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Abstract: Pseudomonas aeruginosa is a facultative pathogen that can cause, inter alia, acute or
chronic pneumonia in predisposed individuals. The gram-negative bacterium displays considerable
genomic and phenotypic diversity that is also shaped by small molecule secondary metabolites.
The discrimination of virulence phenotypes is highly relevant to the diagnosis and prognosis of
P. aeruginosa infections. In order to discover small molecule metabolites that distinguish different
virulence phenotypes of P. aeruginosa, 35 clinical strains were cultivated under standard conditions,
characterized in terms of virulence and biofilm phenotype, and their metabolomes were investigated
by untargeted liquid chromatography—mass spectrometry. The data was both mined for individual
candidate markers as well as used to construct statistical models to infer the virulence phenotype
from metabolomics data. We found that clinical strains that differed in their virulence and
biofilm phenotype also had pronounced divergence in their metabolomes, as underlined by 332
features that were significantly differentially abundant with fold changes greater than 1.5 in both
directions. Important virulence-associated secondary metabolites like rhamnolipids, alkyl quinolones
or phenazines were found to be strongly upregulated in virulent strains. In contrast, we observed
little change in primary metabolism. A hitherto novel cationic metabolite with a sum formula of
C12H15N2 could be identified as a candidate biomarker. A random forest model was able to classify
strains according to their virulence and biofilm phenotype with an area under the Receiver Operation
Characteristics curve of 0.84. These findings demonstrate that untargeted metabolomics is a valuable
tool to characterize P. aeruginosa virulence, and to explore interrelations between clinically important
phenotypic traits and the bacterial metabolome.

Keywords: Pseudomonas aeruginosa; virulence; untargeted metabolomics; LC-MS; random forest
classification; biomarker; phenotyping

1. Introduction

The γ-proteobacterium Pseudomonas aeruginosa thrives in various aquatic and terrestrial
habitats [1], as well as in multiple niches in the human host such as the lungs, eyes and ears [2–4].
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Its affinity and ability to form biofilms on surfaces enables this bacterium to colonize burn wounds and
the surfaces of invasive medical devices such as catheters and implants [5]. This wide niche variability,
along with its ability to produce various virulence factors and evade the immune system through
numerous mechanisms including biofilm formation renders it a clinically relevant, yet difficult-to-treat
opportunistic pathogen [6]. P. aeruginosa belongs to the group of most dominant bacteria involved
in hospital-acquired infections, comprising an estimated 10% of nosocomial infections in the EU [7].
In particular, P. aeruginosa is a major threat to artificially ventilated patients [8] and those with cystic
fibrosis (CF), of which roughly 60% are chronically infected by P. aeruginosa [9].

P. aeruginosa displays high metabolic versatility, enabling it to infect and persist in different human
tissues and organs [2]. As an example, it has been found that P. aeruginosa adapts its iron uptake
strategies depending on the type of infection [10]. Nutrient availability in general differs between the
various infection sites, and besides metabolism in the narrower sense, strategies of pathogenicity and
persistence also need to be tailored to the specific infection situation. Many aspects of P. aeruginosa’s
adaptability to different infection sites and types have been studied on the genomic level [11]. Genes
coding for virulence factors are highly conserved among P. aeruginosa strains; however, there is little
correlation between genomic features and the type of infection [12]. Despite a high conservation of
virulence factors between clinical and environment samples [13], clinical P. aeruginosa strains have
been demonstrated to express variable metabolomic, transcriptomic and phenotypic signatures despite
almost identical genomes [14,15]. With respect to pathogenicity, clinical isolates can have vastly
different phenotypes and elicit the full range of host responses [16,17].

Due to the diversity of genotypic and phenotypic traits, it is of considerable clinical interest
to describe and differentiate the various metabolic and virulence properties of P. aeruginosa clinical
isolates. At present, our understanding of genomics is insufficient to fully elucidate the metabolic
and phenotypic variation of this bacterium at a clinically relevant level. Transcriptome data can
be indicative of virulence phenotypes, yet not always sufficient, either, if used in isolation [18].
While numerous different phenotypic traits including, but not limited to, swimming motility have
been proposed as virulence markers for P. aeruginosa clinical strains [19], several studies have
suggested investigating metabolomes as functional signatures that might be closer to the actual
phenotype [20–22]. In P. aeruginosa, many regulators and effectors of virulence are small-molecule
secondary metabolites [23] that are generally amenable to liquid chromatography—mass spectrometry
(LC-MS) [24–26]. Microbial metabolomics is becoming more prevalent in many areas of microbiology
and infection research [27,28] and has demonstrated itself to be a successful methodology to,
e.g., discriminate between different Bacillus cereus strains [29], to describe and differentiate drug
susceptibility phenotypes in the parasite Leishmania donovani [30] as well as in the γ-proteobacterium
Acinetobacter baumannii [31], to identify volatile metabolites in different P. aeruginosa strains [32] and to
describe the metabolic adaptations of P. aeruginosa strains colonizing different niches in CF lungs [33].

Hence, we tested whether the virulence properties of P. aeruginosa clinical strains can be
differentiated by untargeted LC-MS metabolomics. Metabolomics data for 35 clinical isolates recovered
from diverse infection sites were acquired, stratified according to in vivo virulence phenotypes in the
Galleria mellonella infection model [34] and biofilm phenotypes [15] and analyzed for discriminating
markers. Data on the metabolite level and metabolic profiles were investigated, and a statistical model
was generated to differentiate virulent and avirulent strains based solely on LC-MS data.

