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Diabetes and obesity are chronic conditions associated with elevated oxidative/inflammatory activities with a continuum of
tissue insults leading to more severe cardiometabolic and renal complications including myocardial infarction and end-stage-
renal damage. A common denominator of these chronic conditions is the enhanced the levels of cytokines like tumour necrosis
factor-alpha (TNF-α), interleukin (IL-6), IL-1β and resistin, which in turn activates the c-Jun-N-terminal kinase (JNK) and NF-κB
pathways, creating a vicious cycle that exacerbates insulin resistance, type-2 diabetes and related complications. Emerging evidence
indicates that heme oxygenase (HO) inducers are endowed with potent anti-diabetic and insulin sensitizing effects besides their
ability to suppress immune/inflammatory response. Importantly, the HO system abates inflammation through several mechanisms
including the suppression of macrophage-infiltration and abrogation of oxidative/inflammatory transcription factors like NF-κB,
JNK and activating protein-1. This review highlights the mechanisms by which the HO system potentiates insulin signalling, with
particular emphasis on HO-mediated suppression of oxidative and inflammatory insults. The HO system could be explored in the
search for novel remedies against cardiometabolic diseases and their complications.

1. Background

There has been a dramatic rise in the number of patients
with the metabolic syndrome, a comorbid condition of
hypertension, obesity, and diabetes. Diabetes mellitus is a
chronic syndrome of impaired carbohydrate, protein, and
fat metabolism caused by insufficient secretion of insulin
and/or defects in insulin action in tissues due to insulin
resistance. The incidence of diabetes is increasing globally
[1] and type-2 diabetes (TD2) accounts for almost 90% of
the cases diagnosed [2–4]. It is projected that the prevalence
of T2D may reach 366 million in 2030 [1]. Similarly, the
condition of obesity has escalated as more than 300 million
adults, the majority of whom live in the developed world,
are affected [5]. Obesity is amongst the main risk factor for
insulin resistant T2D, hypertension, and other cardiovascular
and renal complications [6]. Although inadequate insulin
production is traditionally linked to type-1 diabetes (T1D),
emerging evidence suggests that pancreatic beta-cell mass
is reduced during the early stages of T2D and declines

further with the progression of disease, eventually leading
to loss of beta cells and reduced insulin production [7,
8]. This is consistent with previous observation indicating
that T2D is not solely due to insulin resistance but also
due to a failure of the insulin producing beta-cells to
secrete an adequate amount of insulin [9]. On the other
hand, in T1D it is a well-established concept that genetic
defects trigger autoimmunity leading to the destruction of
pancreatic beta cells and insulin insufficiency [10], and
these events are further accentuated by apoptosis [11–13].
Similarly, in T2D, intense inflammatory activities character-
ized by the presence of cytokines, apoptotic cells, immune
cell infiltration, amyloid deposits, and fibrosis may cause
reduction of pancreatic beta-cell mass [14]. In both T1D
and T2D, elevated inflammatory events play a major patho-
physiological role in the disruption of islet architecture [10,
14–20]. Several factors are responsible for inflammation in
T1D and T2D. These include dyslipidemia, hyperglycaemia,
elevated nuclear-factor kappaB (NF-κB) activity, increased
levels of adipokines such as tumour necrosis factor-alpha
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(TNFα), interleukins (ILs), resistin, leptin and free fatty acids
[14, 21]. Seen in this light, the suppression of apoptosis,
necrosis, and intraislet inflammatory/immune events may
be important for the preservation of islet architecture and
beta-cell morphology. Therefore, the regulation of beta-cell
number through the processes of proliferation, neogenesis,
and apoptosis is important to safeguard islet function [22,
23] and the maintenance of adequate insulin production
in T1D and T2D. Taken together, these studies suggest
that impaired insulin secretion is not only an important
etiological factor in the pathogenesis of T1D and T2D,
but also an important pathophysiological driving force
that is capable of dictating the dynamics and progression
of the disease. Thus novel therapeutic modalities capable
of suppressing inflammatory/immune responses, apoptosis,
and necrosis would be beneficial in the conditions of T1D
and T2D.

