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Abstract: High-photoluminescence (PL) graphene quantum dots (GQDs) were synthesized by a
simple one-pot hydrothermal process, then separated by dialysis bags of different molecular weights.
Four separated GQDs of varying sizes were obtained and displayed different PL intensities. With
the decreasing size of separated GQDs, the intensity of the emission peak becomes much stronger.
Finally, the GQDs of the smallest size revealed the most energetic PL intensity in four separated
GQDs. The PL energy of all the separated GQDs shifted slightly, supported by density functional
theory calculations.

Keywords: graphene quantum dots; size effect; photoluminescence

1. Introduction

Recently, luminescent carbon materials have received considerable attention, includ-
ing carbon nanotube [1,2], carbon quantum dots [3,4], reduced graphene oxide quantum
dots [5], graphene oxide [6], and graphene quantum dots (GQDs) [7]. Compared with
traditional semiconductor quantum dots, such as CdX (X = S, Se) and PbS, GQDs pro-
vide various advantages, such as more environment-friendly, low-cost, easy-to-prepare,
relatively stable chemical internees and strong luminescence. In particular, GQDs, as a zero-
dimension graphene material, has the characteristics of graphene and unique quantum
confinement effects and edge effects [8–10]. These proprieties endow GQDs with stable
fluorescence and adjustable bandgap [11–13]. Based on the above excellent feature, GQDs
could be applied in multiple fields, such as photovoltaic devices [14], catalysis [15–22],
solar cells [23,24], sensing [25,26], drug delivery [27], and cell imaging [28–31]. The hy-
drothermal method is a commonly used method for preparing GQDs. Pan et al. first
prepared GQDs by chemically cutting graphene nanosheets through acid and a hydrother-
mal environment [10,32]. But the arrangement of the GQD prepared by this method is not
regular. Dong et al. used the acid exfoliation method to prepare graphene quantum dots
by chemically oxidizing carbon black (CB) in HNO3 under reflux conditions. However, it
is difficult to remove excess oxidant (for example, HNO3) from the solution [33]. Various
methods for preparing GQDs have been reported [34,35]. The fluorescences of GQDs
synthesized by different methods mostly display blue, green, and yellow colors. Their
photoluminescence (PL) properties have been studied [36,37]. To adjust the bandgap and
electronic density effectively, strengthen chemical activity, increase the quantum yield (QY),
and expand the practical application of GQDs, a large number of published research studies
have focused on modifying GQDs by doping heteroatoms [38], for instance, nitrogen and
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sulfur [39], chlorine [40], and fluorine [7]. However, the effect of GQDs with different sizes
on PL intensity has not been thoroughly investigated.

We found that there are few studies on whether the PL emission intensities of GQDs
of different sizes are different. In order to fill the gap in this regard, we synthesized GQDs
by a simple one-step hydrothermal method and then obtained four separated GQDs using
dialysis bags with different molecular weights. The dimension changes and PL properties
of the separated GQDs were investigated. Furthermore, the relationship between the size
of the obtained GQDs and their PL energy shift is discussed. Overall, DFT calculation was
used to illustrate the PL energy shift.

2. Experimental Section
2.1. Synthesis of GQDs

GQDs were prepared by a simple, green, bottom-up hydrothermal method [41]. Briefly,
1 g of pyrene was added to 80 mL of 65–68% nitric acid, then refluxed and stirred for 12 h
at 80 ◦C. After cooling to room temperature, the product was diluted with 200 mL of
distilled water (DI) and filtered by a 0.22 µm filter membrane to remove the excess acid,
then dissolved in 150 mL of 0.0125 M aqueous NaOH solution by ultrasound to adjust
the pH value to 11. Then the ultrasonic suspension was transferred to a Teflon autoclave
and was heated at 180 ◦C for 12 h. Next, after cooling to room temperature, the obtained
product was filtered through a 0.22 µm filter membrane to remove the insoluble product.
To obtain the GQDs of different sizes, the GQD solution was separately dialyzed with
14,000, 7000, 3500, and 1000 Da molecular weight dialysis bags successively.

2.2. Computational Details

All calculations were performed using the Vienna Ab initio Simulation Package
(VASP) [42,43]. The projector augmented-wave (PAW) potentials [44,45] with an energy
cutoff of 800 eV were used for the plane-wave basis set. The generalized gradient ap-
proximation (GGA) in the form of the Perdew−Burke−Ernzerhof (PBE) functional was
employed [46]. In this work, two different-sized systems of the armchair- and zigzag-edged
GQDs were modeled (hexagonal cell). To minimize the artificial interactions due to periodic
boundary conditions, each GQD was separated by a vacuum of ~15 Å. The Brillouin zone
was sampled by 3 × 3 × 1 Monkhorst–Pack k-point grids. All atoms were relaxed until the
residual forces on each atom were less than 0.01 eV/Å.

