the first four had consistently high frequency (8.5–67%) in
every replicate G� population (fig. 5A). More than 87% of
individuals in every population had at least one of these four
mutations. In contrast, the other three mutations: K52R,
I128T, and N198D, had comparatively lower frequencies
(0.7–5.5%; supplementary fig. S11, Supplementary Material
online). Therefore, we chose to further investigate the muta-
tions M1I, M1L, M1V, and S2G.

To prove that these mutations indeed reduce fluorescence,
we engineered them individually into the ancestral GFP using
site directed mutagenesis, and measured their fluorescence.
They caused a 2.7- to 64-fold reduction in median green
fluorescence relative to ancestral GFP (fig. 5B), and are thus
strongly deleterious to fluorescence. Their lower frequency in
Gþ populations suggests that GroE enhances the effects of
individual deleterious mutations, and causes their elimination
from these populations. These individual mutations do not
simply hitchhike to fixation with other, beneficial mutations,
as shown by experimental data on multimutant genotypes
(section 8, Supplementary Material online). In a complemen-
tary analysis, we show that most frequent mutations in Gþ

are rarely deleterious or GroE-dependent for their fluores-
cence (section 9, Supplementary Material online).

A B C

FIG. 3. GroE expression leads to reduced genetic diversity during phase 1 evolution. Genetic diversity metrics (A) average distance from the
ancestral GFP, (B) average pairwise distance between genotypes, and (C) Shannon entropy are shown on the vertical axes. Horizontal axes denote
time in generations of evolution, where generation zero corresponds to the ancestral GFP sequence. Gþ and G� populations are color coded as red
and blue, respectively. For all three metrics, Gþ populations showed significantly lower genetic diversity (LMM: ANOVA, P< 0.0012).
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These observations raise the question why mutations that
are strongly deleterious to fluorescence, can become highly
abundant in G� populations in the first place. Since these
mutations do not increase a cell’s probability of survival by
enhancing GFP activity, we hypothesized that they provide a
growth advantage to cells harboring them. For example, three
of these mutations (M1I, M1L, M1V) are start codon muta-
tions. Such mutations can reduce a protein’s translation ini-
tiation rate (Hecht et al. 2017), the amount of synthesized
protein, and hence also the protein’s expression cost (Kafri
et al. 2016). Cells carrying these mutations in GFP might have
a lower metabolic burden and can outgrow other cells that
synthesize more GFP (Kafri et al. 2016). To find out whether
this is the case, we measured the maximum growth rate of
cells carrying the mutations M1I, M1L, M1V, and S2G, relative
to that of ancestral GFP (see Materials and Methods). We
found that these mutations indeed provide a significant
growth advantage (Mann–Whitney U test, P< 0.013). Thus,
growth-enhancing mutations that are deleterious to fluores-
cence can accumulate when GroE is not overexpressed. We
note that our choice of weak selection helps detect strongly
fluorescence-reducing mutations that are eliminated under
GroE overexpression, because such mutations can persist only
under weak selection.

GroE Expression Increases Phenotypic Heterogeneity
in Fluorescence Irrespective of the Genotype
Next we asked why deleterious (fluorescence-reducing)
mutations may be disfavored under GroE expression. GroE
might have an overall negative effect on fluorescence irrespec-
tive of the mutation, or it might affect strongly deleterious
mutations differently from weakly deleterious mutations. To
distinguish these possibilities, we measured the fluorescence
of 15 differentially enriched mutations that we had

engineered into ancestral GFP, and did so also under GroE
overexpression (section 12, Supplementary Material online).
We observed that for all mutants and for ancestral GFP, GroE
overexpression caused the members of an isogenic popula-
tion expressing a GFP variant to become increasingly hetero-
geneous in their fluorescence (supplementary fig. S18A,
Supplementary Material online). Most strikingly, the distribu-
tion of the log-transformed fluorescence intensity became
bimodal under GroE overexpression. One peak showed a
higher, and the other a lower fluorescence than the peak of
the unimodal, Gaussian distributed (Nðl� ; r�Þ) fluores-
cence intensity without GroE overexpression.

The bimodal distribution of log transformed fluorescence
intensity can be expressed as a sum of two Gaussian distri-
butions (NðlþL; rþLÞ andNðlþH;rþHÞ), where the mean
fluorescence at the lower peak (lþL) and at the higher peak
(lþH) amount to an average of 93% and 107% of the mean
log-fluorescence in the absence of GroE overexpression (l�),
respectively (supplementary fig. S20 and table S5,
Supplementary Material online). These results suggest that
GroE can both help to enhance and reduce fluorescence of
the same GFP variant, depending on the cell where it is
expressed.

Phenotypic Heterogeneity Increases the Fitness of
Some Deleterious Mutations but Reduces That of the
Others
To understand how this phenotypic heterogeneity may affect
the selection of deleterious mutations, we developed a statis-
tical model that relates fluorescence to fitness, as quantified
by the likelihood to survive experimental selection.
Specifically, we define the fitness of a genotype as the fraction
of cells in an isogenic (genotypically homogeneous) popula-
tion whose fluorescence intensity lies above the selection
threshold we used in our directed evolution experiments.
Without GroE overexpression, individual cells of a given ge-
notype show a unimodal Gaussian fluorescence distribution
with a mean l� and variance r� that we can estimate from
our engineered mutants (supplementary fig. S18 and table S5,
Supplementary Material online). In the presence of GroE ex-
pression, this distribution changes to a bimodal distribution
whose parameters we can also estimate from data (supple-
mentary fig. S18 and table S5, Supplementary Material on-
line). With this information in hand, we calculated the change
in fitness of a genotype under GroE expression as the average
difference in its fitness with and without GroE expression
(DF ¼ Fþ � F�; see Materials and Methods). A deleterious
mutation with positive DF has a higher chance of surviving
selection when GroE is expressed than when it is not.
Conversely, a mutation with a negative DF has reduced
chance of selection under GroE expression.

Using this data-driven model, we found that GroE im-
proved the likelihood of selection of deleterious mutations
whose fluorescence mean (l�) lies no more than 5% above
the threshold value that is needed for survival in our exper-
iment. In contrast, GroE reduced the fitness of moderately
deleterious mutations whose l� lies between 5% and 35.6%

FIG. 4. Violin plots denoting the distribution of logarithmically (base
10) transformed green fluorescence (arbitrary units) for each repli-
cate Gþ population at the end of phase 1 evolution (generation 5),
with (red) or without (brown) the expression of GroE. The white circle
in the center of the distribution denotes the median. The medians are
significantly different for each pair of distributions shown (Mann–
Whitney U test, P < 1:5� 10�4).
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above this threshold (fig. 6). Outside this range, the value of
DF is zero, and GroE does not affect the fluorescence-based
selection of the variants.

This model can explain several of our experimental obser-
vations, if one keeps in mind that our populations evolved
under weak selection for fluorescence, and that individuals
can accumulate deleterious (fluorescence-reducing) muta-
tions and survive selection as long as they fluoresce above a
low fluorescence threshold. Even mutants whose mean fluo-
rescence lies slightly below the threshold can persist at low
frequency, because a few individuals may cross the selection
threshold every generation due to phenotypic heterogeneity
(supplementary fig. S18, Supplementary Material online).
Since most new mutations are deleterious (Bershtein et al.
2006; Eyre-Walker and Keightley 2007), fluorescence in our
populations declines continually (fig. 2; G� populations) until
most genotypes fluoresce barely above the threshold. Our
model predicts that GroE reduces the fitness of such delete-
rious but above-threshold genotypes, causing them to be-
come depleted in Gþ populations. This prediction is
supported by our genetic diversity analysis (fig. 3). The model
also correctly predicts that mutations which are less delete-
rious and reduce fluorescence by a smaller amount, can per-
sist in Gþ populations (section 9, Supplementary Material
online), because GroE has no effect on the fitness of these
mutations.

In addition, the model can help explain that some highly
deleterious mutations become enriched in Gþ populations,
because GroE improve the survival of such mutations during
selection for fluorescence. One such mutation is a start-codon
mutation M1T (discussed in section 9, Supplementary
Material online), which becomes enriched in Gþ populations,
even though its mean fluorescence lies 5% below the selection
threshold.

GroE Leads to Evolution of Higher Fluorescence
Intensity but Lower Color Shift during Directional
Selection toward a New Phenotype
Since mutations that bring forth a new protein phenotype
often destabilize a protein (Wang et al. 2002; Tokuriki et al.
2008; Fromer and Shifman 2009; Studer et al. 2014), we also
asked how GroE may affect the adaptive evolution of a new
phenotype. We thus conducted a phase 2 of our evolution
experiment, in which we selected for the new phenotype of
cyan fluorescence. Since green and cyan fluorescence are cor-
related phenotypes (supplementary fig. S5, Supplementary
Material online), a green-fluorescing variant with high expres-
sion or stability could have a higher absolute cyan fluores-
cence than a cyan-fluorescing variant with low expression or
stability. To avoid this problem, we selected cells whose cyan
fluorescence increased relative to green fluorescence (supple-
mentary fig. S5, Supplementary Material online). Phase 2
started with populations from the end of phase 1 (round
zero of phase 2). We subjected these populations to five ad-
ditional rounds of directed evolution toward cyan
fluorescence.

After every generation of phase 2 evolution, we measured
cyan and green fluorescence of 105 cells from Gþ and G�

populations, and observed that median cyan fluorescence
significantly increased in all populations during phase 2 (linear
model [LM]: ANOVA, P< 0.005; supplementary fig. S6A,
Supplementary Material online) with a concomitant decrease
in median green fluorescence (LM: ANOVA,
P < 3:6� 10�4; supplementary fig. S6B, Supplementary
Material online). Thus, our populations can evolve increased
cyan fluorescence.