Generally, insulin resistance and T2D frequently occur
in obesity [24–35]. Amongst the contributing factors, are
overnutrition and inactivity. As an adaptive response to
insulin resistance, pancreatic islets enhance their secretory
activity. In most individuals, such an adaptation does occur
during early stages of overnutrition and metabolism would
appear normal at this stage. However, at later stages, this
adaptation eventually fails in some individuals, depending
on the genetic ability of the beta-cell to adapt and the
severity of the resistance to insulin [36]. The reasons for
this failure to maintain sufficient insulin secretion are
a combined decrease in beta-cell mass and insufficient
secretion of insulin. This reduction of insulin levels may
be due to elevate inflammation, oxidative stress, amyloid
deposition, lipotoxicity, and glucotoxicity [36]. Obesity
and insulin resistance are associated with a state of low-
grade inflammation due to chronic activation of innate
immune system [37]. Although epidemiological studies
have linked inflammation with obesity for decades, the
underlying mechanisms remained obscured until the last
decade. It is now widely accepted that the activation of
inflammatory mediators such as NF-κB, TNFα, and c-Jun-
N-terminal kinase (JNK) is amongst the common causes
of insulin resistant T2D in obsessed conditions [24–35].
Thus, novel strategies that can preserve beta-cell integrity
improve insulin sensitivity, and counteract inflammatory
mediators like NF-κB, TNF-α, and JNK would be useful in
the prevention and management of insulin resistant T2D and
related cardiometabolic complications. Recent evidence has
highlighted the important role of the heme oxygenase (HO)
in insulin release and glucose metabolism [38–52]. Beside its
emerging antidiabetic effects, the HO system is also known
to abate oxidative stress and immune/inflammatory response
[53–57]. This review will highlight the mechanisms by which
the HO system potentiates insulin signalling, with particular
emphasis on HO-mediated suppression of inflammation.

2. The HO System and Insulin Signaling

HO is a microsomal enzyme that cleaves the α-methene
bridge of heme moiety to produce equimolar amounts of

carbon monoxide (CO), bilirubin, and iron [58, 59]
(Figure 1). CO and bilirubin are known to suppress apop-
tosis, necrosis, inflammation, and oxidative stress [56, 60–
69], while the iron formed enhances the synthesis of the
antioxidant, ferritin [70, 71].

The main isoforms of HO include HO-1 (inducible)
and HO-2 (constitutive) isoforms [58, 59, 72, 73]. HO-1
and HO-2 are largely responsible for HO enzymatic activity
[58, 72, 73], while the third isoform, HO-3, has no functional
genes in rat and is considered a pseudotranscripts of HO-2
[74, 75]. The basal HO activity is maintained by HO-2 [58,
59, 72, 73, 76], while HO-1 is stimulated by a wide variety of
different physical, chemical, and pathophysiological stimuli
including oxidative and inflammatory insults [58, 59, 77–
80], as well as metabolic and hemodynamic factors such
as high glucose [80], elevated blood pressure [64], and
lipids [81]. Therefore, HO-1 may be considered a sensitive
index that is triggered in the onset of pathophysiological
changes. However, in most cases the pathophysiological
activation of HO-1 results only to a transient or marginal
increase of HO-1 that falls below the threshold necessary
to activate the downstream signalling components of the
HO system [59, 63, 82]. For example, the pathophysio-
logical activation of HO-1 by the hemodynamic stress of
elevated blood pressure is not accompanied by changes of
important component of HO-signalling like cyclic guanosine
monophosphate (cGMP) [59, 63, 82–85]. Therefore the
transient upregulation of HO-1 that normally accompanies
many pathophysiological conditions may represent the first
line of defense mounted against tissue injury to counteract
adverse changes that would destabilize the homeostatic con-
ditions in physiological milieu. Since the pathophysiological
activation of HO-1 may fall below the threshold necessary to
activate important signalling components through which the
HO system elicits its effects of restoring tissue homeostasis
[63, 82], a more robust enhancement of HO-1 would be
needed to surmount the threshold [63, 82–85]. This can
be achieved by pharmacological agents capable of inducing
HO like some metalloprotoporphyrin such as hemin (ferric
protoporphyrin IX chloride), stannous mesoporphyrin, cop-
per protoporphyrin, and cobalt protoporphyrin. Given that
many of the adverse factors which stimulate HO-1 such as
elevated blood pressure [64] and high glucose and lipid [80,
81] concentrations are implicated in the pathophysiology of
metabolic syndrome, the HO system may constitute a novel
approach that could be explored against metabolic syndrome
and related cardiometabolic complications (Figure 2).

