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Abstract
The first annual Stroke Translational Research Advancement Workshop (STRAW), entitled BUncovering the Rosetta Stone: Key
Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical^was held at the University of Kentucky on October 4–
5, 2017. This workshop was organized by the Center for Advanced Translational Stroke Science. The workshop consisted of
2 days of activities. These included three presentations establishing the areas of research in stroke therapeutics, discussing the
routes for translation from bench to bedside, and identifying successes and failures in the field. On day 2, grant funding
opportunities and goals for the National Institute for Neurological Diseases and Stroke were presented. In addition, the meeting
also included break-out sessions designed to connect researchers in areas of stroke, and to foster potential collaborations. Finally,
the meeting concluded with an open discussion among attendees led by a panel of experts.
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Introduction

Stroke remains a leading cause of death and disability world-
wide [1–3]. While therapeutic research has yielded two vital
acute interventional treatments for stroke, intravenous throm-
bolysis and mechanical thrombectomy [1, 4, 5], the vast ma-
jority of research has not yet translated into standardized and
efficacious therapeutic strategies. Organized groups and pro-
fessional societies have worked to overcome the failures of
translation from bench to bedside. For example, the STAIR
meetings have developed criteria for research models of stroke
disease [6–9]. The adoption of these strategies has been rela-
tively slow and requires continual emphasis and discussion [9].
Recently, the National Institute of Neurological Disorders and
Stroke (NINDS) at the National Institute of Health (NIH) held
a conference entitled the BTranslational Stroke Research:
Vision and Opportunities Workshop^ [10]. This workshop
was highly successful in bringing together researchers that
could have a high impact on future stroke therapeutics [10].
In an effort to build upon these efforts, we organized the first
annual Stroke Translational Research AdvancementWorkshop
(STRAW), entitled BUncovering the Rosetta Stone: Key
Elements in Translating Stroke Therapeutics from Pre-
Clinical to Clinical.^ The workshop consisted of 2 days of
activities. The first day included three presentations establish-
ing the areas of research in stroke therapeutics, discussing the
routes for translation from bench to bedside, and identifying
successes and failures in the field. On day 2, grant funding
opportunities and goals for the National Institute for
Neurological Diseases and Stroke were presented. In addition,
the meeting also included break-out sessions designed to con-
nect researchers in areas of stroke and to foster potential col-
laborations. Finally, the meeting concluded with an open dis-
cussion among attendees led by a panel of experts. While the
meeting was well-attended, we aim to publish the proceedings
for the benefit of all engaged in stroke research.

Conference Proceedings—October 4–5, 2017

Leveling the Playing Field: Update on the Current
Clinical Paradigm in Stroke and Opportunities
of Translational Research (Presented by William J.
Mack)

Engaging in true translational research for stroke therapeutics
requires a working knowledge of the current state of treatment
for acute stroke. For acute ischemic stroke, the most devastat-
ing subtype is emergent large vessel occlusion (ELVO); this
involves acute occlusion of one of the main arteries of the
Circle of Willis. During an ELVO, approximately 1.8 million
neurons are lost per minute [11]. Standard treatment includes
administration of intravenous (IV) tissue plasminogen activator

(tPA), with a goal of emergency room arrival to infusion initi-
ation (called the BDoor to Needle^ time) of less than 60 min
[12]. However, IV tPA has varying efficacy depending on the
stroke-affected artery (e.g., 31–44% recanalization of cases of a
distal M2 branch of the middle cerebral artery (MCA), but only
4–8% recanalization of occlusions of the terminal internal ca-
rotid artery (ICA) [13, 14]). Given this issue, endovascular
mechanical thrombectomy (MT) has provided an additional
resource for acute recanalization of ELVO. While MT has ex-
panded the window of intervention, time remains critical, as
probability of good clinical outcome decreases rapidly over
time [15]. In 2015, multiple clinical trials demonstrated the
significant benefit in outcomewhenmechanical thrombectomy
is used to treat ELVO [1, 5, 16, 17]. This has resulted in new
guidelines for the use of mechanical thrombectomy to treat
ischemic stroke [18–20]. Significantly, themost current clinical
trials in this area, DEFUSE 3 and DAWN, suggest that the
window of benefit for thrombectomymay extend to 16 or even
24 h from Blast known normal,^ respectively, in ischemic
stroke patients who had a mismatch between the severity of
clinical deficit and the infarct volume [21, 22].