2. Materials and Methods

2.1. Bacterial Strains

Bacterial strains were selected from a biobank of P. aeruginosa clinical isolates curated at the
Helmholtz Centre for Infection Research in Braunschweig, Germany, which is documented in the
‘Bactome’ database [35]. Strains were collected in clinical microbiology laboratories, private practice
laboratories, or provided by strain collection curators across Germany, Spain, Hungary and Romania.
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Clinical isolates used in this study were previously characterized with regard to clinically relevant
phenotypes [35–37], including in vitro biofilm phenotypes [15] and an in vivo virulence infection model
using Galleria mellonella [34]. A list of strains and their phenotypic properties (biofilm and virulence)
can be found in Table 1.

Table 1. Strains used in this study. Strains are listed by their identifier in the Bactome data base [35].
The biofilm cluster corresponds to the biofilm morphology [15] and the survival rate in a Galleria
mellonella infection model (according to [34]) is given in percent survival after 48 h. The infection or
sampling site is indicated if available. nd—not determined.

Discovery Data Set

Strain Biofilm Cluster Galleria Survival (48 h) Infection/Sampling Site

CH2860 A 5 Respiratory tract
CH4528 A 0 Respiratory tract
ESP046 A 0 nd/other
ESP088 A 5 nd/other
F2030 A 0 Respiratory tract
MHH16798 A 20 Respiratory tract
ZG302383 A 0 nd/other
CH2682 B 95 Rectal swab
ESP027 B 100 nd/other
F1959 B 100 Respiratory tract
F2165 B 100 Respiratory tract
F2166 B 100 Respiratory tract
F2224 B 95 nd/other
MHH17767 B 100 Respiratory tract

Validation Data Set

Strain Biofilm Cluster Galleria Survival (48 h) Infection/Sampling Site

CH2690 A 0 Rectal swab
ESP058 A 0 nd/other
ESP067 A 5 nd/other
F1997 A 0 Rectal swab
MHH17704 A 5 nd/other
Psae1439 A 10 Respiratory tract
ZG8038581181 A 10 Respiratory tract
CH4681 B 90 Respiratory tract
F1764 B 95 Respiratory tract
F2020 B 95 Wound infection
MHH16050 B 60 nd/other
MHH16563 B 95 Respiratory tract
MHH17546 B 100 Respiratory tract
Psae1837 B 75 nd/other

Additional Data Set

Strain Biofilm Cluster Galleria Survival (48 h) Infection/Sampling Site

CH2706 C 0 Rectal swab
CH4591 C 0 Rectal swab
ESP083 C 0 nd/other
F1864 C 0 nd/other
F2059 C 0 Wound infection
ZG316717 C 5 Ear infection
ZG8510487 C 0 Urinary tract infection

2.2. Transcriptomics

Transcriptional profiles of all clinical isolates used in this study were produced for a previous
study [36]. Briefly, planktonic bacteria were cultivated to early stationary phase (OD600 = 2) in
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10 ml LB under shaking conditions (37 ◦C, 180 rpm). We pooled three independent cultures to obtain
one transcriptional profile per strain. cDNA libraries were generated using the ScriptSeqTM v2
RNA-seq Library Preparation Kit (Illumina), and samples were sequenced in single end mode on an
Illumina HiSeq 2500 device (1× 50 bp reads). The reads were mapped to the UCBPP-PA14 reference
genome (NC_008463.1, available for download from the Pseudomonas Genome database: http://v2.
pseudomonas.com) using the stampy pipeline [38]. RNA-Seq data of clinical isolates was uploaded at
NCBI’s Gene Expression Omnibus (GSE123544). Differential gene expression analysis was performed
using the R package DESeq2 (v.1.18.1) [39] with default settings to calculate the normalized reads per
gene (nrpg). For the identification of differentially expressed genes between virulent and avirulent
strains, a threshold of log2(fold change) ≥ 1 and ≤ –1 respectively with padj < 0.05 was applied. Only
genes assigned to the core genes (according to Mathee et al. [40]) were considered for the analysis
to account for differences in strain backgrounds (PA14 vs. PAO1). DESeq2 was used to generate a
principal component analysis (PCA) plot from the transcriptional profiles.

2.3. Untargeted Metabolomics

All chemicals and analytical standards used in the metabolomics experiments in this study
correspond to those previously described [24]. Selected strains were cultivated and measured in two
distinct and independent batches, a discovery and a validation batch (cf. Table 1). For data analysis,
the validation batch was divided into two sub-batches: the actual validation set containing strains with
phenotypes that were also present in the discovery batch, and an additional set of isolates with virulent
phenotypes containing the cluster C biofilm phenotype that was not present in the discovery batch.
With this setup, the actual validation set could gauge the performance and validity of the applied
statistical classification models (see below), because it contained strains that should be classified into
the same categories as the strains in the discovery data set. As the phenotypes in the discovery data set
were defined by virulence as well as biofilm morphology, an additional set of strains with a different
combination of these two properties was needed to assess whether the model was able to differentiate
solely the virulence phenotype irrespective of biofilm morphology.

Overnight precultures grown in 3 mL LB medium in glass tubes were inoculated from plate
cultures for each strain and incubated for approximately 16 h at 37 ◦C and 140 rpm in a shaking
incubator. Three independent biological replicates were inoculated with a starting OD600 of 0.05 from
each preculture. Cultures were subsequently grown to an OD600 of approximately 2. Measured OD600

values for each sample were later used for normalization and can be found in Tables S1–S3. 2 mL of
each sample was collected and immediately centrifuged at 9000×g, at 4 ◦C for 5 min. Cell pellets were
snap-frozen in liquid nitrogen and subsequently stored at –20 ◦C until all of the batch samples were
processed to this stage.