The emerging role of the HO system in insulin release
and glucose metabolism is becoming increasingly clear [38–
52]. HO-mediated stimulation of insulin release has been
reported in different rats strains [38, 46, 49–52] and mice
[86, 87]. These studies suggest a central role of CO in glucose
metabolism. In the human body, CO is formed at a rate of
16.4 μmol/h and daily production of may reach 500 μmole
[88]. Interestingly, under normal physiological conditions,
islets of Langerhans produce CO and nitric oxide (NO)
to regulate insulin release [45, 46]. While NO negatively
modulates glucose-stimulated insulin release, CO stimulates
insulin secretion [45, 46]. Moreover, glucose stimulates
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pancreatic beta-cells to produce CO, which in turn triggers
insulin release [45, 46]. The critical role of the HO system
in insulin release and glucose metabolism was reported in
Goto-Kakizaki (GK) rats, a model with defective pancreatic
beta-cell HO-2 [38]. Since HO-2 is largely responsible for
basal HO activity [58, 59, 72, 73, 76] and thus the production
CO, the impairment of the HO system in GK rats resulted
in reduced CO and insulin insufficiency [38]. Interestingly,
treatment with the HO-inducer, hemin, or CO corrected
the defective HO system and enhanced insulin release with
improvement of glucose metabolism [38]. Collectively, these
studies suggest that reduced beta-cell CO and/or impaired
HO system may lead to dysfunctional glucose metabolism.

3. The Role of HO System in Inflammation and
Insulin Resistance

The inflammatory and metabolic systems are among the
most fundamental for survival, and these systems have
been evolutionarily well-conserved in species [37]. However,
the conditions of nutrient-overload or obesity may offset
these systems leading to inflammation in metabolic sites
like the adipose tissue, liver, and skeletal muscles. One
consequence of such imbalance is the increased produc-
tion of proinflammatory cytokines, adipokines, and other
inflammatory/oxidative transcription factors including NF-
κB activating protein (AP-1) and JNK. Although both JNK
and NF-κB play important roles in inflammation-induced
insulin resistance, accumulated evidence suggests that they
do so through different mechanisms. The principal mech-
anism by which JNK causes insulin resistance is through
the phosphorylation of serine residues in insulin receptor
substrate-1 (IRS-1) [89–91]. However, since JNK is a stress
kinase that also phosphorylates the c-Jun component of the
AP-1 [92], the activation of AP-1 by JNK may contribute to
aggravate inflammatory insults and hence insulin resistance.
NF-κB causes insulin resistance by stimulating proinflamma-
tory cytokines like TNF-α, IL-6, IL-1β, and resistin, which in
turn activates JNK and NF-κB pathways to create a vicious
cycle that will exacerbate tissue damage [89, 91, 93–97].

An important trigger of NF-κB, AP-1, and JNK is the
renin-angiotensin-aldosterone system (RAS). Like angiot-
ensin-II, aldosterone stimulates inflammation and fibrosis
by activating transcription factors such as NF-κB, AP-1, and
JNK [98, 99]. Moreover, oxidative stress will further enhance
the activation of JNK [100]. On the other hand, JNK blocks
insulin biosynthesis [100] and regulates AP-1 [101]. These
transcription factors modify insulin signaling and thus are
involved in the development of insulin resistance. There-
fore, the reduction of oxidative/inflammatory transcription
factors in T2D would not only limit tissue insults but
also decrease the oxidative destruction of a wide variety of
important metabolic regulators including adiponectin and
insulin [100, 102]. Therefore, novel therapeutic strategies
that concomitantly ablate inflammation and insulin resis-
tanc, but enhance adiponectin are needed. Interestingly, the
HO system has been shown to modulate both the metabolic
and inflammatory systems suppressing insulin resistance and
inflammation while enhancing adiponectin levels [40–44, 47,

48, 51, 55, 56, 82, 103–113]. Therefore the inflammatory
and metabolic effects of HO may be highly integrated and
the proper function of each may depend on the other
[37]. Given that insulin resistance may trigger inflammatory
events [114], it remains to be clarified whether insulin
resistance precedes the development of inflammation or vice
versa. Further investigation in this regard will advance our
knowledge in the development of more specific therapeutic
modalities.

