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Netrin-1 regulates somatic cell reprogramming
and pluripotency maintenance
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The generation of induced pluripotent stem (iPS) cells holds great promise in regenerative

medicine. The use of the transcription factors Oct4, Sox2, Klf4 and c-Myc for reprogramming

is extensively documented, but comparatively little is known about soluble molecules

promoting reprogramming. Here we identify the secreted cue Netrin-1 and its receptor DCC,

described for their respective survival/death functions in normal and oncogenic contexts,

as reprogramming modulators. In various somatic cells, we found that reprogramming

is accompanied by a transient transcriptional repression of Netrin-1 mediated by an

Mbd3/Mta1/Chd4-containing NuRD complex. Mechanistically, Netrin-1 imbalance induces

apoptosis mediated by the receptor DCC in a p53-independent manner. Correction of the

Netrin-1/DCC equilibrium constrains apoptosis and improves reprogramming efficiency. Our

work also sheds light on Netrin-1’s function in protecting embryonic stem cells from apoptosis

mediated by its receptor UNC5b, and shows that the treatment with recombinant Netrin-1

improves the generation of mouse and human iPS cells.
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U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France. 2 INSERM U935, ESTeam Paris-Sud, Université Paris-Sud, Villejuif,
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S
omatic cell reprogramming to pluripotency involves
epigenetic modifications, changes in gene expression,
protein degradation and protein synthesis. Reprogramming

resets differentiated cells to a pluripotent state and can be
achieved by nuclear transfer, cell fusion or transduction of certain
transcription factors. The original approach relies on the ectopic
expression of the factors Oct4, Sox2, Klf4 and c-myc—collectively
known as OSKM1–3. The relative flaws in the understanding
of the molecular mechanisms governing induced pluripotent
stem (iPS) cells generation hinder the efficient derivation of
reprogrammed cells without genetic manipulation. Whereas the
modulation of the initial OSKM cocktail with other factors
has been extensively documented, comparatively little is known
about soluble molecules promoting the process, even if such
recombinant factors could be highly valuable for therapeutic
applications. Several processes acting as reprogramming
roadblocks harbour tumour-suppressive activity such as
programmed cell death (PCD) and senescence4–6. As an
example, the p53/Puma axis limits iPS cell generation at the
late stage of reprogramming and has been related to the dual
pro-oncogenic and pro-PCD effect of c-Myc7. However, the
mechanisms governing cell death independently of p53/c-Myc in
the early days of reprogramming remain unclear4–6.

Here we identify the Netrin-1 and its dependence receptor
DCC (Deleted in Colorectal Carcinoma) as regulators of somatic
cell reprogramming to pluripotency. Netrin-1 is a secreted
laminin-related molecule initially identified as an axon guidance
cue and more recently proposed as a multifunctional protein
implicated both during nervous system development and adult
pathologies8,9. Of interest in the scope of this study, Netrin-1 was
shown to act as an oncogene by limiting apoptosis induced by its
main dependence receptors DCC and UNC5s (UNC5a, UNC5b,
UNC5c and UNC5d)8–11. Using a strategy centred on the
genomic regions differentially bound by OSKM in somatic and
pluripotent cells, we identify members of the Netrin-1/DCC
signalling pathway as putative reprogramming roadblocks. We
therefore examine Netrin-1 function during iPS cell generation
and reveal that the early stage of the process is associated with a
transient Netrin-1 transcriptional repression mediated by Oct4
and Klf4 repressive action on the Netrin-1 promoter. We show
that such Netrin-1 deficiency limits reprogramming by engaging
DCC-induced apoptosis. In parallel, we demonstrate that
Netrin-1 protects established pluripotent cells from apoptosis
induced by its receptor UNC5b. Importantly, we demonstrate
that the Netrin-1/DCC imbalance is corrected by the non-
invasive treatment with recombinant Netrin-1 that improves
reprogramming efficiency of human and mouse somatic cells.

Results
Netrin-1 level controls iPS cell generation. To identify novel
pluripotent reprogramming impediments, we developed a
method centred on the OSKM ‘differentially bound regions’
(DBRs; Fig. 1a)12. DBR were identified by comparing the
chromatin immunoprecipitation (ChIP)-Sequencing data for
OSKM binding in fibroblasts 48 h after OSKM induction and
in established pluripotent cells. This approach led to the
identification of 264 ‘DBR genomic regions’ harbouring a
differential OSKM binding in both cell types12. We selected the
705 genes located within DBR as candidate genes potentially
hindering pluripotent reprogramming (Fig. 1a). We hypothesized
that the partial OSKM binding will delay or abrogate their
regulation upon reprogramming and might therefore alter iPS cell
generation. By performing gene ontology analysis centred on
‘PCD’, a major reprogramming impediment, we restricted the list
to 51 candidates (Step1). Next, 29 candidates were selected

(Step2) due to their dynamic expression during mouse embryonic
fibroblasts (MEFs) reprogramming (Supplementary Table 1)13.
The candidates were subjected to a protein interaction network
prediction that revealed an unexpected over-representation of
members of the Netrin-1 (Ntn1) signalling pathway with genes
corresponding to the Netrin-1 ligand and its receptors DCC,
UNC5c and UNC5d (Fig. 1b and Supplementary Table 1).