Metabolite extraction was performed as previously [24]. In brief, cell pellets were extracted in
500 µL methanol containing 0.1 mg/L trimethoprim, 0.1 mg/L nortriptylin and 0.3 mg/L glipizide as
internal standards through the use of vigorous shaking and sonication. Extracts were separated from
solid matter by centrifugation. 400 µL of each extract was concentrated to dryness and resuspended in
40 µL 50% (v/v) acetonitrile with 0.1% formic acid containing 1 mg/L caffeine and 8 mg/L naproxen
as internal standards.

A 1 µL aliquot of each sample was analyzed by reversed phase ultra-high performance
liquid chromatography coupled to quadrupole time-of-flight mass spectrometry as previously
described [24,41]. Tandem mass spectra were recorded from pooled quality control samples and
used for metabolite identification by comparison to authentic standards and/or metabolite databases
as described in a previous study [24] (cf. Table S4). LC-MS data were exported to mzXML using
Bruker Compass Xport, and preprocessed with XCMSonline [42] with the parameters listed in Table S5.
Our discovery, validation and additional data sets were all processed separately.

After preprocessing, the untargeted metabolomics data underwent further processing using
R/RStudio with ‘tidyverse’ packages as statistical software [43–45]. First, features eluting at retention

http://v2.pseudomonas.com
http://v2.pseudomonas.com
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times ≤ 0.8 min and ≥ 20 min, those displaying a relative standard deviation of ≤ 20% over all
samples, and those with an intensity of ≤ 10,000 counts were removed. Subsequently, the data
was consecutively normalized through the use of internal standards; first with those added upon
reconstitution (caffeine and naproxen), and then with those added during extraction (trimethoprim
and nortriptyline). The data for each sample was further normalized through the use of the respective
OD600 at harvest as a proxy for cell number Tables S1–S3). Annotations were added and isotope peaks
were identified using ‘CAMERA’ [46] (as part of the XCMSonline workflow) and removed from the
data sets. The resulting feature tables for the discovery and the validation data sets were used for data
analysis and model building.

Feature credentialing by means of stable isotope enriched growth medium [47] was performed in
a previous study [48] and used to verify the biological origin of a candidate biomarker.

The Mass Spectrometry Search Tool (MASST) on the Global Natural Products Social Molecular
Networking (GNPS) repository was used to match unidentified spectra of particular interest to
previously reported MS2 data [49]. The standard parameters of the search were used: MS2 fragment
ions were excluded if their m/z difference to the precursor ion was less than 17 Da and spectra were
filtered using an approach called window filtering that keeps the 6 most abundant fragment ions
within a ± 50 Da window throughout the spectrum. The m/z tolerance of the search was 2 Da for the
precursor ion and 0.5 Da for MS2 fragment ions. To be considered a match, the queried spectrum and
library spectra had to display a cosine similarity score of ≥ 0.7 and ≥ 6 matched peaks.

The raw data was uploaded to MetaboLights [50] and can be accessed via the study
identifier MTBLS1749.

2.4. Data Analysis and Model Building

PCA was used with centering and rotating of the variables, and PCA scores were plotted for data
exploration. Directional fold changes were calculated for all features with positive values signifying
higher abundances in the virulent group and negative values signifying higher abundances in the
avirulent group. Statistical significance of between-group differences was assessed by performing a
Benjamini–Hochberg corrected two-sided Welch’s t-test for each feature. The Mann–Whitney U-test
(Wilcoxon rank-sum test) was used to test for statistical significance for individual comparisons when
non-normality was suspected. Using the ‘vegan’ R package [51], permutational multivariate analysis
of variance (PERMANOVA) of a Bray-Curtis distance matrix of the metabolite abundance data was
employed to test the correlation of metabolite profile to the phenotypic group. The same package
was used to calculate the Shannon index to gauge differences in metabolome diversity between the
samples of the different datasets.

Predictive models were built using random forest classification and the ‘randomForest’ R
package [52,53] with 1000 trees per forest, and 500 randomly sampled variables considered as
candidates at each split. Feature importance was assessed by mean increase of the Gini coefficient and
mean increase of variable importance (VIP).

Model validation was performed by matching features of the discovery and validation data set
and subsequent prediction of the phenotypes for all samples of the validation data set in the form of
probabilities. The features were matched by comparing m/z and retention time, using a tolerance of
5 ppm and 1 min, respectively. Only features present in the discovery data set that matched a feature
in the validation data set were considered in model building and validation. The same procedure
was applied for the additional data set. Model quality was assessed by calculation of the area under
the receiver operating characteristics (ROC) curve (AUC), using the ‘ROCR’ R package [54], where 1
corresponds to a perfect model and 0.5 is equivalent to random prediction. As the additional cluster
C data set contains only one group of isolates, it was not possible to construct a ROC curve. Instead,
the frequency of correct predictions for the strains in 100 independent constructions and predictions
by the random forest model was assessed. This was also done for the first validation set.
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3. Results