Despite these advances in recanalization, there remain sig-
nificant opportunities for therapeutic development in ischemic
stroke. In a pooled analysis of the randomized clinical trials on
thrombectomy conducted 2010–2014, only 26.9% of 633 pa-
tients that underwent thrombectomy achieved a modified
Rankin score (mRS; a score that measures the degree of dis-
ability or dependence in the daily activities of people who have
suffered a stroke or other neurological disability) of 0–1
(denoting minimal or no disability at 90 days) [23]. Though
this represents a significant benefit over those who do not
receive thrombectomy, it reflects a clear opportunity for further
therapeutic development. Areas of most pressing need include
advancements in time, access, and adjunctive neuroprotective
strategies. Time is vital, as faster onset to treatment times have
been associated with reduced mortality, reduced symptomatic
intracranial hemorrhage, and increased independence after re-
canalization. Access to acute stroke care is also a major issue.
In a study of geographic access, approximately 50% of the
USA is within 60 min of ground access to the thrombectomy
capable hospital, while 85% of the USA is within 60min of air
access [24]. Progress is advancing in terms of hospital sys-
tems; the majority of stroke patients in the USA are hospital-
ized in states where there are established or organizing stroke
systems of care [25]. Codifying stroke systems of care will aid
in rapid triage and transport, but time delays continue to exist
and negatively impact outcome [26, 27]. From a translational
therapeutics standpoint, these issues of time and access could
be addressed, in part, through adjunctive therapies aimed at
preserving tissue, enhancing collateral circulation, and
protecting parenchyma from ischemic damage.

With the emphasis now on vessel recanalization, but facing
issues of time and access, neuroprotective adjunctive
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strategies are more important than ever before. However, neu-
roprotective agents for ischemic stroke have been studied ex-
tensively, with notable failures in clinical trials [28]. Reasons
for failure included lack of translatability in pre-clinical testing
(stroke models and laboratory animals that fail to represent
actual stroke patients and their underlying comorbidities, age
and gender differences as discussed in greater detail below),
extended time windows of administration, mismatching of
stroke severity/subtype in pre-clinical and clinical conditions,
clinical trial design, lack of study on combinational drug ther-
apies, and the heterogeneity of target populations in studies.
Current strategies under study include a focus on distinct time
points: pre-hospital, intravenous administration coupled with
tPA +/− thrombectomy during acute treatment, intra-arterial
administration during thrombectomy, and systemic adminis-
tration after consideration of initial recanalization therapy
[29–31]. In designing and evaluating novel therapeutics, re-
searchers should be mindful of these potential windows, de-
signing pre-clinical studies to mirror the target window in this
paradigm.

Ample windows for therapeutic development also exist in
hemorrhagic stroke. Intracranial hemorrhage (ICH) is a se-
verely disabling stroke subtype, where data for aggressive
intervention are relatively lacking compared to subarachnoid
hemorrhage and ischemic stroke. Treatments continue to be
evaluated that are aimed at the major contributors to brain
injury: edema, oxidative stress, inflammation, and potential
for additional bleeding [32]. Furthermore, secondary injury
occurs within 24 h, as iron and heme induce inflammation,
reactive oxygen species, and glutamate release, and inhibit
DNA repair [33]. Compounds currently under study include
such drugs as deferoxamine, minocycline, statins, celecoxib,
desmopressin, and conivaptan. These drugs each addresses
some aspect of the pathology noted in the mechanisms above
[32, 34, 35]. Similar to stroke and thrombectomy in the past,
advances in ICH treatment have been stalled by a lack of
significant positive data supporting evacuation/removal of
the hematoma. Currently active trials are evaluating the utility
of minimally invasive strategies for clot removal such as
catheter-based clot thrombolysis (MISTIE) and port-based
microsurgical removal (ENRICH) [36, 37]. In that vein, addi-
tional opportunities exist for translational research in ultra-
early treatment strategies (prior to secondary injury), combin-
ing surgical evacuation with neuroprotective/neuroreparative
strategies, clot-directed neuroprotection, and systems of care
development.

Aneurysmal subarachnoid hemorrhage and its feared con-
sequence, vasospasm and related ischemic injury, also offer
opportunities for translational research. Despite continued ad-
vancements in devices used to repair the aneurysms them-
selves, relatively little clinically demonstrated research has
changed the treatment of cerebral vasospasm. Common treat-
ments include nimodipine in the pre-vasospasm interval to

reduce injury, induced hypertension to increase cerebral per-
fusion, and endovascular strategies. Those include translumi-
nal balloon angioplasty and intra-arterial drug administration;
typical agents include verapamil, papaverine, nimodipine, and
milrinone. Current areas of study include nitric oxide donors,
endothelin-1 antagonists, low-dose heparin, and intrathecal
agents; the NEWTON2 trial is currently underway to evaluate
intraventricular sustained-release nimodipine for SAH [38].
Opportunities exist for developing sustained-release spasmo-
lytics, as well as intra-arterial neuroprotectants that could be
injected during the time of standard intra-arterial treatments
for vasospasm.