Ntn1 expression was assessed during MEF reprogramming
induced by OSKM retroviral infection and in the resulting
iPS cells grown in 2i/LIF (leukemia inhibitory factor) culture
conditions. Such approach revealed a biphasic Ntn1 expression
profile with a marked downregulation during the first 6 days of
pluripotent reprogramming followed by a strong reactivation in
iPS cells (Fig. 1c). The same pattern, even though with a faster
kinetic, is observed in OSKM dox-inducible reprogrammable
MEF, ruling out possible side effects of retroviral infection on
gene expression (Supplementary Fig. 1a)14.

The dynamic expression of Netrin-1 during reprogramming
prompted us to investigate whether this factor regulates iPS cell
generation. Oct4/GFP knock-in MEF were infected with lentiviral
particles encoding a scrambled short hairpin RNA (shRNA)
or three different shRNA-targeting Netrin-1 2 days before
reprogramming induction by OSKM retroviral infection and
2i/LIF culture conditions (Fig. 1d and Supplementary Fig. 1b).
Netrin-1 depletion led to a significant decrease in iPS cell
generation efficiency, as denoted by counting GFP-positive
colonies activating endogenous Oct4 promoter (Fig. 1e,f). Similar
results were obtained by alkaline phosphatase (AP)-positive
colony counting, further confirming Netrin-1 effect on iPS cells
generation (Supplementary Fig. 1c,d).

Recombinant Netrin-1 improves reprogramming efficiency.
Conversely, Netrin-1 downregulation at the early stage of
reprogramming prompted us to ask whether the non-invasive
treatment with soluble recombinant Netrin-1 (rNetrin-1) could
compensate for such endogenous deficiency and improve repro-
gramming features. We induced Oct4/GFP MEF to reprogramme
using non-integrative RNA Sendai virus and 2i/LIF culture con-
ditions. In such settings, the treatment with rNetrin-1 led to a
eightfold increase in the number of Oct4/GFP-positive colonies
(Fig. 1g,h). A similar trend was observed with other reprogram-
ming strategies such as OSKM retroviral infection (Supple-
mentary Fig. 1e–g). Conversely, and as expected, a Netrin-1-
blocking antibody reduces APþ colony formation (Supplemen-
tary Fig. 1h,i).

We then asked whether Netrin-1 effect on iPS cell generation
was restricted to MEFs or could be broadened to other adult
somatic cells. We derived various primary cells and detected
comparable Netrin-1 expression levels in adult fibroblasts from
ear (AEF) or tail tip (ATF) and in intestinal epithelium where
Netrin-1 is involved in cell survival and homeostasis (Fig. 1i)10.
Interestingly, OSKM expression induced by doxycycline (dox)
treatment in cultured intestinal epithelium led to the same
transient Ntn1 downregulation than in MEF (Fig. 1j), whereas
such phenomenon was not observed in AEF (Supplementary
Fig. 1j). Next, we plated intestinal epithelium on irradiated
feeder and iPS cells formation by dox treatment. As reported,
AP-positive iPS colonies reactivating the naive pluripotency
marker Nanog emerged around day 15 (Fig. 1k and
Supplementary Fig. 1k)14. In such context, we demonstrated that
Netrin-1 knockdown, before reprogramming induction, reduced
by 75% the number of Nanog-expressing iPS colonies, whereas
recombinant Netrin-1 (rNetrin-1) treatment increased iPS cells
generation by a fourfold factor (Fig. 1l,m). Netrin-1 depletion also
reduced iPS cell generation efficiency from AEF (Fig. 1n).
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Figure 1 | Netrin-1 level governs reprogramming. (a) Identification of pluripotent reprogramming impediments. DBR genes were selected using UCSC

genome browser (http://genome.ucsc.edu), gene ontology performed with DAVID (http://david.abcc.ncifcrf.gov/home.jsp; gene ontology:0008624,

0006917, 0012502, 0043065). Candidate list was refined to 29 genes using RNA-Seq, microarray data and literature. (b) Predicted protein interaction

network (http://www.genemania.org). Blue and red dots correspond to candidates, grey dots to potential partners. (c) Ntn1 expression is biphasic during

reprogramming. Quantitative reverse transcription–PCR (Q-RT–PCR) depicts Ntn1 expression levels during reprogramming induced by OSKM retroviral

expression. Data are expressed relative to MEF as the mean±s.d. (n¼ 3). (d) Schematic of the time schedule of reprogramming experiment.

(e) Typical mouse Oct4/GFP iPS colony 14 days following OSKM infection. Scale bars, 80mm. (f) Netrin-1 depletion reduces reprogramming efficiency.