Untargeted LC-MS metabolomics data were recorded and analysed for 35 P. aeruginosa clinical
strains differing in their virulence as determined by a G. mellonella survival model and their biofilm
phenotype which was categorized into the three main clusters A, B and C [15]. A total of 14 strains, seven
virulent strains with a cluster A biofilm phenotype and seven avirulent cluster B strains, constituted the
discovery data set, that was analysed in depth for metabolomic differences between the phenotypes
and used to build a random forest classification model. Another 14 strains equally split between the
two phenotypic groups represented in the discovery group served as the validation data set. These
strains were used to test the model constructed from the discovery data set. An additional seven virulent
strains corresponding to a tertiary cluster C biofilm phenotype—i.e., a phenotype which was not present
in the discovery data set—were used to investigate whether our classification model is capable of
predicting virulence in a biofilm phenotype independent manner. All strains were cultivated in rich
medium under standard planktonic conditions, extracted using a methanol-based protocol, separated on
a reversed-phase C18 column and detected using time-of-flight mass spectrometry following electrospray
ionization in positive mode (ESI-QTOF-MS). The study design is visualized in Scheme 1.

discovery set
7 virulent cluster A strains

7 avirulent cluster B strains

validation set
7 virulent cluster A strains

7 avirulent cluster B strains

additional set
7 virulent cluster C strains

P. aeruginosa clinical strain collection

strain selection

cultivation under standard conditions in triplicates

two step methanol-based extraction of cell pellets

analysis of samples by UHPLC-ESI-QTOF-MS

preprocessing of raw data by XCMSonline and processing in R

discovery data set validation data set additional data set

identification of
group differences

analysis of
regulated

metabolites

biomarker
discovery and 
random forest
classification

model

biomarker and classification model
validation

Scheme 1. Schematic of the experimental and data analysis workflow of the metabolomics part of
this study.
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3.1. Virulent Cluster A and Avirulent Cluster B Strains Have Different Metabolic Profiles

Overall variation in the untargeted metabolomics dataset (differences of signal abundances
between and within groups after normalization and filtering with respect to all detected signals)
was assessed using PCA. As an unsupervised method, PCA does not use class information, thereby
preventing potential bias when judging separation between sample groups. Upon visual inspection,
the PCA scores plot of the discovery data set, i.e., the data from the set of P. aeruginosa strains used
to generate the classification model, showed a good but not complete separation between virulent
cluster A and avirulent cluster B strains (Figure 1). Although the two phenotypes did not form
compact clusters, there was little overlap between virulent and avirulent strains. Clear separation in
an unsupervised analysis suggested that there is potential for a supervised method to model the data
in a superior manner. A PERMANOVA analysis further supported the notion that the metabolome
differences were associated with the virulence and biofilm phenotype (F = 10.7, p = 0.001). Moreover,
the strains did not cluster according to other parameters such as time to reach the specified OD600,
or the hospital they were originally isolated in (Figure S1). These findings suggest that, among our
available metadata on the utilized P. aeruginosa isolates, virulence and biofilm phenotypes were the
main drivers of variation between metabolomes.
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Figure 1. Principal component analysis (PCA) scores plot of the discovery data set. (A) All samples in the
discovery data set were subjected to a principal components analysis with centering and rotation of the
variables. The samples were plotted using principal components 1 and 2 as coordinates. A good separation
of the groups is visible, predominantly in principal component 1, which explains 56% of the variation in
the data set. (B) The data from the triplicate samples was averaged per strain and subjected to a PCA
as described above. The separation is very similar to the data on the sample level. A clear separation
can be achieved by considering both principal components 1 and 2. Red—virulent cluster A strains,
blue—avirulent cluster B strains.

The discovery data set contained 2359 features, whereof 135 were structurally annotated that
corresponded to 96 unique metabolites. 332 features were significantly differentially abundant with
fold changes greater than 1.5 in both directions as well as with a Benjamini–Hochberg corrected p-value
of less than 0.05. 299 of these features were more abundant in the virulent group and 56 of the 332
(17%) were structurally annotated (cf. Figure S2), corresponding to 40 unique metabolites.

Among the identified metabolites with differential abundance, secondary metabolites are found
along with lipids. Secondary metabolites were discovered at higher levels, while lipids were less
abundant, in the virulent strains (Figures 2 and 3). Virulent and avirulent P. aeruginosa strains did
not differ in their relative abundances of primary metabolites. A PCA scores plot considering only
identified metabolites provides good separation between the groups that were tested (Figure S3).
Additionally, the PCA loadings plot of the complete discovery set, to which degree features contribute
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to the principal components, provides evidence that most features with high loadings have been
annotated (Figure S4). These two observations demonstrate that most relevant metabolites, or at
least members of the most relevant metabolite families, have been annotated. Interestingly, a PCA
plot based on gene expression profiles did not show any clustering of the isolates according to their
affiliation to a particular virulence phenotype (Figure S5).
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Figure 2. Regulation of identified metabolites in the discovery data set. The binary logarithm of their
(non-directional) fold change was plotted on the x-axis for all identified metabolites. Features exhibiting
a fold change ≥ 1.5 and a corrected p-value ≤ 0.05 were coloured in green.
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Figure 3. Box plots of identified metabolites in the discovery data set. Data distribution for all identified
metabolites with an absolute fold change of ≥ 1.5 are shown as box plots. For each metabolite, one
boxplot shows the abundances in each group. Red—virulent cluster A strains, blue—avirulent cluster
B strains.
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3.2. Metabolic Differences Between Virulent Cluster A and Avirulent Cluster B Strains Manifest in Differential
Abundance of Virulence-Associated Secondary Metabolites