Next, we asked if GroE expression influences the rate of
evolution toward the new color. To this end, we compared
the cyan fluorescence of Gþ and G� populations. During
every generation (including the starting population derived

A B

FIG. 5. GroE expression disfavors accumulation of deleterious (fluorescence-reducing) mutations in phase 1. (A) Rise of deleterious mutations in
evolving populations. The vertical axes show the frequency of deleterious mutations M1I, M1L, M1V, and S2G in evolving Gþ (red) and G� (blue)
populations during phase 1, at different generations (horizontal axes). The dotted lines denote the frequency of a mutation in individual replicate
populations. The solid lines denote the median frequency over all replicates. (B) Effect of the mutations on green fluorescence. The horizontal axis
shows the log 2-transformed ratio of median green fluorescence for a given GFP variant (vertical axis) and ancestral GFP. A negative value denotes
a deleterious effect whereas a positive value denotes a beneficial effect. The length of the bar denotes the median value of the log 2-transformed
fluorescence ratios in the three replicate measurements whereas the error bar spans the range of minimum and maximum values.
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from the end of phase 1), Gþ populations had higher median
cyan fluorescence than G� populations (Mann–Whitney U
test, P< 0.015; supplementary fig. S6A, Supplementary
Material online).

We next asked whether the faster evolution of cyan fluo-
rescence in phase 2 Gþ population originated during phase 2,
or whether it might stem from the already higher fluores-
cence of the starting Gþ populations from the end of phase 1
(supplementary fig. S6A, Supplementary Material online). To
find out, we normalized the fluorescence of the phase 2
starting populations to the same value for Gþ and G� pop-
ulations. Specifically, we pooled the fluorescence values of
individual replicates of the initial Gþ populations (round
zero), calculated the median fluorescence of this pooled pop-
ulation, and divided the absolute fluorescence values from
each replicate population by this median. We proceeded
analogously for the G� populations, dividing their fluores-
cence by the median of the initial fluorescence values from
a pool of all G� populations. Next, we compared the rate of
increase of this normalized fluorescence for both Gþ and G�

populations with a LM and found that GroE expression did
not have a significant effect on this rate (fig. 7A). Moreover, at
the end of evolution, normalized cyan fluorescence was not
significantly higher in Gþ than in G� populations. This anal-
ysis suggests that the difference between Gþ and G� popu-
lations during phase 2 may result from differences
accumulated during phase 1. However, we also note that after
generation one of phase 2, median cyan fluorescence in-
creased more rapidly during every generation and remained
somewhat higher in each of the last three generations (fig. 7A
and supplementary fig. S6A, Supplementary Material online).

We also analyzed a different aspect of the phenotype,
which is the extent of the spectral shift from green to cyan
that occurred during phase 2. To find out whether GroE ex-
pression can affect the rate of this spectral shift, we calculated
the ratio of cyan and green fluorescence for each cell in the
different phase 2 populations. We refer to this ratio as relative
color. Just like cyan fluorescence increased during phase 2
(fig. 7A), so did the spectral shift in both Gþ and G� pop-
ulations (fig. 7B). However, this shift was lower for Gþ pop-
ulations than for G� populations during every round of
evolution (Mann–Whitney U test, P< 0.03). Our genotypic
analysis of specific color shifting mutations supports this find-
ing (section 12, Supplementary Material online; supplemen-
tary figs. S17 and S19, Supplementary Material online).

GroE Reduces Genetic Diversity during Evolution
toward the New Phenotype
We next asked whether GroE helps reduce effects of delete-
rious mutations during phase 2, thus increasing a population’s
genetic diversity, or whether it enhances their deleterious
effects, thus reducing diversity. To find out, we sequenced
the GFP coding region from each phase 2 population to an
average coverage of 2,155 sequences per population (750–
3,760 reads, depending on the population; supplementary
table S6B, Supplementary Material online). Not surprisingly,
the number of mutations per GFP coding sequence increased
further during phase 2 evolution (LMM: ANOVA,
P < 10�10; fig. 8A), but we observed no significant effect
of GroE expression on the rate of this increase (LMM:
ANOVA, P> 0.05).However, when we quantified the genetic
diversity of a population by the average pairwise distance
between genotypes (fig. 8B), the diversity of Gþ populations
decreased during phase 2, whereas the diversity of the G�

populations further increased (LMM: ANOVA, P¼ 0.00015).
Likewise, the Shannon entropy also significantly decreased in
Gþ populations compared with G� populations (fig. 8C;
LMM: ANOVA, P< 0.002). In sum, like in phase 1, GroE helps
reduce genetic diversity, which is inconsistent with a net sup-
pression of deleterious mutational effects, and supports the
notion that GroE helps purge deleterious mutations by en-
hancing their effects. We also found that Gþ populations had
lower phenotypic diversity than G� populations in every
generation of phase 2 (Mann–Whitney U test, P< 0.0015).
Just like in phase 1, PCA shows that Gþ populations accu-
mulate different kinds of variants (supplementary fig. S10,
Supplementary Material online). In addition, although
GroE-mediated enhancement of deleterious mutational
effects, dominates in its effect on genetic diversity, the chap-
erone enhances the fluorescence of at least some variants
(supplementary fig. S7, Supplementary Material online).

GroE Helps Purge Fluorescence Reducing Mutations
during Evolution of the New Phenotype
Gþ populations may acquire higher cyan fluorescence during
phase 2 (fig. 7A) for two reasons. The first is that GroE may
help spread mutations that convey the new phenotype. The
observation that GroE overexpression delays evolutionary
change in fluorescence color argues against this possibility

FIG. 6. GroE increases the fitness of some mutants while reducing the
fitness of the others. Change in fitness (DF, vertical axis) due to GroE
expression predicted by our statistical model (see Materials and
Methods), as a function of mean log 10 transformed fluorescence
(l� , horizontal axis) in the absence of GroE expression. The black-
dashed vertical line denotes the selection threshold (150 arbitrary
units of fluorescence). A positive value of DF indicates increased fit-
ness (green area) whereas a negative value indicates reduced fitness
(orange area), in response to GroE expression.
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(fig. 7B and supplementary fig. S6C, Supplementary Material
online). A detailed analysis of specific mutants shows that this
is indeed not the case (section 11, Supplementary Material
online).

The second possible reason is that GroE may help purge
deleterious mutations from these populations, as it did during
phase 1. If so, G� populations should show lower fluores-
cence, because they preferentially accumulate deleterious
mutations. To test this hypothesis, we identified single muta-
tions that were significantly more abundant in G� popula-
tions (GLM: LRT P< 0.05) relative to Gþ populations by the
end of phase 2. We restricted this analysis to variants whose
frequency exceeded 5% at the end of evolution in at least one
replicate population (supplementary fig. S12, Supplementary
Material online), and found 28 such mutations. Of these
mutations, the most frequent were M1V, S2G, and T203A.
Each of them exceeded a frequency of 40% in every replicate
population. We here discuss the mutations M1V and S2G

(supplementary fig. S17, Supplementary Material online; see
section 11, Supplementary Material online for T203A). Both
mutations reduce fluorescence (fig. 5B). Remarkably, they not
only achieved a high frequency at the end of phase 2, but their
frequency significantly increased during the five generations
of phase 2 (generalized LM with mixed effects: LRT
P < 10�15). In contrast, their frequency did not increase in
Gþ populations, where it remained below 0.5%. This suggests
that these fluorescence-reducing mutations do not simply
persist in G� populations due to their higher abundance in
the starting populations, that is, the populations at the end of
phase 1. Instead, GroE continues to help purge these muta-
tions during selection for a new phenotype.

Discussion
We used GFP as a model to understand how GroE affects
protein evolution. More specifically, we tried to find out
whether GroE predominantly helps to reduce or enhance

A B

FIG. 7. GroE expression leads to evolution of higher fluorescence but reduced color shift. Vertical axes denote (A) median normalized cyan
fluorescence (normalized to starting populations; see main text), and (B) the relative color (cyan/green; logarithmically scaled) during phase 2 of
directed evolution. The dotted line denotes the median value of individual replicates and the solid line denotes the median fluorescence value
when data from all populations is pooled. Horizontal axes denote time in generations, where generation 0 refers to populations at the end of phase
1 evolution. Gþ and G� populations are indicated by red and blue colors, respectively. The dashed horizontal line in panel (B) shows the relative
color of ancestral GFP.

A B C

FIG. 8. GroE expression leads to reduction of genetic diversity during phase 2 evolution. Genetic diversity metrics (A) average distance from the
ancestral GFP, (B) average pairwise distance between genotypes, and (C) Shannon entropy are shown on the vertical axes. Horizontal axes denote
time in generations of evolution, where generation zero refers to the populations obtained after phase 1 evolution. Gþ and G� populations are
color coded as red and blue, respectively. Average pairwise distance and Shannon entropy significantly reduced in Gþ populations and were
significantly lower than that of G� populations (LMM: ANOVA, P< 0.002).
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the effect of deleterious (fluorescence-reducing) mutations
during protein evolution. Buffering refers to the suppression
of a mutant’s deleterious effect. It occurs when a chaperone
facilitates the folding of the mutant protein (Fares et al. 2002;
Wyganowski et al. 2013; Karras et al. 2017; Phillips et al. 2018).
In contrast, the term potentiation is mostly used to describe
the enhancement of a mutation’s (deleterious or beneficial)
effect (Cowen and Lindquist 2005; Whitesell et al. 2014;
Geiler-Samerotte et al. 2016; Dorrity et al. 2018).
Chaperones, by facilitating protein folding, can both suppress
the effect of deleterious mutations that affect protein folding,
and enhance the effect of phenotype-altering mutations.
More importantly, chaperones can simultaneously enhance
a phenotype while suppressing another (Dorrity et al. 2018),
hence making the terms buffering and potentiation highly
contextual. In our study, we focused on deleterious muta-
tions, because such mutations are most abundant during
both stabilizing and directional selection (Bershtein et al.
2006; Eyre-Walker and Keightley 2007; Zheng et al. 2020). If
chaperone-mediated suppression of deleterious mutational
effects is prevalent during stabilizing selection for an ancestral
phenotype, then genetic diversity should increase over time,
because mutations that would otherwise be deleterious can
accumulate in our evolving populations. In contrast, if
chaperone-mediated enhancement of the effects of such
mutations is prevalent, genetic diversity should decrease, be-
cause deleterious mutations become eliminated more rapidly.