The number of Oct4/GFP-positive colonies produced from sh-scrambled MEFs is set at 100% for each individual experiment. Data are the mean±s.d.

(n¼ 3). Student’s t-test, Po0.05. (g) Schematic of the time schedule of reprogramming experiment. (h) Recombinant Netrin-1 (rNetrin-1) effect on mouse

Oct4/GFP iPS cells generation induced by OSKM RNA sendai virus. rNetrin-1 (0.15or 0.75mg ml� 1) was added daily to the media. Data are the mean±s.d.

(n¼ 2). Student’s t-test, Po0.01. (i) Netrin-1 expression in various somatic cells. Q-RT–PCR depicts Ntn1 level in mouse embryonic fibroblast (MEF), adult

ear (AEF) and tail tip (ATF) fibroblasts and intestinal epithelium. Data are expressed relative to MEF as the mean±s.d. (n¼ 3). (j) Netrin-1 expression is

biphasic during intestinal epithelium reprogramming. Q-RTPCR depicts Ntn1 expression at day 2 and day 5 post OSKM induction (dox treatment). Data are

expressed relative to untreated intestinal epithelium at day 2 and day 5 as the mean±s.d. (n¼ 2). (k) Oct4/Nanog immunostaining of a miPS colony

derived from intestinal epithelium. Scale bars, 100mm. (l) Netrin-1 depletion reduces reprogramming efficiency of intestinal epithelium. The number of

Nanog-positive colonies produced from sh-scrambled sample is set at 100%. Data are the mean±s.d. (n¼ 2). Student’s t-test, **Po0.01. (m)

Recombinant Netrin-1 (rNetrin-1) effect on iPS cells generation from mouse intestinal epithelium. Data are the mean±s.d. (n¼ 2). Student’s t-test,

*Po0.05. (n) Netrin-1 depeltion reduces reprogramming efficiency of adult ear fibroblasts (AEFs). Nanog immunostaining was performed after 12–14 days

of reprogramming. Data are the mean±s.d. (n¼ 2). Student’s t-test, ***Po0.001. (o) Recombinant Netrin-1 effect on human iPS colonies emergence from

human foreskin fibroblasts. SSEA4-positive hiPS colonies were counted day 26 post infection.
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We next assessed whether recombinant Netrin-1 treatment
improves human somatic cells reprogramming. Treatment of
human foreskin fibroblasts (HFFs) with rNetrin-1 induced to
reprogramme by non-integrative RNA Sendai virus led to a
15-fold increase in reprogramming efficiency, as evaluated by
counting the number of SSEA4-positive colonies (Fig. 1o). These
findings identify (i) Netrin-1 as a novel factor governing iPS cell
formation and (ii) recombinant Netrin-1 as a novel soluble factor
improving reprogramming efficiency of various human and
mouse somatic cells.

In a therapeutic perspective of improving reprogramming
efficiency, we addressed whether recombinant Netrin-1
(rNetrin-1) treatment is detrimental to the iPS cell quality. We
characterized pluripotency features and genomic stability of
mouse (miPs) and human iPS (hiPS) cells derived with rNetrin-1.
We expanded mouse Oct4/GFP iPS (miPS) clones obtained with
integrative and non-integrative methods in standard conditions
(‘control’) or with rNetrin-1 (0.6mg ml� 1; ‘rNetrin-1 derived’).
The 9 ‘rNetrin-1 derived’ miPS clones generated using RNA
sendai virus harboured similar levels for Nanog, Rex1 and Esrrb
RNA than the three ‘control’ miPS clones and mouse embryonic
stem (ES) cells, showing that rNetrin-1 is not detrimental to the
transcriptional reactivation of such naive pluripotent circuitry
(Fig. 2a). In parallel, we performed RNA-sequencing analysis to
compare Oct4/GFP MEF, partially reprogrammed (pre-) miPS
cells, ‘control’ miPS cells and two different ‘rNetrin-1 derived’
miPS clones generated by OSKM retroviral infection (Fig. 2b and
Supplementary Fig. 2a). The mouse pre-iPS cells do not reactivate
the Oct4/GFP endogenous locus and do not silence the retroviral
transgenes15. The calculation of the euclidian distances revealed a
strong correlation between the ‘control’ and the two ‘rNetrin-1-
derived’ miPS clones, confirming similar transcriptome resetting
in both conditions (Fig. 2b). In particular, ‘rNetrin-1-derived’
miPS cells harbour similar Nanog, Esrrb and Dppa3 levels than
‘control’ miPS cells, whereas the pre-iPS cells failed at reactivating
these genes (Supplementary Fig. 2b). After 40 passages in culture,
the quantification of major chromosomal alterations did not
reveal any significant difference between miPS cell lines,
suggesting that rNetrin-1 treatment does not impact massively
chromosomal stability (Supplementary Fig. 2c). In terms of
differentiation potential, we showed that ‘rNetrin-1-derived’ miPS
cells turn off the endogenous Oct4/GFP promoter activity
following LIF withdrawal for 5 days (Supplementary Fig. 2d).
Embryoid body formation assays demonstrated their ability to
give rise to derivatives of the three germ layers (Fig. 2c). The
histological analysis of teratoma formed by ‘rNetrin-1 derived’
miPS cells confirmed the presence of tissues representing all three
germ layers (Fig. 2d). In parallel, two hiPS cell lines derived from
foreskin fibroblasts with rNetrin-1 were characterized at the
molecular and functional levels. As shown in Fig. 2e,f, ‘rNetrin-1
derived’ hiPS cells express the pluripotency-associated markers
OCT4, TRA1-60 and SSEA4. Karyotype analysis revealed no
abnormalities and teratoma formation confirmed the presence of
derivatives of the three germ layers (Fig. 2g,h). Altogether, these
results suggest that the treatment with recombinant Netrin-1 is
not detrimental to mouse and hiPS cell features.