Phenazines, prominent pseudomonal secondary metabolites with well-studied roles in
pathogenesis and host cell damage, act as signaling molecules for the transcription factor SoxR
which promotes the production of efflux pumps and the depletion of glutathione leading to redox
instability of the host [55,56]. In this study, two phenazines were identified: pyocyanin and
its congener phenazine-1-carboxylic acid. When comparing our virulent strains to our avirulent
strains, both metabolites exhibited large differences in abundance with fold changes of +25 and +10,
respectively. However, the difference between our virulent and avirulent strains was not statistically
significant if tested using a Benjamini–Hochberg corrected Welch’s t-test due to the large variation
within the virulent group containing two high producing strains, while all of the other strains
produced much more modest phenazine levels (Figure S6). A non-parametric significance assessment
using the Mann–Whitney U-test yielded p-values of 2.6 × 10−7 and 9.5 × 10−5 for pyocyanin and
phenazine-1-carboxylic acid, respectively, thus suggesting significant differences in the abundance
of phenazines in the two groups. Phenazine biosynthesis was also highly upregulated at the
transcriptional level in virulent P. aeruginosa strains in comparison to the avirulent clinical isolates tested
(Table S6), supporting the notion that phenazine production was associated with a virulent phenotype.

Alkyl quinolones (AQs), important quorum sensing signaling molecules unique to P. aeruginosa
and closely related species, are involved in various virulence-associated processes [23]. Transcriptional
profiles tend to provide evidence of the elevated expression of genes involved in the AQ biosynthesis
in virulent isolates, however, the expression levels are not statistically significant (threshold log2(fold
change) ≥ 1 and ≤ –1 with padj < 0.05) between the two groups (Table S7). Strikingly, the abundance
of AQs in the metabolome of virulent P. aeruginosa strains is much greater than in the metabolome
of the avirulent strains (Figure 2). For the highly abundant and important AQs HHQ (C7-HQ) and
HQNO (C7-QNO), directional fold changes of +2.5 and +6.7 and corrected p-values of 0.0002 and
0.007, respectively, were observed. The most differentially abundant AQ is C10:1-QNO (directional
fold change +15, corrected p-value 0.04), a metabolite with very low abundance (roughly 40× and
100× lower levels than C7-QNO in virulent cluster A and avirulent cluster B strains, respectively).
The most significant difference was recorded for C9:1-HQ which was 3.2× more abundant in virulent
cluster A strains with a corrected p-value of 3.1 × 10−6. The various AQ congeners detected in this
study consistently showed significantly higher levels in the virulent group, had high loadings in the
PCA and were good predictors in the random forest classification models, thereby emphasizing their
importance in the regulation of virulence.

The largest fold changes between our virulent and avirulent strains were found in the
rhamnolipids, another class of virulence-associated secondary metabolites (Figure S7). These
surface-active glycolipids play multiple roles in the establishment and maintenance of infection,
including the transition between biofilm and planktonic lifestyle [57] and the impairment of the
host airway epithelium [58]. Rhamnolipids enable the poorly water-soluble Pseudomonas quinolone
signal (PQS) to diffuse in aqueous environments, as they enhance the solubility of PQS through their
amphiphilic properties, thereby potentiating PQS-driven effects on virulence [59]. We annotated
four different rhamnolipid structures; namely Rha-Rha-C10-C12, Rha-Rha-C10-C10, Rha-C10-C12
and Rha-C10-C10 (Figure S8), and all of them were significantly more abundant in the virulent group
(fold changes of +386, +63, +46, +114, respectively and corrected p-values of 0.001, 0.001, 0.01 and
0.02, respectively; always for Na adduct). In most avirulent strains, rhamnolipids were practically
absent; likewise, some virulent strains barely produced any rhamnolipids, while others produced
highly elevated levels of this secondary metabolite (Figure S7): For Rha-Rha-C10-C12, all avirulent
cluster B strains and the virulent cluster A strains F2030, ESP088 and CH4528 showed a peak area in
arbitrary units below 100, whereas the other virulent cluster A strains featured peak areas ranging
from approximately 3000 to 40,000.
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The pseudomonal siderophore pyochelin exists in trans and cis isoforms [60], both of which have
been annotated. Interestingly, only one of the species was significantly regulated, and more prevalent in
the virulent strains (directional fold change +6.5, corrected p-value 0.006). Pyochelin, an important player
in iron acquisition and homeostasis, has been linked to virulence, although it is not necessarily directly
harmful to the host [10]. Despite the significant differences in the amount of rhamnolipids and pyochelin
produced by virulent strains over avirulent strains, the corresponding genes for both rhamnolipid and
pyochelin biosynthesis were not differentially expressed between these two groups (Table S7).

Multiple primary and intermediate metabolites have been associated with pseudomonal virulence;
however, no clear trends could be identified in the present study. For instance, tryptophan and
phenylalanine, both of which share biosynthetic pathways with alkylquinolones and phenazines
through the common precursor chorismate and are known inducers of PQS production [61], were
not differentially abundant in the two groups (directional fold changes +1.1 and ±1.0, corrected
p-values 0.5 and 0.9, respectively). Anthranilic acid, which is closely connected to the biosynthesis
of phenazines, was also not significantly differentially abundant between our virulent and avirulent
strains (directional fold change –1.3, corrected p-value 0.4).