2.3. Characterization

Transmission electron microscopy (TEM) was carried out on a JEM-2100F (JEOL,
Japan) electron microscope. Samples were prepared by placing a drop of dilute aqueous
dispersion of GQDs on the surface of a copper grid. Powder X-ray diffraction (XRD) spectra
were collected on a Rigaku D/Max 2550 diffractometer within 5◦–80◦ (2 theta). X-ray photo-
electron spectroscopy (XPS) measurements were made on Escalab 250XI with mono Al Kα
radiation (hν = 1486.6 eV). Raman spectra were recorded on a laser confocal Raman spec-
trometer (Renishaw inVia) with 514 nm incident radiation. The photoluminescence spectra
(PL) and photoluminescence excitation (PLE) spectra were recorded using a fluorescence
spectrophotometer (Agilent Technologies, Cary Eclipse, Australia) at a sample concentra-
tion of 0.1 mg·mL−1. UV–VIS absorption spectra were recorded on a PerkinElmer Lambda
750 spectrophotometer at a sample concentration of 0.1 mg·mL−1. Fourier-transform
infrared (FTIR) spectra were recorded using an IRAffinity-1S spectrometer (KBr pellet).
Unless otherwise specified, the GQDs (the GQDs dialyzed with a dialysis bag of 1000 Da)
with the best optical performance were selected for various characterizations.

3. Results and Discussion

The TEM and high-resolution TEM images of four separated GQDs dialyzed with
dialysis bags of 14,000, 7000, 3500, and 1000 Da molecular weights are shown in Figure 1a–h.
The separated GQDs are well dispersed with a uniform size distribution, whose average
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lateral sizes are about 10.33, 9.33, 8.42, and 6.53 nm, respectively (insets in Figure 1a–h).
This indicates that the size of the separated GQDs obtained by dialysis with different
molecular weights of dialysis bags is different. As the molecular weights of the dialysis
bags decreased, the size of the obtained GQDs also reduced. High-resolution TEM images
also show crystalline GQDs with a lattice measurement of 0.203 nm, which coincide with
the graphene (002) plane [18]. The real-space images and their fast Fourier transform (FFT)
patterns (insets in Figure 1e–h) with a hexagonal honeycomb structure demonstrate that
the GQDs are nearly defect-free graphene single crystals.
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To understand their structure, various spectral characterizations were used. Figure 2a
shows XRD patterns of GQDs. We can observe a typical peak (002) at 2θ = 26.5◦, and the
interlayer spacing is 3.34 Å, which is identical to that of graphene [41,47]. FTIR spectroscopy
was also revealed to be a further characteristic of samples. As shown in the FTIR spectra in
Figure 2b, a distinct peak at 1590 cm−1 corresponds to the vibration of C=C bonds, and a
broad vibration at about 3430 cm−1 for the O–H bonds [41,47,48]. The O–H peak is mainly
given credit for the hydroxyl of the obtained GQDs and can be confirmed by the strong
vibration of C=OH at about 1270 cm−1. The obvious peak at about 870 cm−1 is attributed
to the vibration of C–H [48].

To further determine the component of GQDs, XPS measurement was employed. The
XPS full spectra (Figure 3a) of the four separated GQDs obtained by different molecular
weights of dialysis bags show that the strong peaks at approximately 284 eV (C 1s) and
533 eV (O 1s) exist in all GQDs, as well as a week peak from impurity Na+. The high-
resolution spectrum of the C 1s reign of GQDs (Figure 3b) shows the strong peak of C=C
at 284.8 eV and another distinguishable peak of COOH at 288.1 eV. The high-resolution
O 1s spectrum (Figure 3c) reveals the existence of the peak of O–H at 531.4 eV. The high-
resolution C 1s and O 1s spectra of the other three separated GQDs obtained by dialysis
bags of 14,000, 7000, and 3500 Da molecular weights are shown in Figure S1. The data
of XPS display that the obtained 1,3,6-trinitropyrene by water bath reaction synthesized
GQDs by obliterating the NO2 group under a strong alkaline condition. The bonding
position between the hydroxyl group and the single-crystalline GQD lattice is most likely
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at the edge rather than that at the basal plane. This unique edge functionalization property
will not bring out any defects in the graphene basal plane, which is different from other
functionalizations viewed in graphene oxide [41,49,50] and defective GQDs obtained by
other methods [32–52].
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a dialysis bag of 1000 Da molecular weight.