Netrin-1 limits DCC-induced apoptosis during reprogram-
ming. To decipher the mechanisms downstream of Netrin-1, the
expression of its receptors was assessed during MEF repro-
gramming. In the first 6 days, DCC expression remains steady,
whereas UNC5b and UNC5c are rapidly downregulated (Fig. 3a
and Supplementary Fig. 2e). DCC belongs to the functional
family of dependence receptors sharing the ability of triggering
apoptosis in the absence of their ligand (Fig. 3b). The expression

of such receptor thus renders the cell dependent for its survival
on ligand availability8,16,17. In Netrin-1-limiting conditions,
unbound DCC triggers apoptosis via a cleavage of its
intracellular domain18. We asked whether Netrin-1 transient
downregulation limits reprogramming by engaging DCC-induced
apoptosis. To test this hypothesis, DCC expression was silenced
with shRNA lentiviral particles before MEF reprogramming
induced by OSKM retroviral infection. DCC knockdown using
three different shRNA significantly improves reprogramming
efficiency, as denoted by counting the number of Oct4/GFP
colonies (Fig. 3c,d and Supplementary Fig. 2f). More importantly,
the Netrin-1 depletion effect is rescued by DCC knockdown,
identifying the pair Netrin-1/DCC as a novel mediator of
reprogramming (Fig. 3e). In contrast, silencing of the Netrin-1
receptor UNC5b did not modify iPS cell generation efficiency
(Supplementary Fig. 2g,h). We generated a mice model in which a
DCC point mutation at the critical amino acid required for
intracellular cleavage (aspartic acid 1290) is sufficient to block
DCC-induced apoptosis while leaving unaffected the positive
DCC signalling observed upon Netrin-1 binding (Fig. 3f)19.
MEFs derived from DCCwt/wt and DCCD1290N/D1290N littermate
embryos were reprogrammed by retroviral OSKM infection and
2i/LIF culture conditions. DCCD1290N/D1290N MEFs gave rise to
iPS cell colonies with a slightly higher efficiency than DCCwt/wt

MEFs, indicating that DCC effect on reprogramming efficiency is
at least partly due to its pro-apoptotic activity (Fig. 3g).
Recombinant Netrin-1 (rNetrin-1) effect was compared during
DCCwt/wt and DCCD1290N/D1290N MEF reprogramming. The
rNetrin-1 and Netrin-1 blocking antibody effects are nearly
abrogated in DCCD1290N/D1290N MEF, confirming that Netrin-1
effect is partly mediated by the inhibition of DCC pro-apoptotic
activity (Supplementary Fig. 2i,j).

Reprogramming factors, especially c-Myc, activate the p53
pathway whose alleviation reduces apoptosis and improves iPS
cells generation4–6. We investigated whether Netrin-1 effect was
dependent on c-Myc/p53. First, reprogramming experiments
were performed without c-Myc (OSK) using integrative and
non-integrative methods4. We demonstrated that, in the absence
of c-Myc, the modulation of Netrin-1 level still impacts iPS cell
generation, even if at a lesser extent (Supplementary Fig. 2k,l).
To assess whether Netrin-1 effect was p53 mediated, p53� /�

MEFs were infected with shRNA against Ntn1 before OSKM
reprogramming. Such approach still led to a significant decrease
in the number of AP-positive colonies (Fig. 3h,i). The treatments
with rNetrin-1 or Netrin-1 blocking antibody are also still
effective in the absence of p53 (Supplementary Fig. 2m,n).
Moreover, p53 protein levels remained unchanged by rNetrin-1
treatment at reprogramming day 4 (Fig. 3j). Taken together, these
data support the view that DCC pro-apoptotic activity limits
pluripotent reprogramming mainly in a c-Myc/p53-independent
manner.