Animal Models—The Stroke Researcher’s Workhorse
(Presented by S. Thomas Carmichael and Miguel
Perez-Pinzon)

Animal models represent a research workhorse for developing
novel therapeutics in stroke and cerebrovascular disease. The
most widely recognized is the MCA occlusion model in ro-
dents. This involves a surgical neck dissection with isolation
of the carotid bifurcation; using the external carotid artery
(ECA) for access, a blunted suture is advanced through the
internal carotid artery (ICA) to occlude (permanently or tran-
siently) the ICA bifurcation intracranially. This model yields a
large vessel-type occlusion, similar to an M1 occlusion in
humans, with hemispheric involvement of both cortex and
deep structure [39, 40]. Variations on this model exist,
allowing the occlusion to be tailored to create different-sized
infarcts with either permanent or transient occlusion [41, 42].
The photothrombotic model provides a focal cortical infarct,
which canmimic distal small vessel infarcts in humans, except
that in the model all vessels are thrombosed and just not arter-
ies [43]. For hemorrhagic stroke, multiple models exist. For
basal ganglia ICH, models include stereotactic autologous
blood injection, stereotactic collagenase injection, and stereo-
tactic striatal balloon inflation [44, 45]. For SAH and vaso-
spasm, common models include cisterna magna autologous
blood injection and ICA vessel perforation [44]. This model
is similar to the MCAOmodel, but uses a sharp-tip filament to
puncture the ICA [46].

The selection of the type of animals plays an important role
in model translation to human disease. Rodents represent the
foundation model for most animal stroke research, while large
animal studies are often used for more confirmatory experi-
ments in novel therapeutics. Furthermore, while therapeutic
research may often begin with single-gender, young, wild-
type normal animals, experimental planning should expand
into aged, comorbid animals of both genders [47–49]. To ad-
dress the importance of translatability to human disease, mul-
tiple working groups have published recommendations for
pre-clinical animal research in stroke therapeutics. These in-
clude such groups as the Stroke Therapy Academic Industry
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Roundtable (STAIR), Stem Cell Therapies as an Emerging
Paradigm in Stroke (STEPS), and Stroke Recovery and
Rehabilitation Roundtable (SRRR) [6, 7, 50–53]. Common
recommendations made include the experimental evaluation
of both genders, aged animals, comorbid animals, multiple-
laboratory collaboration for reproducibility, long-term behav-
ioral evaluations, use of biomarkers when appropriate to mea-
sure treatment effect, and dose-response curve evaluations.
Additionally, as previously mentioned, time windows for in-
terventions should reflect important clinical timelines in cur-
rent treatment paradigms, and treatment effects should be
demonstrated to be causative from mechanism to effect rather
than correlative whenever possible.

In terms of clinical outcome assessments in stroke, there
should be rigor in behavioral and cognitive assessments.
Cognitive assessments such as the Barnes Maze represent spa-
tial memory tests that are species-appropriate, and allow for
recording and evaluation of multiple variables such as dis-
tance, latency, error rate, and search strategy [54]. Other valu-
able tools include contextual fear conditioning, Yor Tmazes to
test executive function, and zero mazes and sweetened water
for anxiety/depression. While performing all such tests in ev-
ery experiment is prohibitive, including more than one test in
an experimental cohort provides both confirmation of pathol-
ogy and increased opportunity to demonstrate treatment signal.

Finally, animal models offer an opportunity to screen po-
tential therapeutic targets. While positive findings are encour-
aging and supportive of clinical trials, negative data can be just
as informative. Indeed, the rigor needed to disprove a hypoth-
esis is, in many ways, more significant. In cases of small N
numbers, negative results may likely represent a beta error. As
such, exhaustive evaluations that result in uniformly negative
data should be celebrated. Publication of well-designed exper-
iments with negative results should be a priority as it informs
the scientific space [55, 56].

Animal Models—Diamonds in the Rough (Presented
by Halina Offner and Lauren Sansing)

Do Animal Trials Translate to Human Subjects?