For comparison, the Raman spectra of the four separated GQDs obtained with dialysis
bags of different molecular weights were also measured. As shown in Figure 4, as the size
of the GQD molecular decreases, the G and D peaks of the Raman spectrum become more
and more obvious. Only GQDs obtained from dialysis bags with a molecular weight of
1000 Da have obvious G and D peaks. This is also closest to the characteristic values of
a single-layer graphene. We generally use the ratio of peak D to peak G to indicate the
density of defects in graphene. The greater the ratio, the greater the degree of defects, and
vice versa. It can be seen from the Raman spectrum of the sample (Figure 4) that the G
peak is always slightly higher than the D peak, so ID/IG is less than 1, as shown in Table 1.
This is consistent with what was mentioned in the previous article; that is, GQD is almost a
defect-free single crystal of graphene.
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Table 1. D and G peak frequencies of the GQD samples obtained from dialysis bags of different molecular weights.

Samples D Peak Position (cm−1) ID G Peak Position (cm−1) IG ID/IG

1000 Da 1333.5 89,594.1 1576.61 91,445 0.98
3500 Da 1343.29 37,244.3 1581.99 39,994.2 0.93
7000 Da 1342.23 44,510.4 1575.87 47,180.2 0.94

14,000 Da 1333.78 34,741.8 1572.8 34,708.5 1.00

To explore the optical properties of the four separated GQDs with varying sizes,
the UV–VIS absorption and PL spectra were demonstrated. GQDs are highly soluble in
DI water. The as-prepared GQD aqueous dispersion exhibited green fluorescence under
irradiation with 365 nm UV light (inset in Figure 5a), which is consistent with the other
three separated GQDs obtained by dialysis bags of 14,000, 7000, 3500 Da molecular weights
(inset in Figure S2a–c). As shown in Figure 5a, the GQDs exhibit two distinct excitonic
absorption bands at about 365 and 490 nm in the UV–VIS absorption spectrum, which
is similar to the GQDs synthesized by hydrothermal method [33]. The two absorption
peaks can be assigned to the π–π* and n–π* transitions between the oxygen-/nitrogen-
containing groups and sp2 domains [53,54]. As the size of GQDs increased, the intensity of
the absorption peak became weaker (Figure 5a and Figure S2a–c). This means that we can
increase the absorption of ultraviolet light by reducing the size of the GQDs.

As displayed in Figure 5b and Figure S2d–f, the maximum PL wavelengths of the
four separated GQDs were non-change-excited at different wavelengths, exhibiting their
excitation-independent property. When the four separate GQDs are irradiated with differ-
ent wavelengths of ultraviolet light, the positions of their PL emission peaks are slightly
different, which means that we can control the fluorescence color of the GQDs by changing
the excitation wavelength. The emission peak of GQDs was observed at about 530 nm.
Figure 5c shows the PL of GQDs of varying sizes under 330 nm. The results indicate that
the PL intensities of the GQDs with different sizes were different. With the decreasing size
of the GQDs, the PL intensity was enhanced. In these four separated GQDs, the GQDs on
a dialysis bag of 1000 Da molecular weight have the strongest PL intensity, whereas the
GQDs on a dialysis bag of 14,000 Da molecular weight has the weakest PL intensity. The
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PL excitation (PLE) spectrum (Figure 5d) of the GQDs after fixing the emission wavelength
was shown at 530 nm, and one of the excitation peaks was shown at 384 nm, which was
according to PL results. The PL disintegration curves show the single-exponential feature
of the four separated GQDs (Figure S3). The fluorescent lifetime of the GQDs dialyzed
with a dialysis bag of 1000 Da molecular weight was shortest to 1.88 ns, which is according
to their smallest size.
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Figure 5. (a) UV–VIS absorption spectrum of the GQDs dialyzed with a dialysis bag of 1000 Da
molecular weight (inset, optical photographs of the corresponding samples under excitation with a
wavelength of 365 nm), (b) PL spectra of the GQDs under excitation with a different wavelength,
(c) PL spectra of the four separated GQDs under excitation at 330 nm, (d) PLE spectrum of the GQDs
when fixing the emission wavelength at 530 nm.