We next analysed apoptosis occurrence at the early stage of
reprogramming by FACS combining the cell surface markers
thy1 and SSEA1 with 4,6-diamidino-2-phenylindole (DAPI)
and Annexin V15,20,21. The starting MEF population express thy1,
whereas SSEA1 is repressed (thy1Positive/SSEA1Negative). FACS
analysis performed at days 3 and 5 post OSKM infection
confirmed the emergence of a thy1Negative/SSEA1Negative

subpopulation (thy1Neg) enriched in reprogramming cells, as
shown by morphology and AP staining (Fig. 4a and
Supplementary Fig. 3a). We showed that, in the early days of
reprogramming, Netrin-1/DCC ratio modulation directly impacts
apoptosis occurrence with thy1Neg cells being particularly sensitive
to such phenomenon (Fig. 4b,c and Supplementary Fig. 3b–e).
Following Ntn1 silencing, the percentage of thy1Neg apoptotic cells is
increased by 30% at reprogramming day 3 (Fig. 4b,c and
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Supplementary Fig. 3e). Conversely, following DCC knockdown, the
percentage of thy1Neg apoptotic cells is decreased by 20% and 40% at
reprogramming day3 and 5, respectively. As expected, Ntn1 and
DCC double knockdown led to a reduction in apoptosis occurrence
(Fig. 4b,c and Supplementary Fig. 3e). Taken together, these data
support the view that the early Netrin-1/DCC imbalance limits iPS
generation by inducing DCC-mediated apoptosis predominantly in
thy1Neg reprogramming cells. Ntn1 and DCC expression levels were
next assessed at this stage of reprogramming. At day 3, Ntn1
expression is strongly downregulated in thy1Neg cells, whereas DCC
remains steady—situation favouring DCC-mediated cell death
(Fig. 4d). However, 3 days later, the pattern is inverted with Ntn1
reactivation and DCC silencing, possibly reflecting the elimination of
the DCC-expressing cells (Fig. 4d). The Ntn1 activation is
maintained at day 9 in the thy1Negative/SSEA1Positive cells co-
expressing Nanog and in established iPS cells (Supplementary
Fig. 3f)15,21.

Oct4, Klf4 and the NuRD complex repress Netrin-1 expression.
We then asked which epigenetic mechanism triggers Netrin-1
transient transcriptional repression. In agreement with its

location within DBR, the Ntn1 locus is occupied by Oct4, Sox2
and Klf4 in mouse ES cells (mm8 genome browser: Oct4-binding
chr11: 68210308-68210332, Sox2-binding chr11: 68210051-
68210500, Klf4-binding chr11: 68210297-68210303; Supplemen-
tary Fig. 4a)12,22. We evaluated OSKM effect on the activity of
Netrin-1 promoter23. Luciferase assays performed on OSKM dox-
inducible MEF transfected with different promoter constructs
demonstrated the ability of the reprogramming cocktail to repress
specifically Netrin-1 promoter activity, whereas control SV40
promoter activity remains steady (Fig. 4e,f). A similar approach
was employed in HEK293T cells with single reprogramming
factors to reveal that Oct4 and Klf4 are responsible for Netrin-1
promoter repression (Fig. 4g).

Different epigenetic complexes, such as Polycomb, WDR5 and
NuRD, are associated with early development and connected
to the reprogramming factors activity24–27. Among them,
the nucleosome remodelling and deacetylase (NuRD) complex
member Mbd3 has been identified as a strong reprogramming
roadblock, with OSKM inducing a global redistribution of Mbd3
on target genes in MEF (1,177 binding regions in MEF compared
with 8,657 after OSKM induction)26. ChIP-Sequencing data
revealed that, upon dox induction in MEF, Mbd3 gets specifically
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recruited on the Netrin-1 promoter, at a genomic location that
corresponds exactly to Oct4-, Sox2- and Klf4-binding site in
mouse ES cells (mm8 genome browser: Mbd3-binding chr11:
68209776-68210746; Fig. 4h)12. As depicted in Fig. 4i, Mbd3
knockdown before reprogramming induction led to a rescue of
Ntn1 downregulation. In agreement with this finding,
comparison of Netrin-1 expression profile during MEFwt/wt and
Mbd3fl/- reprogramming shed light on a significantly higher
induction of Ntn1 in day 8 Mbd3fl/- MEF reprogramming than in
day 11 MEFwt/wt, whereas Ntn3 expression profile remains
unaffected (Supplementary Fig. 4b). Luciferase assays confirmed
that Oct4 and Klf4 repressive effect on Netrin-1 promoter activity
is mainly mediated by Mbd3 (Fig. 4j). Moreover, depletion of the
other NuRD components Mta1 and Chd4 before reprogramming
also rescued Ntn1 downregulation, whereas Mta2 knockdown had
no effect (Fig. 4k). Taken together, these data demonstrate that a
Mbd3/Mta1/Chd4-containing NuRD complex is responsible for
the transient Netrin-1 transcriptional repression observed upon
reprogramming.