We found that GroE overexpression reduces genetic diver-
sity during experimental evolution, implying that it helps
purge deleterious mutations. It has been proven beyond
doubt that GroE can buffer the effects of deleterious or desta-
bilizing mutations (Tokuriki and Tawfik 2009a; Bershtein et al.
2013; Wyganowski et al. 2013; Sadat et al. 2020). Our experi-
ments do not challenge this fact, because we show that GroE
can indeed increase the survival of some deleterious muta-
tions. However, this kind of buffering is not the dominant
phenomenon in our evolution experiments.

Chaperones can enhance the activity of neofunctionalizing
mutations by increasing the folding and stability of such
variants (Cowen and Lindquist 2005; Dorrity et al. 2018).
However, the notion that a chaperone can help to exacerbate
the effect of deleterious mutations is counter-intuitive, given
that its protein folding assistance is expected to enhance
protein function. However, it is not without precedent. For
example, increasing the concentration of the chaperone
Hsp70 can reduce a client protein’s folding yield (Mor�an
Luengo et al. 2018). Furthermore, a chaperone can target
misfolded proteins for degradation if they fail to refold
(Kriegenburg et al. 2014). Misfolded protein variants also im-
pose a metabolic burden on a cell. This burden may be further
exacerbated by high chaperone expression. Relatedly, GroE
assisted folding itself incurs a metabolic cost in the form of
ATP consumption (Horwich et al. 2007). Additionally, an ex-
cessive amount of GroE may nonspecifically associate with
endogenous proteins and interfere with their spontaneous
folding and maturation. Together, these costs may reduce
cellular growth and fitness, especially under GroE

overexpression, which may lead to the purging of protein
mutations that are prone to misfolding.

During our evolution experiments, GroE reduced genetic
diversity both under stabilizing selection for the ancestral
green fluorescence phenotype, and under directional selec-
tion for a new (cyan) phenotype. During directional selection,
it not only helped purge deleterious mutations, but also pre-
vented the accumulation of key mutations with the new
phenotype. Furthermore, GroE helped to increase phenotypic
heterogeneity in isogenic populations. That is, it enhanced
fluorescence in a subset of a population, and decreased fluo-
rescence in another subset. Thus, GroE can buffer or poten-
tiate the activity even of a single genotypic variant, depending
on the cell in which the variant is expressed.

Although the biochemical causes of this phenotypic het-
erogeneity remain to be determined, we discuss two possible
explanations for it. The first is that the cellular machinery
involved in gene expression is shared between the two over-
expressed proteins GroE and GFP. If the two proteins com-
pete for shared resources, then the subpopulation of cells that
expresses more GFP may express less GroE and vice versa. This
hypothesis posits that expression of GroE and GFP may be
inversely correlated, which in turn suggests that phenotypic
heterogeneity exists because cells can assume one of several
GFP and GroE expression states. However, this hypothesis still
does not explain why phenotypic heterogeneity manifests as
a bimodal distribution. In addition, protein overexpression
cost is probably not the only cause of fluorescence bimodality.
The reason is that overexpression of another chaperone,
Hsp90 (HtpG), with an even higher molecular weight
(71.4 kDa compared with 57.3þ 10.4 kDa for GroEL and
GroES), does not cause a bimodal distribution of fluorescence
(supplementary fig. S4B, Supplementary Material online).
Thus, this phenomenon specifically results from GroE over-
expression, possibly through its consequences on the activity
of the chaperone’s endogenous clients.

A second possible explanation of bimodality relates to the
timing of GroE overexpression, and its effect on the growth of
different cells that are dividing nonsynchronously. In the yeast
S. cerevisiae, the timing of a growth perturbation can dictate
its phenotypic outcome (Hartwell et al. 1974). Specifically,
yeast cells carrying temperature sensitive mutants of two
different cell cycle genes display heterogeneous phenotypes
when shifted to nonpermissive temperature. They show two
different cellular phenotypes which correspond to the muta-
tional effects of the two cell cycle genes. Importantly, the
phenotype that a cell exhibits after the temperature shift
depends on its stage of the cell cycle before the shift. In
unrelated work, the cell division inhibitor nocodazole caused
the cell size of Wangiella dermatitidis (another yeast) to be-
come bimodally distributed (Roberts and Szaniszlo 1980). In a
similar manner, the bimodality of fluorescence in nonsynch-
ronously dividing bacterial cells might result from growth
perturbations caused by GroE overexpression. Relatedly,
genome-independent replication of the plasmid (Chang
and Cohen 1978) could be an additional source of asynchrony
between cell division and gene expression that might help
explain phenotypic heterogeneity.
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Few detailed studies exist on the effect of GroE on the
evolution of individual proteins. One of them provided evi-
dence for the importance of buffering (Tokuriki and Tawfik
2009a). The study found that during stabilizing selection for
an enzyme’s ancestral phenotype, about 20–30% of enzyme
variants that had evolved under GroE overexpression lost
their activity when the chaperone was no longer expressed.
In addition, GroE dependent variants evolved higher catalytic
activity toward a novel substrate during directional selection.
These experiments differed from ours in at least three ways
that may help explain the prevalence of buffering in them.
Firstly, they evolved enzymes. An enzyme’s activity depends
not just on protein expression, folding, and stability, but also
on molecular motions that affect the rate of catalysis, whereas
such motions play little role in our fluorescence phenotype. In
addition, a mutation may simultaneously enhance an
enzyme’s catalytic activity and reduce its stability, a frequent
phenomenon for activity altering mutations in enzymes
(Wyganowski et al. 2013). Since chaperones directly alter pro-
tein folding and stability but affect an enzyme’s catalysis only
indirectly, it is possible to select mutations with such a
stability-activity tradeoff. In contrast, no such tradeoff has
been documented for fluorescent proteins. In its absence,
GFP variants with high activity (fluorescence) may also be
stable and thus chaperone-independent.

A further difference between our experiments and this
previous work (Tokuriki and Tawfik 2009a) is that it used
stringent selection, where survival required catalytic activities
to exceed 70% of the ancestral activity. In contrast, we delib-
erately used relaxed selection to expose chaperone effects.
Finally, the previous work evolved small populations of ap-
proximately 200 variants, whereas we evolved large popula-
tions of more than 105 individuals. We were thus able to
analyze GroE effects for a wider spectrum of variants.

A previous study that also speaks to our observations fo-
cused on the effect of the chaperone Hsp90 on morphology-
altering mutations in the yeast, S. cerevisiae (Geiler-Samerotte
et al. 2016). It defined potentiation as an increase, and buff-
ering as a decrease in the variation of a morphometric trait
caused by a chaperone. The study showed that Hsp90-
mediated potentiation far outweighs buffering, except for
mutations that have undergone several generations of selec-
tion under Hsp90 expression, which are buffered. It appears
that in this system, the chaperone predominantly exposes
mutational effects rather than suppressing them. This obser-
vation is consistent with our finding that chaperone-
mediated enhancement of mutational effects can be more
widespread than their suppression.

In virtually every evolution experiment on growing cells,
selection will act on cellular growth rate. A primary reason
why we evolved GFP, a protein that is not native to E. coli, and
why we expressed GFP from a low-copy-number plasmid (see
Material and Methods), was our intention to minimize inter-
ference of GFP mutations with host physiology, growth rate,
and other aspects of host fitness. We emphasize, however,
that such interference cannot be completely eliminated, and
that selection in our experiments acted on both fluorescence
and cell growth. This is a limitation of our work, and possibly

of any in vivo evolution experiment. Evidence of selection on
growth is the occurrence of GFP start-codon mutations that
increased the host’s growth rate. Such mutations reduce the
rate of protein synthesis and thereby increase the growth rate
of cells. However, we emphasize that selection did not act
exclusively on growth rate. First, if it had, start-codon muta-
tions would have spread through both G� and Gþ popula-
tions. One would expect these mutations to be more
important in Gþ populations where they can mitigate the
burden of GroE overexpression. However, their frequency
remained low in Gþ populations. Second, a different set of
color changing mutations accumulated in Gþ relative to G�

populations, during evolution toward a novel phenotype
(section 12, Supplementary Material online). The two evolved
populations also shifted their color to a different extent, in
agreement with the frequency of the color shifting mutations
(fig. 7). This difference is not consistent with the possibility
that selection acted purely on growth. Although future
experiments might restrict mutagenesis to exclude start-
codon mutations, it may be difficult to eliminate growth-
affecting mutations completely, because even some synony-
mous mutations may reduce a protein’s expression, and thus
the associated energy cost on a host (Zwart et al. 2018).
Relatedly, a chaperone may affect the evolution of any one
protein directly, by interacting with this protein, or indirectly,
if cellular physiology changes in response to chaperone ex-
pression. Indeed, recent work shows that even different cel-
lular metabolic states can have different effects on protein
folding and activity (Verma et al. 2020). Some of these phys-
iological changes may even persist for many generations
(Shaffer et al. 2020). Our experimental system and that of
previous studies (Cowen and Lindquist 2005; Tokuriki and
Tawfik 2009a; Wyganowski et al. 2013; Whitesell et al. 2014;
Geiler-Samerotte et al. 2016) cannot distinguish between
such direct and indirect effects of chaperone expression.
Although these limitations might be overcome by evolution
in vitro, a synthetic in vitro environment creates its own
limitations that are even more serious. In sum, experiments
that study how chaperones affect evolution in vivo should be
interpreted with these caveats in mind.