To further investigate the optical properties of the GQDs obtained by dialysis bags
of different molecular weights, the fluorescence QY measurements were calculated by
the result of the PL emission intensity and absorption. Table 2 reveals the QY of the four
separated GQDs. The results of the samples were calculated using the following formula:
ϕ = ϕr (I/Ir)(n2/nr

2)(Ar/A) [55], where ϕ represents fluorescence QY, I represents the
integrated emission intensity, n shows the refractive index of the solvent (1.33 of water), A
means optical density, and r stands for reference. The QY of the GQDs of 1000 Da molecular
weight reached 0.45, which is higher than the others, and the result corresponds to that in
Figure 5c. Combining the above data and analysis, we speculate that the number of defects
contributes to the intensity of luminescence [18].
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Table 2. QY of the four separated GQDs under excitation at 330 nm using quinine sulfate as a reference.

Samples Integrated Emission
Intensity (I) Abs. (A) Refractive Index of

Solvent (n) QY (ϕ)

Quinine sulfate 15,644 0.109 1.33 0.54 (know)
14,000 Da 397 0.128 1.33 0.02
7000 Da 2321 0.048 1.33 0.18
3500 Da 4651 0.05 1.33 0.35
1000 Da 5047 0.042 1.33 0.45

Figure 5c shows that the PL emission peaks of the four separated GQDs are slightly
red-shifted. We believe that GQDs of different sizes have different band gap widths,
resulting in different PL emission peaks. In order to prove this relationship, we performed
DFT calculations. The results are illustrated in Figure 6. With the increasing size of the four
separated GQDs, the gap of both the armchair- and zigzag-edged GQDs decreases rapidly
at first and becomes gentle when the size is greater than 6 nm. When the size is greater
than 5 nanometers, the curve begins to become flat. It is known that DFT–GGA methods
often underestimate the gap, so we assume that with either an armchair or zigzag edge,
the bandgap of GQDs changes lightly depending on their size when the size is greater
than 5 nm. It can be seen from this that when the size of the GQD is larger, its band gap
becomes smaller, which is consistent with the experimental results. As shown in Figure 5c,
under excitation at 330 nm, the PL emission peaks of the four separate GQDs are slightly
red-shifted as the GQD size increases. As the size of the GQD increases, its energy gap
continues to decrease, and photons are more likely to transition, which results in a red shift
of the PL emission peak. This result also confirms our conjecture.
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Figure 6. Illustration of the calculated size-dependent electronic gap of the armchair- and zigzag-
edged GQDs.

4. Conclusions

In summary, we synthesized GQDs by a simple one-step hydrothermal method and
then obtained different sizes of GQDs using dialysis bags with different molecular weights.
The average lateral sizes of the GQDs obtained by dialysis bags of 14,000, 7000, 3500,
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1000 Da molecular weights are about 10.33, 9.33, 8.42, and 6.53 nm, respectively. This
indicates that the sizes of the GQDs obtained by dialysis with different molecular weights
of dialysis bags are different. Meanwhile, the four separated GQDs displayed different
PL intensities. With the decreasing size of the separated GQDs, the intensity of the emis-
sion peak becomes much stronger. The GQDs with the smallest size revealed the most
energetic PL intensity in the four separated GQDs. DFT calculations show that with a size
greater than 6 nm, the bandgap of the GQDs changes slightly. This is consistent with the
experimental results.

Supplementary Materials: The following are available online: Figure S1: High-resolution C 1s
spectrum of separated GQDs dialyzed with dialysis bags of 14,000 Da (a), 7000 Da (c), and 3500 Da
(e) molecular weights. High-resolution O 1s spectrum of separated GQDs dialyzed with dialysis
bags of 14,000 Da (b), 7000 Da (d), and 3500 Da (f) molecular weights. Figure S2: UV–VIS absorption
spectrum of separated GQDs dialyzed with dialysis bags of 14,000 Da (a), 7000 Da (b), and 3500 Da
(c) molecular weights (inset, optical photographs of the corresponding samples under excitation with
a wavelength of 365 nm). PL spectra of separated GQDs dialyzed with dialysis bags of 14,000 Da (d),
7000 Da (e), and 3500 Da (f) molecular weights under excitation with different wavelengths. Figure
S3: Time-resolved PL spectra of the four separated GQDs dialyzed with dialysis bags of 14,000 Da
(a), 7000 Da (b), 3500 Da (c), and 1000 Da (d) molecular weights.
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