Netrin-1 limits apoptosis in pluripotent cells. Finally, owing to
the high Netrin-1 expression level in iPS cells, we asked whether
Netrin-1 contributes to pluripotency maintenance. Taking
advantage of blastocyst-derived stem cells in vitro, we showed
that Ntn1 expression is confined to ES cells and absent from the
extra-embryonic-derived TS and XEN cells, whereas UNC5b is
detected in the three in vitro cellular models, even if at a reduced
level compared with MEF (Fig. 5a). We next showed that the
Netrin-1 promoter activity is strong in pluripotent ES cells
compared with MEF, because of genomic elements located in the
promoter part B (Fig. 5b). We asked whether Netrin-1 is
expressed during pre-implantation development but Ntn1 mRNA
could not be detected in blastocysts by in situ hybridization. This
observation was confirmed by exploiting single-cell PCR resource
performed in mouse blastomeres and in ES cells28. Ntn1 and its
receptors (DCC, UNC5a-d) are not detected at the blastocyst or
epiblast stages in vivo but Ntn1 and UNC5b are activated during
the ES cell derivation process (Supplementary Fig. 4c). To
evaluate Netrin-1 function, Netrin-1 knockdown ES cells were
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established by lentiviral infection with two different shRNA
(Fig. 5c–g and Supplementary Fig. 4d). In a colony formation
assay, we showed that Netrin-1 depletion led to a drastic
reduction in the number of AP-positive colonies obtained in the
presence or absence of LIF, demonstrating that Netrin-1 con-
tributes to maintain ES cell self-renewal properties (Fig. 5c–e).

Moreover, when the morphology of the mouse ES colonies was
compared, a 30% decrease in the percentage of ‘undifferentiated’
colonies (round, strongly and homogeneously positive for AP)
and a concomitant 30% increase in the percentage of ‘mixed’
colonies (weak and heterogeneous AP staining) was detected with
the Netrin-1-depleted population, suggesting a defect in the
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stability of the pluripotent state (Fig. 5f). This phenotype could be
due to a defect in cell cycle and/or survival in such challenging
conditions. No significant change on cell cycle could be detected
upon Netrin-1 knockdown (Supplementary Fig. 4e). However,
Netrin-1 depletion led to a significant increase of the percentage
of apoptotic cells, whereas necrotic occurrence remains
unaffected, demonstrating a protective effect of Netrin-1 in
pluripotent cells (Fig. 5g and Supplementary Fig. 4f). Conversely,
stable mouse ES clones expressing exogenously Netrin-1 present
an improved self-renewal ability in colony formation assay
(Fig. 5h–j). The effect on the ES cell morphology was particularly
striking with colonies that remained undifferentiated even after 5
days in differentiation conditions in the absence of LIF (Fig. 5h).
Interestingly, such Netrin-1 exogenous expression reduced
significantly apoptosis occurrence in ES cells (Fig. 5k,l and
Supplementary Fig. 4g). Owing to UNC5b expression in ES cells,
we asked whether Netrin-1 function was mediated by this
dependence receptor. UNC5b knockdown rescues Netrin-1
depletion effect on colony formation assay and apoptosis
occurrence, identifying the pair Netrin-1/UNC5b as novel
regulators of apoptosis in pluripotent ES cells in vitro (Fig. 5m–
p and Supplementary Fig. 4h).

Discussion
Together, the data presented here described the importance of the
dependence receptor paradigm both in the regulation of
reprogramming and of pluripotency, the balance between
Netrin-1 and its receptors DCC or UNC5b being key to regulate
both processes. Dependence receptors form a family of more than
20 membrane receptors that are not linked by their structure, but
by the common functional trait of triggering active apoptosis in
the absence of their respective ligand. Thus, cells expressing these
types of receptor are dependent on the presence of ligands in the
extracellular environment to survive.

Along this line, it was recently formerly demonstrated that the
Netrin-1/DCC pair plays a major role in cancer with DCC
constraining tumour progression19,29 and with Netrin-1-
promoting tumour progression10,30 via their respective pro-
apoptotic/survival activity. This dual activity may also be
implicated in neuronal navigation and developmental
angiogenesis11,31

In this study, we identified unexpected functions for the
secreted cue Netrin-1 in regulating iPS cell generation and
pluripotency maintenance (Fig. 5q)26. On the one hand, we
propose an integrated model deciphering how the early

dichotomous function of OSKM leads to the recruitment of a
repressive Mbd3/Mta1/Chd4-containing NuRD complex to the
Ntn1 promoter, leading to Netrin-1 deficiency. This finding
reinforces and broadens the view that early OSKM impaired
binding to the somatic genome, combined with the recruitment
of antagonistic epigenetic complexes, result in aberrant gene
expression that is detrimental for iPS cell generation12,26. We
show that the destabilization of the balance between Netrin-1 and
its receptor DCC leads to apoptosis induction at the early stage of
reprogramming and reduces iPS cell generation. Importantly, we
established Netrin-1 as a recombinant protein able to improve the
generation of miPS and hiPS cells under specific culture
conditions. On the other hand, our work shed light on another
Netrin-1 function in ES cell self-renewal, notably by constraining
UNC5b-mediated apoptosis. Our work, by providing novel
insights into the early stage of reprogramming and pluripotency
maintenance, should shorten the road to develop clinically useful
iPS cells.