Our study opens exciting directions for future work. For
example, the prevalence of potentiation or buffering may
depend on the chaperone, the client protein, and on multiple
other factors, such as selection strength and population size.
We reemphasize that the two terms buffering and potentia-
tion are contextual, and do not represent distinct biochemical
or genetic phenomena. Their usage, although frequent
(Rutherford and Lindquist 1998; Xu et al. 1999; Queitsch
et al. 2002; Cowen and Lindquist 2005; Sangster, Salathia,
Lee, et al. 2008; Sangster, Salathia, Undurraga, et al. 2008;
Tokuriki and Tawfik 2009a; Wyganowski et al. 2013;
Whitesell et al. 2014; Geiler-Samerotte et al. 2016; Karras
et al. 2017), can thus be misleading. However, it is important
to investigate in greater detail if a chaperone can indeed fa-
cilitate the folding of some mutants while impairing the fold-
ing or causing degradation of others. A recent study shows
how this decision is made for some eukaryotic proteins (Shao
et al. 2017), but it is still unknown how this process affects
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protein evolution. More importantly, the observation that
GroE induces phenotypic heterogeneity even among geneti-
cally identical cells calls for more detailed biochemical analysis
of chaperone action. Experiments with synchronized bacterial
cells (Ferullo et al. 2009) may help understand whether the
timing of chaperone expression and its possible interaction
with cell cycle proteins helps determine the cellular pheno-
type. This unexpected complexity shows that studies on pro-
teins amenable to single-cell phenotyping will be crucial to
understand the mechanisms behind chaperone action and
their role in adaptive evolution.

Materials and Methods

Construction of the Expression System
Construction of the Expression Plasmid
We constructed a plasmid to express both GFP (constitu-
tively) and GroE (inducibly). Our starting point for plasmid
construction was the pGro7 plasmid designed by Takara
(Takara Bio Inc. 2017) for arabinose inducible expression of
the chaperone proteins GroEL and GroES. This is a low-to-
medium copy number plasmid with the pACYC origin of
replication. It encodes chloramphenicol acetyltransferase,
the transcription factor araC from S. typhimurium, and the
groE operon consisting of GroEL and GroES downstream of
the araBAD promoter from S. typhimurium. Because we did
not know whether leaky expression of pGro7 might occur
even in the absence of arabinose, we created a control plas-
mid that cannot express the chaperone proteins at all. To this
end, we digested pGro7 with BamHI and religated the larger
fragment corresponding to the plasmid backbone so as to
eliminate the GroE operon. We named this control plasmid
pDGro7.

We next identified a region in pGro7 that can be used to
place a GFP expression cassette. This region is a short stretch
of DNA flanked by 50-BglII and 30-HindIII restriction sites
downstream of the GroE operon. We use the GFPmut2 var-
iant of GFP, which is distinguished by three amino acid
changes from Aequorea victoria GFP (Cormack et al. 1996).
This GFP variant is advantageous for our experiments because
it is weakly dimerizing, has a single excitation peak (488 nm),
and undergoes fast maturation (Balleza et al. 2018). We
obtained the GFP expression cassette, which consists of a
promoter followed by a ribosome binding site and the GFP
coding sequence, from plasmid pMSs201 (Zaslaver et al.
2006). The GFP coding sequence is additionally flanked by
50-XhoI and 30-XbaI restriction sites. Since these sites already
exist in pGro7 and are thus not useful for cloning, we engi-
neered a 50-SalI site and a 30-SacI site flanking the GFP coding
sequence in addition to the original restriction sites. We did
so by PCR-amplifying the plasmid with the primers, pMS-
Sal1-GFP-F and pMS-GFP-SacI-R (supplementary table S6,
Supplementary Material online), and cloned the PCR-
product back into the plasmid backbone. Next, we amplified
the modified GFP expression cassette using the primers pMS-
BglII-F and pMS-HindIII-R (supplementary table S6,
Supplementary Material online), and cloned it into pGro7
and pDGro7.

To identify the best promoters for GFP expression, we
repeated this process with three variants of plasmid
pMSs201, thus creating three pGro7 and three DGro7 plas-
mid variants that drive GFP expression from the ompA, rpsM,
and rplN promoters (Zaslaver et al. 2006). We quantified GFP
expression from each promoter as explained in the next
section.

Estimating of Growth Rates Associated with Different

Promoters
The host organism for our experiments is E. coli strain
BW27784 (CGSC 7881), which cannot metabolize arabinose.
We cultured all cells hosting our expression plasmids in LB
with 25mg/ml chloramphenicol (LBþchl). Visual inspection
of plated cells under blue light yielded green colonies and
showed that all constructed plasmids expressed GFP. We
corroborated this observation by measuring fluorescence on
a plate reader (Tecan Spark 10M; supplementary fig. S1A,
Supplementary Material online). To this end, we diluted
200ml of overnight (LBþchl) culture in 1 ml PBS, distributed
the diluted suspension into a 96-well plate in triplicate, and
measured fluorescence in the GFP channel (485 6 10 nm ex-
citation, 521 6 10 nm emission). Applying this procedure to
each of our three pGro7 plasmids showed that GFP expres-
sion (fluorescence) from ompA and rplN promoters was 4.5
and 2.35 times higher than that from the rpsM promoter
(supplementary fig. S1A, Supplementary Material online),
making these promoters better candidates for our
experiments.

Next, we quantified the growth cost associated with GFP
expression from the rplN and ompA promoters. To this end,
we inoculated 30ml of overnight cultures that carried the
corresponding pGro7-GFP plasmid in 14 ml tubes containing
3 ml LBþchl. After 60 min of growth at 37 �C, we transferred
700ml of each culture to separate tubes and added different
amounts of L-arabinose (from a 20% w/v stock solution) for
GroE induction, such that the final arabinose concentrations
equaled 0, 1, and 4 mg/ml. Next, we transferred 200ml from
each culture to a 96-well plate (in triplicate). We measured
optical density (OD at 600 nm) and GFP fluorescence every
12 min during a growth period of 24 h on a Tecan Spark 10M
plate reader with temperature being maintained at 37 �C, and
with the plate shaken constantly between measurements. We
inoculated and measured the growth of cultures with the two
DGro7-GFP plasmids in the same manner. Using the final OD
as an indicator of the carrying capacity, we fitted a logistic
growth equation to the OD data using the fminsearch func-
tion (unconstrained, derivative free optimization) from the
Optimization Toolbox in MATLAB (2017b), and estimated
the growth rate from the fitted equation. Under arabinose
induction, the growth rate was higher for the rplN promoter
strain (supplementary fig. S1B, Supplementary Material on-
line), whereas the end point OD was comparable between the
two promoter strains (supplementary fig. S1C,
Supplementary Material online). Therefore, we chose the
pGro7-rplN-GFP (supplementary fig. S2, Supplementary
Material online) plasmid for all evolution experiments.
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Measurement of GroE Expression Using SDS–PAGE
To determine the extent to which chaperone proteins are
expressed from our plasmid at different concentrations of
arabinose, we extracted total protein from the cells, per-
formed SDS–PAGE of the protein extracts and observed
the intensity of bands corresponding to proteins of the ap-
propriate size. To this end, we first inoculated 30ml of over-
night culture of the pGro7-rplN-GFP strain in 3 ml of LBþchl
and induced GroE expression with nine different concentra-
tions of L-arabinose—0, 0.002, 0.004, 0.008, 0.016, 0.04, 0.1, 1,
and 4 mg/ml—after 60 min of growth at 37�C. In these
experiments, we also included the pDGro7-rplN-GFP strain
as an additional control for no plasmid-borne GroE expres-
sion. We allowed cell populations to grow for 8 h. For each
population, we pelleted cells from 1 ml of cell suspension by
centrifuging at 8,000� g for 3 min. We resuspended each
pellet in 300ml of lysis buffer, which consists of 50 mM
Tris–HCl pH 7.5, 100 mM NaCl, 5% (v/v) glycerol, 1 mM
dithiothreitol (added fresh), 1� protein inhibitor cocktail
(cOmplete, Roche; added fresh), 300mg/ml lysozyme, 3mg/
ml DNAseI, and 16 mM MgCl2. We then incubated this sus-
pension for 4 h at 4�C. We lysed the cells by freezing the
suspension in liquid nitrogen, followed by thawing it in a
water bath, and repeated this freeze-thaw cycle ten times.
Then, we centrifuged the suspension at 18,000� g for
30 min at 4�C and collected the supernatant. We quantified
protein concentration using the Bradford method (Bio-Rad
Quick Start Bradford reagent). We then heated 10mg of pro-
tein sample with suitable amounts of 4� SDS–PAGE loading
buffer (250 mm Tris–HCl pH 6.8, 8% w/v SDS, 0.2% w/v bro-
mophenol blue, 40% v/v glycerol, and 20% v/v 2-mercaptoe-
thanol) at 95 �C for 5 min. We loaded the samples on a
polyacrylamide gel (4% for stacking and 12% for resolving;
TruPAGE precast gel, Sigma–Aldrich), and performed electro-
phoresis at 180 V for 45 min in 1� TruPAGE TEA-Tricine SDS
buffer (Sigma–Aldrich). We fixed the gel for 30 min in fixing/
destaining solution (50% v/v methanol, 10% v/v acetic acid),
and stained it overnight in Coomassie brilliant blue staining
solution (0.1% w/v Coomassie brilliant blue R-250, 50% v/v
methanol, 10% v/v acetic acid). Next, we destained the gel
with destaining solution until the background was clean and
the bands were clear.

We observed no induction of GroEL (60 kDa) in the ab-
sence of arabinose (supplementary fig. S3, Supplementary
Material online) but strong induction even at the lowest
tested concentration of arabinose (0.002 mg/ml). The 60-
kDa GroEL band was missing in both the pDGro7-rplN-
GFP sample and in the no-induction sample, suggesting
that leaky expression is negligible. With these observations
in mind, we chose a modest concentration of 0.1 mg/ml
arabinose for induction in all subsequent experiments. We
reasoned that at this concentration of arabinose the expres-
sion of GroE would be saturated, and small deviations from
this chosen value during the experiments would not affect
the expression.