Adiponectin is a cytoprotective protein produced by the
adipose tissue. It is composed of several multimeric species
or isoforms with low-, middle-, or high-molecular weights
[115]. The high-molecular-weight isoform is thought to be
the most clinically relevant. Generally adiponectin elicits
its effects through its receptors (adiponectin receptor-1
and -2) which, besides activating adenosine monophos-
phate protein kinase (AMPK), also activates peroxisome
proliferator-activated receptor alpha (PPARα) in the liver to
increase insulin sensitivity and decrease inflammation [116–
118]. Generally, the high-molecular weight adiponectin
plays a crucial role in obesity-linked insulin resistance
and metabolic syndrome. Interestingly, PPARγ upregulates
high-molecular weight adiponectin to enhance insulin sen-
sitivity and glucose metabolism [117, 119, 120]. Besides
its insulin-sensitizing effect, adionectin has also protective
effects against atherosclerosis [121] and inflammation [122].
Moreover, clinical evidence indicates that adiponectin levels
are low in patients with obesity, atherosclerosis, and insulin
resistance [119]. Furthermore, knocking-out adiponectin
leads to insulin-resistant T2D [120]. Collectively, these
studies underscore the important role of adiponectin in
cytoprotection, insulin sensitivity, and glucose metabolism.
Insulin insensitivity is a hallmark of T2D [123, 124] the
causes include excessive NF-κB activity [125–129], elevated
JNK activation [100] and increased production of adipokines
including free fatty acids, TNFα, ILs, resistin, leptin by the
adipose tissue [130–133]. In T2D diabetic patients, insulin
resistance may lead to metabolic syndrome, a pathologi-
cal condition with hyperinsulinemia, hypertension, glucose
intolerance, and dyslipidemia [122, 134, 135].

We recently showed that the HO inducer hemin is
endowed with potent antihypertensive and antidiabetic
effects. Interestingly hemin therapy is effective against
T1D and T2D. Our findings showed that upregulating the
HO system with hemin reduced fasting and postprandial
hyperglycaemia in different insulin-resistant T2D models,
including nonobese Goto-Kakizaki rats (GK) [42, 44] and
Zucker diabetic fatty rats (ZDF) [43], a genetically obese
leptin receptor-deficient (fa/fa) model [136, 137]. Interest-
ingly, after termination of therapy, the antidiabetic effects
prevailed for 3 and 4 months, respectively, in GK and
ZDF [42–44]. Further revelations from our findings indicate
that hemin therapy is also effective against streptozotocin-
(STZ-) induced diabetes [41] and improves insulin sen-
sitivity/glucose metabolism in spontaneously hypertensive
rats (SHRs) [47], a model of essential hypertension and
with features of metabolic syndrome like insulin resistance
and impaired glucose metabolism [138, 139]. Furthermore
we showed that hemin improved insulin-signaling/glucose
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metabolism in deoxycorticosterone-acetate (DOCA) hyper-
tension, a model of primary aldosteronism [48], suggesting
a role of the HO system against dysfunctional glucose
metabolism in aldosteronism. Interestingly, the antidiabetic
effect of hemin was accompanied by a paradoxical increase
of plasma insulin and enhanced insulin-sensitivity [41–
44], alongside the potentiation of agents that promote
insulin-signalling, including adiponectin [40–44, 47, 48,
108–113] cGMP [45, 140], cyclic adenosine monophosphate
(cAMP) [45], adenosine monophosphate-activated protein-
kinase (AMPK) [141, 142], aldolase-B [143], and glucose-
transporter-4 (GLUT4) expression [142, 144]. Correspond-
ingly, hemin improved intraperitoneal glucose-tolerance
(IPGTT), reduced insulin-tolerance (IPITT), and lowered
insulin resistance (HOMA index), and the inability of insulin
to enhance GLUT4 was overturned [41–44]. Furthermore,
hemin therapy potentiated the antioxidant status in ZDF,
GK, and STZ-diabetic rats with the suppression of oxida-
tive/inflammatory mediators including 8-isoprostane, NF-
κB, AP-1, AP-2, and JNK [41–44].

Given that diabetes is characterized by elevated oxidative
and inflammatory insults, the HO system would suppress
these insults by generating CO, bilirubin/biliverdin and
ferritin against apoptosis, inflammation and oxidative stress
[66–68, 71, 145–147]. Thus, the insulin-sensitizing effects
of hemin, when combined to its antihypertensive effects
[58, 59, 63–65, 83–85, 148–154], underscores the important
role of the HO system that could be explored against
impaired glucose metabolism and hypertension given the
rising incidence of comorbidities of essential hypertension,
glucose intolerance, and insulin resistance [155, 156] as well
as pathophysiological conditions like primary aldosteronism,
glucose intolerance, and insulin resistance [157–159].