Methods
Cell culture and RNAi experiments. MEFs were derived from E13.5 embryos
from different backgrounds. Mouse pre-iPS, iPS and Cgr8 ES cells were cultured
on gelatin or on irradiated MEF in KSRþ LIF or KSR 2iþ LIF32 as previously
described33. Mouse XEN and TS cells were grown as previously reported33.
Intestinal epithelium was grown and induced to form iPS cells, as previously
reported14. 293T and plat-E cells were grown in DMEM supplemented with 10%
FCS and penicillin/streptomycin. For reprogramming, when stipulated, 2i
components were added 5–6 days post OKM induction (infection or dox
treatment). PD0325901 and chiron were purchased from Merck Millipore. shRNA
experiments were performed using pLKO.1 vectors and short interfering RNA
(siRNA) using esirna from Sigma (SHCLNG-NM_008744 for Ntn1, SHCLNG-
NM_007831 for DCC, SHCLNG-NM_029770 for UNC5b and EMU022741 for
Mbd3, SHCLNG-NM_054081 for Mta1, SHCLNG-NM_11842 for Mta2 and
SHCLNG-NM_145979 for Chd4). TRC clone numbers are available upon request.
Luciferase assays were performed using dual luciferase reporter assay system
(Promega, E1910). MEF and HEK293 cells were transfected using Lipofectamine
2000 (Life Technologies). Human Mbd3 stealth siRNA were employed (Life
Technologies, hss147580 and hss147581). The different constructs of human
Netrin-1 promoter were already described23. HA-Flagged Netrin-1 cDNA was
cloned into the PacI and XhoI restriction sites of pcagg-ires-puro plasmid giving
rise to pcagg-Netrin-1-ires-puro vector (pcagg-ires-puro is a kind gift from
Ian Chambers). ES cells were stably transfected using FugeneHD reagent
(Promega, E2691).

Antibodies. Primary antibodies used in this study for immunofluorescence and
FACS are as follows: anti-Oct4 (Santa Cruz, C10), anti-Nanog (Cosmobio, RCA
B000 2P-F), anti-thy1 (Ebiosciences, 53-2.1), anti-SSEA1 (Stem Cell Technologies,
60060PE) and NL493-conjugated anti-SSEA4 antibody (R&D Systems, SC023),
anti-Tra1-60 (Stemgent, 09-0009).

Figure 5 | Netrin-1 promotes pluripotency features in vitro. (a) Netrin-1 and UNC5b expression in blastocyst-derived stem cells. Semi-quantitative RTPCR

depicts Ntn1, UNC5b and housekeeping rs17 expression levels. (b) Netrin-1 promoter activity in pluripotent versus somatic contexts. Netrin-1 promoter

constructs were transfected in mouse embryonic stem (mES) and mouse embryonic fibroblasts (MEF) cells. Data are normalized to Renilla activity and

expressed as the mean±s.d. (n¼ 3). Student’s t-test, Po0.05. (c–f) Netrin-1 knockdown decreases colony formation ability of mES cells. sh scrambled,

shNtn1#1 and shNtn1#2 mES cells were plated at low density and grown for 6 days in the presence (proliferating condition) or absence (differentiation

condition) of LIF before AP staining. (c) Colony formation assay results. (d,e) Counting of AP-positive colonies obtained in the presence (d) or in the

absence (e) of LIF. Data are expressed as the mean±s.d. (n¼ 3). Student’s t-test, Po0.05. (f) Netrin-1 depletion affects mES cells pluripotency.

‘Unidifferentiated’ and ‘mixed’ colonies were scored after colony formation assay. The n indicates the number of colonies counted. Data are representative

of three independent experiments. (g) Representative FACS profile of apoptosis in sh scrambled and shNtn1#1 mES cells. Cells were plated at low density

for 3–5 days and stained with Annexin V/DAPI. (h–j) Netrin-1 exogenous expression improves mES cells self-renewal properties. (h) AP pictures of ‘control’

and ‘Netrin-1-expressing’ mES cells. Scale bars, 100 mm. (i) Counting of AP-positive colonies. Same protocol as c. Data are expressed as the mean±s.d.

(n¼ 3). (j) ‘Undifferentiated’ and ‘mixed’ colonies were scored after colony formation assay. Data are representative of three independent experiments. (k)

Representative FACS profile of apoptosis in ‘control’ and ‘Netrin-1-expressing’ mES cells. (l) Quantification of apoptosis in ‘control’ and ‘Netrin-1-expressing’

ES cells. Data are the mean±s.d. (n¼ 3). Student’s t-test, *Po0.05. (m–p) Netrin-1 depletion effect is rescued by UNC5b knockdown. (m) Bright-field

pictures of colony formation assay results. (n) AP-positive colony counting. Data are expressed as the mean±s.d. (n¼ 3). (o,p) Netrin-1 depletion effect on

apoptosis is rescued by UNC5b knockdown. (o) Representative FACS profile of apoptosis in sh scrambled, shNtn1, shUNC5b and shNtn1þ shUNC5b mES

cells. (p) Quantification of apoptosis following Netrin-1 and/or UNC5b depletion. The apoptotic cells percentage in sh-scrambled mES cells is set at 100%.