Mutagenesis and Selection
Preparation of Electrocompetent Cells
To prepare electrocompetent cells, we performed every step
of the procedure described below in detergent-free glassware.
We cultured E. coli strain BW27784 in 10 ml SOB medium
overnight at 37 �C with shaking at 220 rpm. Subsequently, we
inoculated 1 l of prewarmed (37�C) SOB in a 5-l flask with the
overnight culture. We let cells grow for 2–3 h
(37 �Cþ 220 rpm) until their OD reached 0.4–0.6. Then we
transferred the flask to ice and let it cool for 20 min.
Subsequently, we transferred the cell suspension to two
500 ml centrifuge bottles (Eppendorf), and centrifuged both
bottles at 1,500� g for 15 min at 4 �C with neither acceler-
ation nor deceleration, on a swinging bucket rotor
(Eppendorf). Next, we resuspended the cells in 90 ml of
cold water per bottle by gently swirling the bottle, and dis-
tributed the suspension in six prechilled 50 ml tubes (30 ml
per tube). We gently added 15 ml of cold glycerol–mannitol
solution (20% w/v glycerol, 1.5% w/v mannitol) to the bottom
of each tube. Then we centrifuged the tubes at 1,500� g for
15 min at 4 �C without acceleration/deceleration. We re-
moved the supernatant and resuspended the pellet of each
tube in 1.5 ml of cold glycerol–mannitol solution. We com-
bined the cell suspension from all tubes and aliquoted 100ml
into chilled 1.5 ml tubes. We snap-froze aliquots in liquid
nitrogen bath and stored them at �80 �C.

Mutagenesis
For mutagenesis by error-prone PCR, we used the primers
Gro-Mut-F and Gro-Mut-R to amplify GFP from pGro7-rplN-
GFP (supplementary table S6, Supplementary Material
online).

For the error-prone PCR itself, we used the following reac-
tion mixture: 150 nM each of the nucleotide analogs 8-oxo-
deoxyguanosine triphosphate (8-oxo-dGTP, Trilink
Biotechnologies) and 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-
dihydro-8H-pyrimido-[4,5-C] [1,2]oxazin-7-one triphosphate
(dPTP, Trilink Biotechnologies), 200 nM each of forward and
reverse primers, 400 M of each dNTP (Thermo Scientific),
1� ThermoPol buffer (NEB), and 25 units/ml of Taq poly-
merase (NEB). We prepared 100ml of the PCR reaction with
5 ng of plasmid DNA as the template (�6�108 molecules),
and split the reaction mixture into two 50ml aliquots for
efficient heat transfer during PCR. We performed the PCR
with the following program: initial denaturation at 95 �C
for 5 min, 25 cycles of amplification with 95 �C for 30 s,
56 �C for 30 s, 72 �C for 1 min, and a final extension at
72 �C for 5 min. We optimized this protocol such that we
obtained approximately one nucleotide mutation per ampli-
con corresponding to approximately 0.95 amino acid changes
per GFP protein.

We purified PCR products using a QIAquick PCR purifica-
tion kit (QIAGEN). Subsequently, we prepared 50ml of restric-
tion digestion reaction with 400 ng PCR product, 20 units
each of the two restriction enzymes, SalI-HF and SacI-HF
(NEB), 20 units of DpnI (NEB; for removing template
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plasmid), and 5ml of 10�-CutSmart buffer (NEB). We carried
out the digestion overnight and purified the digested prod-
ucts with the QIAquick PCR purification kit. We digested the
plasmid in the same way using the restriction enzymes.
Additionally, we treated the plasmids with Antarctic phos-
phatase (NEB) to minimize their self-ligation. We separated
the digested plasmid backbones from the insert using agarose
gel electrophoresis, and purified the excised band using a
QIAquick gel extraction kit (QIAGEN). For ligation, we pre-
pared a 30-ml ligation mixture consisting of 100 ng of the
digested plasmid backbone, 55 ng of the digested amplicons
(1:3 molar ratio of backbone and insert), 3ml of 10� T4 DNA
ligase buffer (NEB), and 1.5ml (600 units) of T4 DNA ligase
(NEB). We performed the ligation overnight at 16 �C. To
separate salts from the ligation products, we added 70ml
water, 50mg glycogen (Thermo-Fisher), 50ml 7.5M ammo-
nium acetate, and 375ml ethanol to the ligation mix. After
incubating the mixture for 20 min at�80 �C, we centrifuged
it at 18,000� g for 20 min at 4 �C. We decanted the super-
natant and washed the pellet twice with 800ml of 70% eth-
anol. We dried the pellet and resuspended it in 20ml of sterile
deionized water.

Transformation of the Mutant Library Using Electroporation
We thawed frozen electrocompetent cells on ice and added
the purified ligation products to them. We transferred the
resulting suspension into a 2-mm electroporation cuvette
(EP202, Cell Projects, UK), and performed electroporation
with a single 3 kV pulse using the Bio-Rad MicroPulser (pro-
gram EC3). We immediately added 1 ml of warm (37 �C) SOC
medium, transferred the suspension to a 35-ml glass tube
(17 mm diameter), and incubated the cells for 1.5 h at
37 �C with shaking at 220 rpm. We plated 100ml of a 512-
fold diluted suspension (three 1:8 serial dilution) on an LB-chl
agar plate and added 9 ml of LB-chl to the undiluted suspen-
sion. We incubated the plates and the tubes (with shaking at
220 rpm) overnight at 37 �C. We estimated the library size by
counting the number of colonies on the LB-chl plate.
Throughout our evolution experiments, we maintained a
minimum library size of 105 transformants.

Estimation of Mutation Rate
To estimate the mutation rate of our mutagenesis procedure,
we performed mutagenesis on the ancestral GFP gene and
transformed the mutants using electroporation as described
in the previous section. We performed colony PCR with ten
randomly picked colonies from the plate and sequenced the
PCR products using Sanger sequencing to estimate the mu-
tation rate. In this way, we determined the mutation rate of
the ancestral GFP gene during every round of directed evo-
lution to ensure that it stayed in the range of one to two
mutations per amplicon throughout the evolution experi-
ment. It is well-known that PCR-mutagenesis creates a biased
mutation spectrum (Bratulic et al. 2017), and our protocol is
no exception. From the combined Sanger sequencing data
obtained from all rounds of evolution, we estimated the fre-
quencies of different point substitutions as follows: AT!GC:

0.755, GC!AT: 0.144, AT!TA: 0.072, AT!CG: 0.025,
GC!CG: 0.004, and GC!TA: 0. Thus, the protocol is biased
toward AT!GC transitions.

Selection of Transformed Cells Using FACS
We performed directed evolution in four replicate popula-
tions where GroE was expressed from our expression plasmid,
along with four control populations in which it was not
expressed from this plasmid. We applied the following selec-
tion protocol to each population. To prepare for selection, we
inoculated 4 ml of LB-chl in a 20-ml glass tube with 80ml of
the appropriate transformed library. We allowed the cells to
grow at 37 �C with shaking at 220 rpm for 60 min, and then
induced GroE expression in Gþ populations with 0.1 mg/ml
of L-arabinose. We allowed cells to continue their growth for
another 10 h. Subsequently, we transferred the tubes to ice
and pelleted cells from 700ml of the suspension by centrifug-
ing at 8,000� g for 3 min. We washed cells by resuspending
them in cold PBS and centrifuging them again. We decanted
the supernatant, resuspended the cells in 1 ml cold PBS, and
transferred 100ml of the suspension to 1 ml cold PBS in a 5-ml
polystyrene tube (Falcon). We performed cell sorting on a BD
FACSAriaIII cell sorter with the following photomultiplier
tube (PMT) voltages for different channels—478 V for FSC,
282 V for SSC, 480 V for FITC, and 493 V for AmCyan. We
excluded debris and other small particles by setting a thresh-
old of 1,000 on FSC-H and SSC-H.

We used the FITC channel (488 nm excitation and
530 6 15 nm emission) for measuring green fluorescence
and the AmCyan channel (405 nm excitation and
510 6 25 nm emission) for measuring cyan fluorescence.
We quantified the autofluorescence of cells in each channel
by measuring the fluorescence of untransformed cells. To
select variants with green fluorescence, we sorted cells with
a FITC-H value higher than the maximum FITC-H value of the
untransformed cells. Because green and cyan fluorescence are
correlated—wild-type GFP fluoresces in both the FITC
(green) and the AmCyan (cyan) channel—we did not define
the new phenotype merely as a higher fluorescence in the
AmCyan channel. Instead, we required a relative shift toward
cyan fluorescence that cannot be solely explained by higher
green fluorescence. Specifically, we plotted the fluorescence of
wild type GFP in the two channels (FITC-H and AmCyan-H)
against each other, and designated the area that lay both
above the regression line and the background fluorescence
of the AmCyan channel as the selection gate (supplementary
fig. S5, Supplementary Material online). This procedure
ensures that surviving cells show cyan fluorescence that can-
not be merely explained by enhanced green fluorescence.

We sorted 105 cells into 1.5 ml tubes containing 500ml of
cold LB. We incubated the sorted cells at 37 �C for 30 min and
then transferred them to 5 ml of LB-chl in a 20-ml glass tube.
We let the cells grow overnight at 37 �C with shaking at
220 rpm. We inoculated 4 ml of LB-chl with 80ml of the over-
night culture and repeated the induction and the sorting
procedure as described above. We performed the second
sort to minimize possible contamination from cells that did
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not meet our selection criteria. We incubated the sorted cells
at 37 �C for 30 min and transferred them to 10 ml LB-chl in a
50-ml tube. We allowed these cells to grow overnight and
used 1 ml of the overnight culture for preparing glycerol
stocks (15% glycerol). We used the remainder of the culture
for extracting the plasmid library using a QIAprep Spin
Miniprep kit (QIAGEN). The plasmid libraries thus isolated
served as templates for the next round of mutagenesis.