Development of a novel therapeutic is a protracted process
from animal models to a treatment for humans.
Recombinant T cell receptor ligands (RTL) were presented
as an example of drug development, which was first devised
for treatment of multiple sclerosis (MS) and now has shown
efficacy in rodent models of stroke [57]. The RTL is com-
prised of domains from MHC class II tethered to a myelin
antigenic peptide, which inhibits activation of both monocytes
and T cells. Monocyte activation is blocked by RTL1000 by
competitively displacing macrophage migration inhibitory
factor (MIF) binding to the CD74 receptor. A single dose of
RTL1000 effectively suppresses symptoms in a mouse model

of MS even after the onset of clinical signs. Delayed multiple
daily doses were effective in reducing tissue damage in a
chronic progressive MS-like disease model at least partially
through downregulation of CD74 expression on monocytes.
A phase 1 clinical trial was completed demonstrating no ex-
acerbation of disease and CD74 as a key biomarker for MS.
As shown by Fig. 1, this drug development began in 1996 and
requires decades from basic research using relevant animal
models to clinical trials. The business grant mechanism from
NIH, STTR/SBIR, is important to support and facilitate drug
development towards clinical use.

Since RTL1000 is anti-inflammatory, and blocks cell mi-
gration into the brain, it has been applied to treating experi-
mental stroke.Mouse models do provide enough similarities to
the human immune response to stroke for translational studies
[58]. To demonstrate the adaptive immune system’s detrimen-
tal role in stroke, splenocytes sensitized to myelin oligoden-
drocyte protein were administered to SCIDmice with transient
MCAO [59]. These mice had larger infarcts and poorer neuro-
logical outcomes. Since RTL1000 interferes with the adaptive
response, this agent was used to treat male, female, and
middle-aged male mice after MCAO [60]. The efficacy of
RTL1000 was not dependent on sex or age of the mice and
was effective in other stroke models as well as in combination
with tPA. Additionally, this treatment increased the number of
splenocytes while decreasing immune cells in the injured
hemisphere. These studies were in accordance with the up-
dated STAIR recommendations that state studies should in-
clude both sexes and aged animals [61] and suggest that this
approach could be successful in treating human stroke patients.

One problem with RTL1000 is that its beta-1 domain must
match the recipient patient’s MHC II. HLA-DRα1-MOG35-
55 is a novel RTL that does not contain the beta-1 domain.
DRα1-MOG-35-55 was found to be neuroprotective in ische-
mic stroke in male and female mice [62]. DRa1-MOG-35-55
treatment reduces CD74 expression in ischemic brain after
MCAO. The expression of CD74 is upregulated after ischemic
stroke and is associated with stroke severity. Moreover, CD74
changes in blood may be useful as a biomarker for stroke.

In summary, a successful pharmaceutical approach for one
neurological pathology may also be utilized to other insults or
diseases of the brain. The development of a new pharmaceu-
tical for treatment of brain diseases or injury requires many
years until they are readily available to the patient. The NIH
does provide grant mechanisms such as STTR/SBIR to expe-
dite the process. However, the pre-clinical studies must in-
clude both sexes and aged rodents to enhance the probability
of translation to the human patient.

Successes in Translation and Attempts at Reverse Translation

While the conference has emphasized the shortcomings of
pre-clinical stroke research, there have been success stories,
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such as intravenous tPA for acute stroke, flow diversion for
intracranial aneurysms, and tPA used for intraventricular hem-
orrhage. The use of tPAwithin a 3-h window from last known
normal improves outcomes 33% of the time while only wors-
ening outcomes 3% of the time [63]. The first publication on
tPA described its use in a rabbit embolic stroke model [64].
This rabbit model was used successfully to determine dose
and adverse effects in the development of tPA for human
patients [65]. Intracranial aneurysms are balloon-like dilations
of cerebral arteries that represent 3% of all strokes [66].
Models using dogs and rabbits were utilized to perfect intra-
vascular flow diversion devices to treat aneurysms [67–69].
The first intraventricular delivery of a thrombolytic used uro-
kinase in a dog model [70]. This pre-clinical research led to
CLEAR III clinical trials [71] and MISTIE III [72]. These
studies demonstrated that animal models should be developed
to answer the specific question and employ experimental rigor
(ex: randomization, blinding).Most importantly, insights from
human data and the causes of patient poor outcomes must be
taken into account to improve the animal models to be rele-
vant to the clinical questions.

Importantly, human data should be utilized to fuel research in
animal models for mechanistic studies. This strategy has proven
fruitful in identifying granulocyte andmonocyte phenotypes and
corresponding molecular signaling in response to intracranial
hemorrhage (ICH). In these studies, blood and hematoma sam-
ples from human ICH patients were used to identify subpopula-
tions of neutrophils and monocytes reacting to the injury [73].
Over time after ICH, monocyte phenotype changed from an
inflammatory to a reparative one [74]. Specific molecular path-
ways were then identified in mouse models and further verified
in human patients. From this reverse translational work, several
key signaling molecules have been identified that could lead to
novel therapeutic approaches to hemorrhagic stroke.