Data are the mean±s.d. (n¼ 2). Student’s t-test, *Po0.05 or **Po0.01. (q) Model recapitulating Netrin-1 function in reprogramming and pluripotency

maintenance.
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Retroviral and lentiviral production. Plat-E cells were used to produce
pMXs-based retroviruses containing the cDNA for Oct4, Sox2, Klf4 or cMyc, as
previously described32. PlatE-generated mCherry retrovirus was used to monitor
MEF infection efficiency in each experiment. 293T cells were used to produce
lentiviral pLKO-derived particles.

Mouse iPS cells generation. For iPS induction, MEFs were seeded per well of a
six-well plate and 12 h later overnight infections were performed using equal
amounts of each indicated retrovirus in the presence of 8 mg ml� 1 polybrene
(Sigma, 107689). The day after, wells were rinsed twice and cells were cultivated in
medium supplemented or not with 150 or 750 ng ml� 1 recombinant Netrin-1
(rNetrin-1). Forty-eight hours after infection, MEFs were reseeded onto irradiated
feeders in iPS media. Media were replaced every day with medium alone or freshly
supplemented with rNetrin-1. Emerging iPS colonies were monitored until days
12–14 when cells were harvested or individual colonies picked for further analysis.
Similar protocol was employed with RNA sendai virus (cytotune 2.0, Life
Technologies). The dox-inducible mice were purchased from the Jackson
Laboratories (stock number 011001). MEFs, adult fibroblasts from ear and tail
tip and intestinal epithelium were plated on irradiated feeders and treated with
doxycycline at 2 mg ml� 1. Recombinant Netrin-1 was purchased from Adipogen
(AB40B-0075). Because of the poor stability of the recombinant Netrin-1 molecule
and variability between batches, batch activity was systematically tested in cell
death assays using UNC5b-transfected cells. The blocking Netrin-1 antibody was
obtained from the Netris Pharma company.

Human iPS cells generation. Reprogramming experiments have been performed
on 5� 105 HFFs (Millipore) seeded in a well of six-well plates and grown in
FibroGRO-LS medium (Millipore) until replating on MEFs. Cells were infected
overnight with Sendaı̈ viruses (Cytotune, Life Technologies) each of them at
multiplicity of infection (MOI)¼ 3. The day after, wells were rinsed twice and cells
were cultivated in medium supplemented or not with 150 or 750 ng ml� 1 rNetrin-
1. Media were replaced every day with medium alone or freshly supplemented with
rNetrin-1. Seven days post infection, cells were seeded onto freshly mitomycin-C-
treated MEF at a density of 1� 105 or 2� 105 HFF cells per plate. The next day
medium was switched to DMEM/F12 culture medium supplemented with 20%
PluriQ Serum Replacement (GlobalStem), 0.1 mmol l� 1 non-essential amino acids,
1 mmol l� 1 L-glutamine, 0.1 mmol l� 1 2-mercaptoethanol, penicillin/streptomycin
(all of them from Life Technologies), 12.5 ng ml� 1 recombinant human basic
fibroblast growth factor (Milytenyi Biotec). At day 26, fully reprogrammed colonies
were manually picked and transferred to freshly mitomycin-C-treated MEF for
amplification.

Apoptosis detection. Cells were stained with anti-thy1 and apoptosis
quantified with the Dead Cell Apoptosis Kit with Annexin V FITC and DAPI
(Life technologies, V13242).

Colony formation assay was performed as previously described32.

FACS sorting. Analysis was performed on a BD LSRFortessa. Sorting was
performed on a BD FACSDiVa. Cells were sorted, washed immediately and
centrifuged before being plated directly in fresh medium or frozen for RNA
extraction and gene expression analysis.

RNA-Sequencing. RNA quality was analysed using a Bioanalyser (Agilent).
Libraries were constructed and sequenced on an illumina Hiseq 2000 by the MGX
company. GEO record series GSE54107.

Teratoma formation assay. 5� 106 iPS cells were injected under the kidney
capsules of 7-week-old severe combined immunodeficient (SCID) mice
(CB17/SCID, Charles River). After 3 weeks, the mice were euthanized and lesions
were surgically removed and fixed in formol or in 4% paraformaldehyde for
cryosections. Same procedure was employed with 5� 105 iPS cells injection in
testicles. Human teratoma formation was conducted as previously described34.
All animal procedures were performed in accordance with the institutional
guidelines (French ceccapp project 01369.01).

Quantifications and Statistics. Comparison of the reprogramming efficiencies
was performed on littermate embryos. At least two different batches of MEFs and
reagents were used. Statistical analyses of mean and variance were performed with
Prism 6 (GraphPad Software) and Student’s t-test. The littermates belong to an
experimental group determined by the genotyping.
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