Analysis of Fluorescence of Populations Using Flow
Cytometry
We used flow cytometry to analyze the phenotype of evolving
populations after every generation, that is, after every round of
mutagenesis and selection. To this end, we first obtained an
overnight culture either directly after the second round of sort-
ing (previous section), or by reviving a glycerol stock. From this
culture, we inoculated 40ml of cell suspension in 4 ml LBþchl.
After 1 h of growth at 37 �C with shaking at 220 rpm, we added
L-arabinose to a final concentration of 0.1mg/ml, and allowed
the cells to grow for another 9 h. Next, we pelletted cells from
500ml of the culture by centrifuging at 8,000� g for 3 min at
4 �C. Then, we washed the cells by resuspending them in 1 ml
cold PBS and pelletted them again. We resuspended the cells in
1 ml PBS and transferred 60ml of this suspension into 1 ml of
cold PBS in a 5-ml polystyrene tube (Falcon). We quantified
green fluorescence using the FITC channel (488 nm excitation
and 530 6 15 nm emission), and cyan fluorescence using the
AmCyan channel (405 nm excitation and 510 6 25 nm emis-
sion) on a BD LSR FortessaII flow cytometer. The PMT voltages
for the FITC and AmCyan channels were 480 and 493 V, respec-
tively. We recorded 100,000 events and analyzed the data using
both MATLAB (fca-Readfcs.m; Balkay 2018) and the R package
flowCore (Ellis et al. 2019). We note that GroE expression led to
an increase in number of nonfluorescent “events” (signals) even
in an isogenic population (data not shown). We surmise that
these nonfluorescent events could originate from nonviable cells
which in turn could arise due to protein overexpression stress.
Therefore, we excluded all nonfluorescent cells from our
analyses.

We measured the fluorescence of evolved populations af-
ter every round of directed evolution. To analyze the tempo-
ral change in fluorescence, we fitted a linear mixed model
using the R package lme4 (v1.1-21; Bates et al. 2015). In this
analysis, we used median fluorescence (green in phase 1 and
cyan in phase 2) as the response variable, with time (round of
evolution) and state of GroE expression (condition: Gþ or
G�) as interacting predictors, and variation between repli-
cates as random effects. Specifically, we used the following
expression to define our statistical model:
Fluorescence � rounds*condition þ
(1jreplicate). Because all phase 1 populations started
with the same ancestral fluorescence, we forced a constant
intercept for the LM. We analyzed the significance of the fit
using the ANOVA function from the R package lmerTest
(v3.1-0; Kuznetsova et al. 2017). This function performs a
type III analysis of variance of the fitted coefficients and esti-
mates degrees of freedom using Satterthwaite’s method
(Kuznetsova et al. 2017). In the model we used, the factors

(rounds of evolution and GroE expression) do not signifi-
cantly affect the response variable (fluorescence), under the
null hypothesis.

Analysis of DNA Sequencing Data
Preparation of Sequencing Libraries
We sequenced the GFP coding sequence from plasmid librar-
ies isolated after every round of evolution using SMRT se-
quencing (Pacific Biosciences, PacBio).

For multiplexed sequencing, we generated barcoded librar-
ies according to the instructions provided by PacBio (Pacific
Biosciences 2015). To create these libraries, we performed two
rounds of PCR. In the first round, we amplified the GFP coding
region with primers carrying a “universal” sequence provided
by PacBio. We amplified the GFP gene from the plasmid
libraries obtained after every round of selection (see
Selection of Transformed Cells using FACS), using the primers
GLG_ORF_PacBio-F and GLG_ORF_PacBio-R (supplemen-
tary table S6, Supplementary Material online). These primers
have a 50 amino-C6 modification and had been PAGE purified
before use. We prepared a 25-ml PCR mix with 5 ng of plas-
mid, 400 nM of each primer, 200 of each dNTP, 5ml of 5�
Phusion HF buffer (Thermo-Fisher), and 0.5 units of Phusion
High-Fidelity polymerase (Thermo-Fisher). We then per-
formed PCR using an initial denaturation at 95 �C for 5 min
followed by 20 cycles of amplification with the following pro-
gram: 95 �C for 30 s; 58 �C for 30 s, 72 �C for 30 s, and a final
extension at 72 �C for 2 min. We added 8ml of water, 1ml of
10�-CutSmart buffer (NEB), 10 units each of DpnI (NEB), and
ExoI (NEB) to the PCR products, and incubated the mixture
for 30 min at 37 �C, followed by 10 min at 85 �C. After the
reaction, we diluted the mixture by adding 70ml of water.

We carried out a second round of PCR to barcode the
different samples. We selected 36 barcode sequences from
a list of 384 16 nt-barcode sequences from PacBio (Pacific
Biosciences 2019a), and designed 18 barcoded forward and
reverse primers. All these primers carry a 50 phosphate
modification and were HPLC purified before use. For this
second PCR, we used 2 ml of the DpnI-ExoI treated first-
round PCR product (diluted) as the template in a 50-ml
PCR mix consisting of 200 nM of each of the barcoded
primers, 200 of each dNTP, 10 ml of 5� Phusion HF
buffer (Thermo-Fisher), and 1 unit of Phusion High-
Fidelity polymerase (Thermo-Fisher). We performed PCR
using an initial denaturation at 95 �C for 5 min, followed by
30 cycles of amplification using the following program:
95 �C for 30 s, 62 �C for 30 s, and 72 �C for 40 s, and a final
extension at 72 �C for 2 min. We determined the purity of
the PCR products through agarose gel electrophoresis, and
found that most of the products were clean, without non-
specific bands or primer dimers. We purified these prod-
ucts using a QIAquick PCR purification kit (QIAGEN). For
the few samples that contained large amounts of primer
dimers, we purified the PCR products using gel extraction.
We measured the concentration of the purified products
using a Nanodrop 1000 (Thermo-Fisher) spectrophotom-
eter and a Qubit 3.0 fluorometer (Life Technologies). For
GFP libraries from each phase of evolution (1 and 2), we
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pooled 130 ng of every barcoded product and purified the
two resulting pools using gel extraction.

For subsequent DNA sequencing two PacBio Sequel SMRT
cells were used for the two pooled samples (phase 1 and
phase 2), and sequencing was performed on the PacBio
Sequel system (3.0 Chemistry) by the Functional Genomics
Center Zurich.

Processing of Raw Data
We obtained approximately 600,000 raw zero mode wave-
guide (ZMW) reads from each of the SMRT cells. We deter-
mined the consensus of circular sequences (CCS) from the
raw data (subreads) using the ccs (v3.4.1) application from
the PacBio SMRTlink package (Pacific Biosciences 2019b),
with the following parameters: minimum length¼ 750, max-
imum length¼ 1,500, minimum passes¼ 3, minimum pre-
dicted accuracy¼ 99%. We kept the other parameters at
their default value. We obtained approximately 55% of the
ZMW reads. We demultiplexed the post-CCS reads using lima
(v1.9.0, SMRTlink), and aligned them to the reference se-
quence (GFPmut2) using minimap2 (v2.15-r905,
SMRTLink). We analyzed the alignments in SAM format using
a custom awk script. PacBio sequencing produces a high in-
cidence of artifactual indels (Goodwin et al. 2016; Giordano
et al. 2017; Watson and Warr 2019). Consistent with this
observation, we found indels (mostly insertions) in the coding
region of almost every read. To demonstrate that many of
these must be false positives, we Sanger-sequenced 20 ran-
domly chosen GFP variants. Not a single one of them con-
tained an indel. Second, we also never found indels in
preselection samples (again sequenced using Sanger sequenc-
ing), which suggests that our mutagenesis protocol does not
produce indels. Thirdly, if these indels were not sequencing
artifacts, then even our first-generation populations should
have lost their fluorescence phenotype due to deleterious
frameshifts. This was not the case (fig. 2). Therefore, we ex-
cluded any indels from further analysis. From the data thus
filtered, we obtained lists of single mutations as well as gen-
otypes with multiple mutations, along with their raw counts
and frequencies.

Synonymous mutations can alter cotranslational folding
(Buhr et al. 2016), but GroE-assisted folding occurs post-trans-
lationally. For this reason, we focused our analysis to non-
synonymous mutations. We discuss synonymous mutations
in section 10, Supplementary Material online.

Estimation of Genetic Diversity
We used three measures of genetic diversity, all of which are
based on the observed number of amino acid changes in our
evolving GFP sequences. The first is the average distance of
the genotypes in a population from the ancestor, defined as
the average number of amino acid mutations in a population
relative to the ancestral GFP sequence. The second is the
average pairwise distance between two genotypes in a pop-
ulation, defined as the Hamming distance between their
amino acid sequences. This metric is analogous to a widely

used nucleotide diversity metric (Nei and Li 1979), except that
we apply it to amino acid sequences. Specifically, we define:

p ¼ 1

nðn� 1Þ
Xn

i¼1

X

j 6¼i

pij (1)

where p denotes the average pairwise distance between any
two genotypes in a population, pij denotes the distance be-
tween the ith and the jth genotypes, and n is the total num-
ber of genotypes in the population.

The third metric is the Shannon entropy H of individual
allele frequencies pi in a population (Vajapeyam 2014), de-
fined as:

H ¼
X

i

�pi log 2ðpiÞ: (2)

This diversity measure is largest if all alleles have equal
frequencies, and it decreases as an allele frequency distribu-
tion becomes increasingly peaked at one or few alleles that
occur at much higher frequencies than the other alleles.

We used LMM implemented in the R package lme4 (v1.1-
21; Bates et al. 2015) to analyze the effect of GroE overexpres-
sion on changes in genetic diversity between different pop-
ulations. We represented diversity as the response variable,
with time (rounds of evolution) and state of GroE expression
(Gþ or Gþ) as interacting predictor variables. We include
differences between the replicate populations as random
effects. Specifically, we used the following expression to define
the model: diversity � rounds*condition þ
(1jreplicate). We tested the model’s goodness-of-fit
to the sequence data using the ANOVA function from the
R package, lmerTest (v3.1-0; Kuznetsova et al. 2017).

Principal Component Analysis of the Genotypes
We performed PCA (Bratulic et al. 2017) to visualize different
genotypes accumulated in a population. To this end, we ran-
domly sampled 200 sequences without replacement from
every replicate population after the end of the final round
of evolution. We converted the amino acid sequence of each
genotype to a numerical sequence, assigning a numerical
code to each amino acid. Specifically, we assigned the num-
bers 1–20 to amino acids in the following order: W, F, Y, I, V, L,
M, C, D, E, G, A, P, H, K, R, S, T, N, and Q. This ordering of
amino acid, in contrast to an alphabetical order, ensures that
chemically similar amino acids have a small numerical differ-
ence between them (Kim et al. 2009). We assigned the num-
ber �10 to the stop codon, because effects of nonsense
mutations are dramatically different from those of missense
mutations.