When only identified metabolites that are known to be virulence-associated—AQs, DHQ,
homoserine lactones, pyochelin, phenazines and rhamnolipids—were considered, a good separation
between cluster A and cluster B was still visible in the PCA scores plot (Figure 4).
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Figure 4. PCA scores plot of the discovery data set with only virulence-associated secondary
metabolites included into the calculation. The plot has been created analogously to Figure 1 and shows
a comparably good separation between the two phenotypes based on virulence-associated secondary
metabolites only. (A) Data on sample level, (B) data on strain level (cf. Figure 1). Red—virulent cluster
A strains, blue—avirulent cluster B strains.

Figure 4 reveals that the metabolic profiles of one strain, F2030, differed from those of the other
strains of the virulent cluster A group. This strain produced even higher AQ levels than the other
virulent strains but displayed lower levels of other virulence-associated metabolites. Compared
to the other samples of the same phenotype, F2030 sample harbored 2.1× more HHQ, 5.6× more
C11-QNO and 3.6× more DHQ, but 2.2× less C12-HSL, 20× less Rha-C10-C10 and 27× less pyocyanin.
The trends for the respective congeners were consistent.

3.3. An Unknown Metabolite Is a Potential Biomarker for Virulent Phenotypes

In the search for classification biomarkers, the most interesting features are those that enable a
clear group separation. In the discovery data set, there were only two features whose maximum levels
in one group were lower than the minimum levels in the other group, thus allowing for an intensity
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threshold for the respective features to separate the groups completely (Figure 5). One is M314T14,
putatively identified as C11:1-QNO, a relatively low abundant AQ. As all other AQ congeners show
overlapping levels, M314T14 is most probably not a robust separator. The second feature, M187T6_2,
however, has a larger non-overlapping intensity space between the two groups and thus appears
to be a more promising separator. This feature exhibited a directional fold change of +11.7 and a
Benjamini–Hochberg corrected p-value of 0.003. Statistical significance is also suggested by a p-value
of 7.4 × 10−12 determined by the non-parametric Mann–Whitney U-test.

Despite considerable efforts, the identity of the feature could not be revealed by annotation
strategies from the mixture, and efforts to purify the compound from raw extracts failed due to its very
low abundance. Nonetheless, it could be demonstrated by means of feature credentialing [47] that the
feature represents a metabolite produced by P. aeruginosa as it incorporated 13C from 13C6-glucose if
supplied to the growth medium (Figure S9) [48]. Exact m/z and isotopic pattern analysis suggested
the sum formula C12H15N2 for the positively charged ion. The MS2 spectrum of the feature was
rather uninformative due to very weak fragmentation (Figure S10). However, the most dominant
fragment peaks (relative intensity compared to base peak > 5%) displayed m/z ratios that supported the
aforementioned sum formula, with an m/z of 145.076 corresponding to C9H9N2, an m/z of 144.068 to
C9H8N2, and an m/z of 91.054 to C7H7—all possible fragments of C12H15N2. This formula is consistent
with a reduced phenazine structure, namely hexahydrophenazine. A MASST search for similar MS2

with the same precursor in the GNPS data base [49] revealed that the feature has been detected in three
other mass spectrometry studies that examined P. aeruginosa samples or bacterial samples from patients
infected with CF (data sets MSV000080397, MSV000080337, MSV000080251, and MSV000079680,
accessible at https://gnps.ucsd.edu/). Although none of studies found a meaningful annotation for
the feature in question, its presence in other P. aeruginosa related data sets further supported the notion
that it was an actual pseudomonal metabolite rather than an artifact.

The feature’s intensity levels did not correlate with those of pyocyanin or phenazine-1-carboxylic
acid and correlate only weakly or insignificantly with rhamnolipids, C12-HSL or aromatic amino acids
like phenylalanine, tryptophan or anthranilic acid. However, they did display a strong and significant
correlation with AQs and pyochelin (Figure S11). The strongest (positive) correlation to an annotated
feature was with DHQ (Pearson’s correlation coefficient of +0.93), suggesting a potential link to AQ
biosynthesis. The strongest negative correlation to an annotated feature, in turn, was observed for
adenosine, but appeared uninformative with a weak Pearson’s correlation coefficient of –0.47 despite
its statistical significance.

M187T6_2 was tested as a potential marker for the differentiation of virulent and avirulent
strains using a validation data set of another 14 clinical isolates—seven virulent and seven avirulent,
displaying the same biofilm phenotype as those in the discovery data set—that was processed and
analyzed analogously to the discovery data set. The feature corresponding to M187T6_2 in the
validation set was significantly differentially abundant between the two virulence phenotype groups
with a directional fold change of +3.6 and a p-value of 0.005 (Welch’s t-test) and 0.002 (Mann–Whitney
U-test); however, it was unable to perfectly separate the groups (Figure S12). This is in concordance
with higher metabolome diversity of the clinical strains (mean Shannon index of the samples in the
discovery and validation data set: 5.93 and 6.25, respectively; p < 10–17), as illustrated by a more diffuse
distribution of the virulent and avirulent strains in the PCA of the validation data set (Figure S13).
A univariate model using the abundance of M187T6_2 as a separator for virulent and avirulent
phenotypes yielded a fair area under the ROC curve of 0.75 (Figure S14). The feature in question did
not display an intra-group correlation with the surrogate parameter used for in vivo virulence in this
study—the survival of infected Galleria mellonella larvae after 48 h (Figure S15).

https://gnps.ucsd.edu/
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Figure 5. Levels of the two non-overlapping features in the discovery data set. (A,B) Peak area in
arbitrary units is plotted on the x-axis for the two perfectly separating features M187T6_2 (A) and
M314T14 (B). Full range of the x-axis is shown in the top panels and an enlarged region of the lower
x-axis range is depicted in the lower panels. Non-overlapping spaces are marked by dashed lines and
grey shading. The difference between the lowest level in the virulent cluster A group und the highest
level in the avirulent cluster B group is a lot more pronounced for M187T6_2. (C) Peak area in arbitrary
units is plotted on the y-axis for the two perfectly separating features M187T6_2 and M314T14 as box
plots to visualize data distribution. Red—virulent cluster A strains, blue—avirulent cluster B strains.