Despite an overall lack of translational success in stroke re-
search, animal models did lead to the development of tPA and
intravascular stent devices to improve outcomes in human stroke
patients. However, more can be accomplished to perfect animal
models through reverse translation, as schematically represented
in Fig. 2. Observations in humans can be tested in animal
models to mechanistically elucidate cellular and molecular path-
ways that can then be verified in the human condition.

Fig. 1 Timeline of the development of the RTL1000 for treatment in multiple sclerosis and stroke
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Grantsmanship for Translational Research (Presented
by Francesca Bosetti)

The National Institute of Neurological disorders and Stroke
(NINDS) supports the full spectrum of basic, translational,
and clinical research in order to seek fundamental knowledge
about the brain and nervous system and to use that knowledge
to reduce the burden of neurological disease. NINDS supports
research resources and technical advances that catalyze new
therapeutic interventions for neurological disorders and is
committed to training the next generation of scientists and
supporting the increase of underrepresented groups in the
growing field of neuroscience research, through a variety of
individual and institutional training programs that incorporate
dedicated mentorship (https://www.ninds.nih.gov/Funding/
Training-Career-Development).

The mission of NINDS Division of Translational Research
(DTR) is to facilitate the pre-clinical discovery and the develop-
ment of new therapeutic interventions for neurological disor-
ders. NINDS supported the body of research that led to current
thrombolytic and endovascular therapies used in stroke and is
actively supporting the discovery and development of new treat-
ments for ischemic and hemorrhagic stroke. The NINDS
Division of Translational Research offers several grant programs
that nurture early-stage therapy development to Phases 1 and 2
clinical trials (https://www.ninds.nih.gov/Current-Research/
Research-Funded-NINDS/Translational-Research). These
programs are milestone-driven and offer multiple entry points
in the therapeutic development pipeline. Small business innova-
tion research/small business technology transfer (SBIR/STTR)
grants are additional available mechanisms to support therapeu-
tics, diagnostics, and tools for research and can include basic
research, translational research, and early-stage clinical trials.

In November 2016, the NINDS-sponsored workshop
BTranslational Stroke Research: Vision and Opportunities^
produced recommendations [10] to align pre-clinical outcome
measures with phase II human outcome measures including
cognitive outcomes [10], and use animal models that ade-
quately model human strokes. Problems in translational stroke
research include pre-clinical endpoints that do not reflect clin-
ical outcome, lack of good lab practices to reduce bias, and a
general lack of enthusiasm for publishing negative findings.
On the clinical side, drugs may not be tested at the right time,
duration, or dose, inclusion criteria may be too broad, and the
common clinical outcome measure, the modified Rankin
Score (mRS) scale, has clear limitations in the assessment of
cognitive function and recovery of function. As stated above,
to improve translation of novel stroke therapeutics, experi-
mental animal models need to recapitulate human stroke,
and validate pre-clinical target to make sure they are applica-
ble for the human population. One of the recommendations
indicated the potential value of multicenter networks, with
centralized randomization and data management, for pre-
clinical testing of late-phase promising therapies.

Current and Future Debates in Translational Stroke
Research (Moderated by Cenk Ayata)

The format was an open discussion that encouraged interac-
tion between the panelists and the attendees. While several
issues were deliberated, most of the dialog centered on the
team-building approach to connect clinicians and basic scien-
tists. One issue that separates clinical and basic scientists is
that they are often physically housed in different areas of a
medical center/university, which creates a natural barrier to
inertia in collaboration. There is a need to incentivize cross-

Fig. 2 Reverse translation: back
and forth research between
human and animal studies
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talk. Researchers should be encouraged to attend clinical sem-
inars and meetings, such as grand rounds, to interact with
clinicians as well as to develop an understanding of the clin-
ical environment. Conversely, clinicians are incentivized to
see patients and provide income for the hospital so it is diffi-
cult to allocate time for research. While Bprotected time^ is
important, a more novel approach may be to organize transla-
tional research efforts along service-line models from a high-
level administrative standpoint.

Conclusions

Translation of stroke therapeutics from bench to bedside re-
mains a major challenge. One barrier is the relative heteroge-
neity of stroke in the human condition compared to animal
models. Improving animal models to closely mimic the spe-
cific stroke condition under study for targeted therapeutics is
vital. Second, fostering continuous cross-talk between clini-
cians and basic researchers is a priority. Service-line grand
rounds/seminars and administratively supported research time
are vital. Finally, bringing researchers into the clinical spaces
is important; reverse translation informs the animal models for
testing new therapeutics. Through such efforts, the next phase
of stroke therapies can increase their chance to succeed.
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