We then performed PCA (supplementary figs. S9A and
S10A, Supplementary Material online) on a matrix containing
all these numerical sequences, using the prcomp function
from the R package stats (v3.4.4; R Core Team 2018). The
rows of this matrix harbor individual sequences (genotypes).
Its columns correspond to individual positions in the
sequence.
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We also performed PCA on a matrix harboring allele fre-
quencies of all single amino acid mutations from each pop-
ulation at the end of evolution (supplementary figs. S9B and
S10B, Supplementary Material online). In this matrix, each
row contains allele frequency data from a different popula-
tion, and each column corresponds to a different observed
mutant.

Monte–Carlo Simulations to Calculate Variant Frequencies

Expected under Mutation Pressure Alone
We restricted this analysis to amino acid variants that attain a
minimal threshold frequency in at least one replicate popu-
lation at the end of evolution. We chose this threshold fre-
quency to be 3.5% for phase 1, and 5% for phase 2 to keep the
number of variants manageable for all subsequent analyses.
No individual population had more than 56 variants exceed-
ing these thresholds. For each of these variants, we performed
Monte–Carlo simulations to test the null hypothesis that
mutation pressure alone may be responsible for the variant’s
frequency. Rejection of this null hypothesis for any one var-
iant implies that selection must be involved in explaining its
frequency. (Our experimental populations are sufficiently
large that genetic drift is negligible on the time scales of
our experiment.)

This numerical analysis consists of two parts. In the first
part, we compute the probability p that a specific amino acid
variant arises in the population. In the second part, the
Monte–Carlo simulation proper, we simulate how the fre-
quency of this variant changes over time due to mutation
pressure alone.

We explain this procedure with the mutation S147P, which
occurs at a frequency of less than 0.4% in all the Gþ popu-
lations at the final (fifth) round of phase 1. After five addi-
tional rounds of evolution in phase 2 this mutation attained a
frequency greater than 98% in all replicate populations. S147P
is encoded by the codon CCA, which requires a T!C change
at the 439th position of the GFP coding sequence, which
corresponds to the first position of the ancestral codon 147
(TCA!CCA).

For an S147P mutation to occur, three events must take
place. We calculate their probability as follows.

• At least one mutation must occur (somewhere) in the
GFP coding sequence. Because mutations are rare, we
model the probability Pmut of this event with a Poisson
distribution, such that

Pmut ¼ 1� e�k:

Here, k denotes the average number of mutations in each
individual per round of mutagenesis. Because we had
calibrated our mutagenesis protocol such that this
number lies between 1 and 2 (see Estimation of Mutation
Rate), we use a value of � ¼ 1:5, which leads to Pmut

¼ 0:777
• One of the occurring mutations must affect the 439th

nucleotide position, whereas all other mutations must

occur outside codon 147. If only one mutation occurs
in the GFP coding sequence, the probability of this event
(Ppos) is equal to the probability of choosing this one
position from the GFP coding sequence of length
717nt, which is 1=717 ¼ 0:0014. If two mutations occur
in the coding sequence then Ppos would be
1=717� 715=716 ¼ 0:001393. If three mutations occur,
Ppos ¼ 1=717� 715=716� 714=717 ¼ 0:001391.
Analogous expressions apply for (increasingly unlikely)
higher numbers of mutations. Since the difference be-
tween the values of Ppos for the above three cases is
very small, we can conveniently approximate its value
to be Ppos ¼ 1=717 ¼ 0:0014. Because this value is a
slight overestimate, our statistical inference would be
conservative.

• This mutation must cause a T!C change. From our
estimation of mutation rates by Sanger sequencing
experiments (see Estimation of Mutation Rate), we
know that this probability (Psub) is 0.75

The probability (p) that the mutation S147P occurs (i.e.,
all the above-mentioned events occur) in any one generation
is the product of the above three probabilities:
Pmut � Ppos � Psub ¼ 8:18� 10�4.

We note that we can neglect amino acid changes caused
by double or triple nucleotide mutations, because our se-
quencing data showed that every amino acid variant that
exceeded our threshold frequency was caused by a single
nucleotide change.

We next turn to the second part of our numerical analysis,
where we use the probability p that a specific variant arises to
calculate how the expected mean frequency of this variant
changes over time. To this end, we used a discrete time sto-
chastic model of a population whose individuals mutate at a
rate p, such that the number of unmutated individuals
becomes progressively smaller. Our simulations neglect
back-mutations to the wild-type allele, which will slightly
overestimate the allele frequencies caused by mutation pres-
sure. In consequence, our analysis below will be statistically
conservative. That is, it might accept some variants as having
a frequency consistent with mutation pressure alone, whereas
they may actually be affected by selection.

Specifically, for each mutant whose frequency exceeded
our threshold, we performed the following simulation 105

times, with a starting population of N0 ¼ 105 individuals.
Each individual has a probability p (as described earlier) of
acquiring a given mutation. The number of individuals mu-
tated in the first round of evolution is thus given by a random
variable that is binomially (Bðp;N0Þ) distributed. In our sim-
ulations, we generated a pseudorandom number M0 from
this distribution, and computed the number of unmutated
individuals after the first round of evolution as
N1 ¼ N0 �M0. In the second round, the number of individ-
uals experiencing the mutation is a random variable with
binomial distribution, Bðp;N1Þ. We also generated an in-
stance M1 of this random variate numerically, and calculated
the number of unmutated individuals after the second round
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as N2 ¼ N1 �M1. We repeated this procedure for three
more rounds/generations to obtain the frequency of the
remaining wild-type alleles, and thus also the frequency of
the mutant alleles at the end of phase 1. We repeated the
procedure for an additional five rounds to obtain mutant
allele frequencies at the end of phase 2 evolution. For each
mutation, we performed 105 such simulations and calculated
the fraction of simulations in which the predicted frequency
exceeded the threshold frequency of 3.5% for phase 1 and of
5% for phase 2.

For each variant whose frequency exceeded the threshold
in our experimental populations, not a single one among 105

simulation reached this threshold. Thus, if we consider the
null-hypothesis that the observed frequency of any one var-
iant can be explained by mutation pressure alone, our simu-
lations reject this null-hypothesis at a P value of P < 10�5.
Applying a Bonferroni correction to the number of such tests,
we performed (<90 tests, i.e., variants, for each of the two
threshold), we reject the null-hypothesis at a Bonferroni-
corrected P value of P< 0.0009. In sum, the frequency of
no mutation we consider here can be explained by mutation
pressure alone. Since our populations are so large that we can
neglect genetic drift at the time scale of this experiment,
selection or hitchhiking with another high-frequency muta-
tion must be invoked to explain their frequency.

Calculation of Mutation Enrichment
For each round of evolution, we compared the enrichment of
mutations in Gþ populations relative to G� populations, us-
ing generalized LMs (GLM; R stats package v3.4.4; R Core
Team 2018). Specifically, we fitted a GLM with a logit link
function (binomial model) using mutation counts as the re-
sponse variable, and the state of GroE expression (Gþ or G�)
as the predictor variable. We analyzed the goodness of fit of
the full model (slope þ intercept) with respect to a reduced
(intercept only) model, using the ANOVA function from the
R stats package v3.4.4. This function performs an analysis of
deviance on the models, using a likelihood ratio test, and
determines if the additional parameters (slope in our case)
significantly improve the fit. Here, a positive value of the slope
denotes enrichment of the mutation in Gþ populations. We
adjusted the P values thus obtained for multiple testing using
a Bonferroni correction. We used the mutations with a cor-
rected P value of P< 0.05 in subsequent analyses.

Estimating the Strength of Selection Acting on Mutations
For the variants that satisfied the frequency threshold crite-
rion of Monte–Carlo simulations, we estimated the strength
of selection in Gþ and G� populations by fitting generalized
linear mixed-effects models (GLMM) using the function
glmer from the R package lme4 (v1.1-21; Bates et al. 2015).
We fitted two models, one each for GroE overexpression and
control populations, using a logit link function with mutation
counts as the response variable, time (round of evolution) as
the predictor variable, and the variation between replicate
populations as the random effect. Specifically, we defined the
models with the following expression:

Counts � rounds þ (1jreplicate). We analyzed
the goodness of fit of the full model (slopeþ intercept) with
respect to a reduced (intercept only) model, using the
ANOVA function from the R stats package v3.4.4. We ad-
justed the P values thus obtained for multiple testing using a
Bonferroni correction. The estimated value of the slope
denotes the strength and direction of selection. A positive
value denotes positive selection, and a higher absolute value
of the slope denotes stronger selection.

Construction and Analysis of Specific Mutants
Engineering-Specific Mutations
We used PCR-based site directed mutagenesis to engineer-
specific mutations into the GFP gene. To this end, we first
created a “minimal” plasmid that expresses GFP constitutively
(pMini-GFP) from the rplN promoter, but that did not con-
tain the chaperone genes and the araC gene. We designed
primer pairs to amplify this entire plasmid from the site of the
desired mutation (supplementary table S7, Supplementary
Material online). Specifically, we designed these primer pairs
with 15 complementary nucleotides at their 30 end and a
noncomplementary region that did not exceed 25 nucleoti-
des in length. We included the desired mutation in the com-
plementary region. Whenever the difference in melting
temperature (Tm) of the primers exceeded 5 �C, we trimmed
the noncomplementary region of the primer with higher Tm
from the 50 end. We used the software tool—melting (ver.
5.1) (Dumousseau et al. 2012) to calculate Tm. We designed
the primers in this way to minimize inefficient amplification
due to primer dimer formation.