3.4. Virulent and Avirulent Strains with Distinct Biofilm Phenotypes Can Be Differentiated Based on
Untargeted Metabolomics Data by Machine Learning

Since neither the single putative marker M187T6_2, nor any other metabolite could achieve a
perfect group separation in the validation set, we tested whether a multi-metabolite classification
model was able to reliably discriminate virulent and avirulent strains with their respective biofilm
phenotypes. Random forest classification was selected from the plethora of machine learning
classification models [62] as it did not require data to be on the same scale, and allowed for easy
interpretation of the features’ contribution to the model. Random forest classification has also been
shown to be a powerful method for phenotype discrimination based on clinical metabolomics data [63].

A random forest model was trained using the discovery data set, regarding only features that
have been found and integrated both in the validation and discovery data set. The model was
able to discriminate the groups in the discovery data set very clearly (Figure S16). Unsurprisingly,
the M187T6_2 feature described above was the most important feature in the model. Among the 10
most important features were also C9-QNO and two isomers of C9:1-HQ, placing three AQ features in
the top 10 of separating markers in the model. The remaining six of the most important features could
not be identified. These include features with low m/z (M85T1_1 and M126T1_1), features in the m/z
range of AQs and other secondary metabolites (M231T7_3, M246T3_1 and M228T12) and a slightly
larger one (M464T9_3) (Figure S17). In a model based only on identified features, AQ congeners
make up eight of the 10 most important features along with Rha-Rha-C10-C12 and pyocyanin.

The classification model was applied to the validation data set to gauge its capacity to correctly
predict virulence phenotypes from new metabolomics data obtained from P. aeruginosa clinical strains.
The model showed a good prediction performance—especially regarding the larger heterogeneity
of the validation data set—as signified by an area under the ROC curve of 0.84 (Figure 6). If only
identified features were regarded, the area under the ROC curve of 0.76 was still fair, but including
unknown features improved the prediction performance of the model. Remarkably, some strains were
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systematically misclassified (their metabolomes did not correspond to their virulence and biofilm
phenotype in the way the classification model connected these two types of data) (Figure S18).
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Figure 6. Receiver Operation Characteristics (ROC) curve for random forest classification model based
on all features (green) and on identified features only (grey). The area under the Receiver Operation
Characteristics curve is used as a quality metric for classification models and shows a good classification
for a random forest classification model that uses all features in the data set, compared to a slightly
weaker performance for a model that only considers identified features.

As the isolates of the discovery and validation data set differed in two phenotypes, virulence and
biofilm phenotype, we analyzed a third group consisting of isolates that had a virulent phenotype in the
G. mellonella model but a different (cluster C) biofilm morphology (Figure S19). Applying the random
forest model to this group of isolates resulted in a true positive rate of only 47% (Figure S20) suggesting
that despite a similar virulence phenotype, cluster A and cluster C isolates differed significantly in
their metabolome.

4. Discussion

The present study provides evidence of systematic differences in the virulence-associated
metabolome of several clinical P. aeruginosa strains isolated from several different types of infections in
different hospitals across Europe. The metabolic profiles of virulent and avirulent strains with cluster
A and cluster B biofilm phenotypes, respectively, in the discovery data set were sufficiently different to
identify a separation between the two groups, even with an unsupervised method such as PCA, while
other strain or cultivation-related properties were unable to separate these two groups.

Very few primary metabolites were significantly differentially abundant between the virulent
cluster A and the avirulent cluster B groups, corroborating data from previous studies demonstrating
that the primary metabolome of P. aeruginosa strongly depends on growth conditions, and weakly on
the strain or genetic background [64]. Of the 43 identified distinct primary metabolites (cf. Table S8),
only 11 had significantly different levels in the two groups in the discovery data set (with an adjusted
p-value of ≤ 0.05), and only palmitoleic acid and lyso-PE-18:1 met the additional criterion of having a
fold change ≥ 1.5 or ≤ –1.5. Furthermore, the rich growth medium used in this study may have left
some anabolic pathways inactivated, potentially excluding a group of metabolites that correlate with
the virulence phenotype under different growth conditions.