We amplified pMini with different primer pairs for each
mutation to be engineered (supplementary table S7,
Supplementary Material online) using high-fidelity Q5 poly-
merase (NEB). We transformed the PCR products into E. coli
BW27784 cells made transformation-competent with the
CaCl2 method (Green et al. 2012), using a standard heat shock
transformation method (Green et al. 2012). We isolated and
purified plasmid from the clones thus obtained and se-
quenced the GFP gene to confirm the mutation. Next, we
cloned each mutated GFP gene into the GroE expression
plasmid, pGro7-rplN-GFP.

We generated double mutants via the same procedure, by
engineering the mutations serially via two rounds of PCR.
Next, we cloned the mutated GFP gene into pGro7-rplN-GFP.

Measurement of Growth Rates Associated with Different GFP

Mutants
To measure whether selected mutations (M1I, M1L, M1T,
M1V, and S2G) confer a growth advantage in the absence
of GroE expression, we prepared 1:20 dilutions of an overnight
culture of each mutant, as well as of the strain expressing
ancestral GFP. We inoculated 10ml of each diluted suspension
into 1.4 ml of fresh LBþChl, and aliquoted 200ml of this in-
oculated medium into six wells (replicates) of a 96-well plate.
Next, we measured OD (at 600 nm) every 10 min during 20 h
on a Tecan Spark plate reader at 37 �C and with the plate
shaken constantly between measurements.

Iyengar and Wagner . https://doi.org/10.1093/molbev/msac047 MBE

18

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac047#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac047#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac047#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac047#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac047#supplementary-data


All mutants reached stationary phase after 13 h of growth.
Because the growth data fitted a logistic growth equation
poorly (not shown), we calculated the maximum growth
rate, another commonly used estimate of growth (Papkou
et al. 2020). To this end, we first logarithmically (base 2)
transformed the measured OD values for each mutant.
Using a sliding window of six time points (corresponding to
1 h of growth), we calculated the rate of change of log 2-OD
between consecutive time points using an LM (R stats pack-
age v3.4.4) (R Core Team 2018). Next, we calculated the max-
imum value of this slope for all time points, and for each of
the six replicates for each mutant and the ancestor. We then
compared the median maximum growth rate (of the six
replicates) for each mutant to that of ancestral GFP using a
one-tailed Mann–Whitney U test. Each of the five mutations
conferred a significantly higher growth rate relative to that of
ancestral GFP (Mann–Whitney U test, false discovery rate
corrected P< 0.013).

Modeling the Effect of GroE Overexpression on Fitness
We define a genotype’s fitness based on its fluorescence
rather than its growth rate, because this is the criterion we
used during directed evolution. More specifically, we define a
genotype’s fitness as the probability that a cell with this ge-
notype exceeds the fluorescence threshold of 150 arbitrary
units which we used during phase 1 selection. Cells with a
given genotype can show a broad distribution of fluorescence
due to phenotypic heterogeneity. Here, we show how we
map this distribution onto fitness both without and with
GroE overexpression. Our procedure consists of two steps.
In the first, we estimate statistical parameters such as mean
and variance of the fluorescence distribution of each geno-
type from flow cytometry data. In the second, we use these
statistical parameters to predict the fluorescence distribution
of genotypes with arbitrary mean fluorescence in the pres-
ence and absence of GroE overexpression.

Step 1. In the absence of GroE overexpression, all genotypes
we engineered showed a Gaussian distribution of logarithmi-
cally (base 10) transformed green fluorescence (Nðl�;r�Þ,
supplementary fig. S14A and B, Supplementary Material on-
line). In contrast, in the presence of GroE overexpression this
distribution became bimodal. In this bimodal distribution,
the first mode (peak) lþL has a lower fluorescence intensity
than l� whereas the second mode lþH has a higher fluo-
rescence intensity than l� (supplementary fig. S14A,
Supplementary Material online). The same holds for cyan
fluorescence (supplementary fig. S14B, Supplementary
Material online). We expressed this bimodal distribution as
a sum of two Gaussian distributions. Specifically, we defined a
bimodal probability density function
CþLNðlþL; rþLÞ þ CþHNðlþH; rþHÞ, where CþL and
CþH denote weight coefficients for the Gaussian distributions
representing the lower and the higher modes, respectively.

To estimate these parameters for each genotype, we fitted
a kernel density function to the fluorescence distribution data
from populations with GroE overexpression, using the fitdist

function from the Statistics and Machine Learning Toolbox
(ver. 11.5) of MATLAB (2019a). Then, we used the fmincon
function (constrained nonlinear optimization) from the
MATLAB (2019a) Optimization Toolbox (ver 8.3) to estimate
a set of parameters for the bimodal distribution that mini-
mize the square distance between the data and the fitted
kernel density function. During this optimization, we con-
strained the weight parameters to have a value between
zero and one. In addition, we fitted a (single) Gaussian density
function to the fluorescence distribution of GFP mutants in
the absence of GroE overexpression, using the fitdist function
to estimate parameters l� and r� for this distribution.

We performed these calculations for every biological rep-
licate of ancestral GFP and all the engineered mutants, except
for start codon mutants. We excluded the start codon muta-
tions from this analysis for two reasons. Firstly, their range of
fluorescence intensities (both in the presence and absence of
GroE expression) overlapped with the range of cellular auto-
fluorescence, making it difficult to accurately estimate the
fluorescence distribution independently from this back-
ground. Secondly, for these mutations, the two fluorescence
peaks that arose due to GroE expression were so close that
bimodality was not clearly apparent. Their overlap with the
autofluorescence distribution further hindered the discrimi-
nation of these peaks.

Our procedure resulted in an estimate of the parameters
l�; r�; CþL; CþH; rþL; rþH; lþL, and lþH, for each of the
19 mutants we analyzed, and for three biological replicates for
each mutant (supplementary fig. S18, Supplementary
Material online).

Across these mutants, the value of lþL was on an average
�93% of that of l�, and that of lþH was on an average �
107% of that of l� (supplementary fig. S20A, Supplementary
Material online). In addition, for any one mutation the values
of lþL and lþH were clearly distinct from each other (sup-
plementary fig. S20A, Supplementary Material online). For
these reasons, we chose to express lþL and lþH relative to
l�. By doing that, one can obtain the absolute value of each
peak by multiplying the relative values with l�. We denote
these relative values by the symbols l0þL and l0þH,
respectively.

The weight coefficients, CþL and CþH, did not depend on
l�, and their values showed a nonoverlapping distribution
across mutants, with means of 0.64 and 0.76, respectively
(supplementary fig. S20B, Supplementary Material online).
The SDs r�; rþL and rþH also did not depend strongly on
l� but their distributions across mutants overlapped (sup-
plementary fig. S20C, Supplementary Material online). Below,
we will refer collectively to CþL; CþH; rþL; rþH; lþL, and
lþH as the parameters of the bimodal distribution.
Step 2. To map fluorescence distributions of arbitrary mutants
onto fitness, we first represented different mutants through
different mean fluorescence values l� in the absence of GroE
expression. We explored a range of l� values ranging from 10
to 105, because this is the range of green fluorescence that we
observed in libraries of GFP mutants before selection. We
subdivided this range into 4,000 bins that are equally spaced
on a logarithmic (base 10) scale, and chose a l� value from
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each bin for all subsequent analyses. (We will henceforth refer
to all fluorescence values on this logarithmic scale).

We will first describe how we predicted the fitness of
variants for each of these l� values in the absence of GroE
expression. To do so, we first had to generate a distribution of
expected log-fluorescence values for a variant with a given
value of l�. As mentioned earlier in this section, without
GroE expression log-fluorescence is Gaussian distributed
with mean l� and SD r� (Nðl�; r�Þ). This means that
we had to estimate r� for any given l�. Supplementary
figure S20C (black dots), Supplementary Material online,
shows that r� spans a range of 0.15–0.25 and does not de-
pend on l�. We thus chose randomly choose different values
of r� from this range under the assumption that r� itself has
a Gaussian distribution. Specifically, we first calculated the
mean (Mr�) and SD (Sr�) from the experimentally observed
distribution of r� values (supplementary table S5,
Supplementary Material online).

We then chose for each value of l�, 4,000 different pseudo-
random variates r� with the Gaussian distribution,
NðMr� ; Sr�Þ. Each of the resulting 4,000 pairs of l� and r�
values defines a fluorescence distribution of cells with a given
genotype, and we determined the fraction of cells in this distri-
bution that exceeded the selection threshold of 150 arbitrary
units (2.176 units on a logarithmic scale). We then averaged this
fraction over all 4,000 l�; r� pairs to obtain the expected
fitness of a genotype with fluorescence mean l� (F�).

We then repeated this procedure for all 4,000 values of l�
in the fluorescence interval (2, 5) to obtain a fitness estimate
for each possible variant in this interval. In other words, our
estimate of fitness in the absence of GroE is based on
4,000� 4,000 pairs of l� and r� values.

We next describe how we obtained the same fitness dis-
tribution in the presence of GroE expression. We again start
with 4,000 values of l� in the fluorescence interval (2, 5), and
perform the same procedure as just described for each such
value, except that the distribution is more complex, and we
thus need to estimate not just one parameter (r�) but six of
them: CþL; CþH; rþL; rþH; l0þL (lþL relative to l�), and
l0þH (lþH relative to l�). Importantly, our experimental data
show these values do not depend on the value of l� (sup-
plementary fig. S20, Supplementary Material online). We thus
estimated each of these parameters by sampling them from a
Gaussian distribution whose parameters we estimated from
the experimental data (supplementary table S5,
Supplementary Material online), exactly as we described
above for r�.

At the end of this procedure, we had obtained a total of
4; 000� 4; 000� 6 combinations of parameters. Each of
them describes a bimodal fluorescence distribution from
which we calculate the fraction of cells above the selection
threshold (Fþ).

Overall, this procedure yields for each genotype (value of
l�) a value of fitness in the absence of GroE (F�) and in the
presence of GroE (Fþ). We then also calculated the difference
between these two fitness values (DF¼Fþ�F�) which
denotes the effect of GroE on fitness. A positive value of DF
means higher fitness in the presence of GroE (buffering) and a

negative value means lower fitness in the presence of GroE
(potentiation).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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