In contrast to the primary metabolome, the secondary metabolome was substantially different
between the two groups. The variance between the secondary metabolomes of the two groups enabled
a group separation based solely on the abundances of identified virulence-associated secondary
metabolites (Figure 4). The ability to detect all major groups of virulence-associated secondary
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metabolites in P. aeruginosa in a single LC-MS method underlines the usefulness of this technology
in gauging pseudomonal virulence and its relation to metabolism. The strong upregulation of
virulence-associated metabolites is responsible for the asymmetry in the volcano plot (Figure S3),
that exhibits a substantially larger number of upregulated features compared to downregulated
features. The most important differentially abundant secondary metabolites discovered were AQs,
which are known to regulate virulence in several ways [23]. In a recent study using Rapid Evaporative
Ionisation Mass Spectrometry to differentiate CF and non-CF P. aeruginosa isolates, Bardin et al.
identified AQs and rhamnolipids as important features for phenotype classification, with lower AQ
levels in mucoid isolates [65]; thereby highlighting the notion that AQ profiles are an integral part of
strain-specific metabolic profiles in P. aeruginosa. The abundance of quorum sensing signaling molecules
in clinical isolates have been investigated in depth. Despite their role in the regulation of virulence,
low to non-existant levels have been observed in infectious clinical isolates [66], correlating with the
low AQ levels measured in our avirulent clinical strains. Furthermore, Davenport et al. demonstrated
that roughly 1/3 of the P. aeruginosa metabolome is linked to quorum sensing, with primary and
secondary metabolite levels affected by lack of quorum sensing signaling molecules [67]. Accordingly,
AQs are among the most relevant features of our random forest classification model that successfully
differentiates between virulent and avirulent strains.

Recent research on the CF sputum microbiome and metabolome highlights the importance of AQs,
rhamnolipids and phenazines in the in vivo virulence in the human host and suggests a correlation of
the abundance of these secondary metabolites and clinical disease severity [68,69]. In line with findings
by Quinn et al., the prominent AQ PQS was not among the most important metabolites associated with
infection and virulence [68], whereas a rhamnolipid (Rha-Rha-C10-C10 in their case) was [69]. The fact
that the same molecules we identified as virulence-associated in our cultivation-based approach or
closely related ones are also connected to virulence in a clinical human setting further supports the
validity of our findings.

Furthermore, our search for discriminatory markers of virulence and biofilm phenotypes pointed
towards several features that could not be identified. Our random forest classification model included
seven ‘unknowns’ in the group of the 10 most important features. These were within a broad m/z
range from 85 Da to 464 Da, suggesting that they belong to different metabolite classes (Figure S17).
The most important feature in our model is an ‘unknown’ feature that clearly separates the two groups
in our discovery data set and performs acceptably in our validation data set. Its putative identity
is speculative; a sum formula of C12H15N2 for the cation points towards a phenazine-like structure,
and the correlation with other features suggests a link to AQ biosynthesis. However, caution needs
to be taken in the interpretation of unknowns in LC-MS metabolomics, as they may actually derive
from other metabolites or represent artifacts [70,71] and AQ and phenazine levels are of course not
independent of each other due to multiple direct and indirect regulatory effects [23]. The fact that an
unknown P. aeruginosa metabolite is a putative virulence biomarker demonstrates the value of studying
the secondary metabolites of pathogenic bacteria, including those produced by highly studied species.
Further efforts are needed to elucidate the structure of the feature in question and study its role in
pseudomonal virulence.

As with any in vitro model, the work presented here comes with limitations. Quinn et al. have
shown that significant differences exist between cultured P. aeruginosa strains and those in the host
environment [68]. Important factors such as interspecies relations [72], and the duration of infection
before the sampling and isolation of the strains [73] were outside the scope of this study. The virulence
assessment in G. mellonella presents an additional limitation as it might not fully reflect virulence
properties in the human host. Differences in metabolite diversity as measured by the Shannon index
have been observed, but the current dataset is insufficient to conclude whether and how strain-specific
metabolite diversity is related to the virulence phenotype; this aspect remains to be investigated in
future studies.
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However, the combination of known metabolites and unannotated features in a random forest
classification model achieves an area under the ROC curve of > 0.8 for the validation data set, achieving
a good discrimination of virulent and avirulent P. aeruginosa strains. The model is, at present,
not suitable for virulence prediction of strains with different biofilm morphologies. The inference
of virulence phenotypes of P. aeruginosa clinical strains cannot be achieved from genomics data
alone [14], and are difficult to construe from transcriptomics data [18,19]. Thus, the strength of LC-MS
metabolomics in classifying P. aeruginosa strains is a logical reflection of the high relevance of secondary
metabolites for infection processes in this pathogen.

5. Conclusions

P. aeruginosa clinical strains with different virulence and biofilm phenotypes have different
metabolic profiles. A large portion of these differences can be attributed to known virulence-associated
secondary metabolites; however, structurally unidentified features are important separators and
putative virulence biomarkers. Using machine learning on the complete metabolome dataset,
we obtained a classification model that differentiates virulent and avirulent P. aeruginosa clinical strains
with good accuracy (area under the ROC curve of > 0.8). We have demonstrated that metabolomics
can play an important role in the discovery of reliable virulence biomarkers or biomarker panels that
are applicable in the clinic to gauge virulence and provide invaluable information on the potential
clinical course of an infection.
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The following abbreviations are used in this manuscript:

AQ alkyl quinolone
AUC area under the curve
CF cystic fibrosis
DHQ 2,4-dihydroxyquinoline
ESI-QTOF-MS electrospray ionisation quadrupole time-of-flight mass spectrometry
GNPS Global Natural Product Social Molecular Networking
HSL homeserine lactone
LC-MS liquid chromatography–mass spectrometry
MASST Mass Spectrometry Search Tool
m/z mass-to-charge ratio
nd not determined
nrpg normalized reads per gene
OD600 optical density at 600 nm
padj adjusted p-value
PCA principal component analysis
PE phosphatidylethanolamine
PERMANOVA Permutational multivariate analysis of variation
PQS Pseudomonas quinolone signal
QNO quinoline-N-oxide
Rha rhamnose, rhamnosyl
ROC receiver operating characteristics
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