3.1. The HO System, NF-κB, and Inflammation. The HO-
1 promoter harbours consensus binding sites for many
substances including inflammatory/oxidative transcription
factors like NF-κB, AP-1, and AP-2 as well as motifs for
glucocorticoid-responsive elements [160, 161]. As such, the
HO system may regulate inflammation and insulin release
[41–44, 47, 48, 162]. Given that HO-1 is induced by different
stimuli including high glucose levels [77, 80], the diversity
of HO inducers may be indicative of multiple regulatory
elements for the HO-1 gene with binding sites for different
transcription factors or genes. These arrays of genes may
account for the diverse and pleitropic effects of the HO
system in many cellular events including defence and glucose
metabolism [40–44, 47, 48, 65, 163–166]. By modulating
a wide variety of transcription factors, cellular metabolism
may be regulated. Thus, the HO system may be crucial for the
coordination and proper functioning of basic physiological
units in animals. More importantly, the regulation of NF-
κB by HO-1 may be important for cellular homeostasis
given the pleitropic effects of NF-κB-signalling in many
pathophysiological conditions including inflammation and
insulin resistance [125–129] (Figure 2).

Transcription factors are proteins that act as a sensor to
monitor cellular change and convert the signals into gene

expression. Generally, a specific cellular signal pathway can
activate multiple transcription factors and the expression of
a specific gene may be controlled by multiple transcription
factors. Importantly, transcription factors mediate signal
transduction by binding to specific DNA sequence in gene
promoters to regulate transcription activity. Although the
exact characterization of the series of events and the
mechanisms that integrate the inflammatory response with
metabolic homeostasis at the cellular and systemic level
are not fully understood, emerging data indicates that NF-
κB plays a key role [125, 127, 128, 167–169]. NF-κB is a
family of transcription factors that generally function as
heterodimers to regulate specific gene expression. In the
quiescent state, NF-κB is trapped in the cytoplasm by its
interaction with the inhibitory protein, “inhibitor of NF-κB
kinase subunit beta” (IKKβ). The IKKβ/NF-κB complex is
an essential mediator of inflammatory cascades. Importantly,
the IKKβ/NF-κB complex plays a critical and fundamental
role for immunity and survival [125, 167]. The proteosomal
degradation of the IKKβ/NF-κB complex is triggered by
different stimuli or pathophysiological conditions. Upon
activation by stimuli like oxidative stress, lipopolysaccharide
endotoxin (LPS), mitogens, or cytokines, the phosphoryla-
tion of Ser177 and Ser181 activates the complex, triggering
a cascade of reactions that leads to proteolysis of IKKβ-
specific protein kinase and the release of the NF-κB. Upon
release, NF-κB translocates into the cell nucleus where it
mediates the transcriptional activity of a wide variety of
target genes [170–172]. The transcriptional products of NF-
κB in immune cells include different cytokines and their
receptors, adhesion molecules, immune modulators, and
apoptotic factors, all of which are implicated at various stages
during the inflammatory cascade.

Besides its traditional role in the immune/inflammation
system, emerging evidence suggests that NF-κB also mediates
chronic low-grade metabolic inflammation in a variety of
different tissues including adipose [128], liver [168], and
skeletal muscle [127, 169]. Therefore NF-κB can interfere
with several molecular programs to cause the different
aspects of metabolic dysfunction, especially under chronic
conditions like hypertension, diabetes, and obesity or nutri-
tional excess. For example, the NF-κB has been linked to
insulin resistance and numerous physiological deregulations
that underlie overnutrition [125–129]. Generally, insulin
resistant T2D is associated with the chronic activation of NF-
κB pathway and elevated inflammation [126, 173, 174].

A commonly used strategy to alleviate tissue insults
and restore cellular metabolism in conditions of elevated
inflammation and insulin resistance is PPARγ agonists [175].
PPARγ agonists are a class of drugs used against insulin
resistance and T2D [175]. PPARγ is a genetic sensor of fatty
acids and a member of the nuclear receptor superfamily of
ligand-dependent transcription factors. PPARγ is required
for fat cell development and is the molecular target of
thiazolidines, a class of insulin-sensitizing drugs that exert
their effects in adipose tissue and skeletal muscle [175].
Although a variety of PPARγ agonists are available [175],
novel pharmacological agents would be needed in the
therapeutic armament giving the recent escalation of insulin
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resistant T2D, metabolic syndrome, and cardiometabolic
complications.

We recently showed that upregulating the HO system
with hemin suppressed NF-κB in different models of T2D
including ZDF and GK rats [42–44], as well as different
hypertensive models including SHR [47, 84] and DOCA-
hypertensive rats [48, 65, 84, 150, 151]. Similarly, other
HO inducers has been shown to be effective against insulin
resistant T2D [39, 40, 46, 49, 111, 113, 176]. Therefore,
HO inducers may be explored in the design of novel
strategies against insulin resistant diabetes. Incidentally,
PPARγ have been shown to upregulate high-molecular
weight adiponectin [117, 119, 120], an insulin-sensitizing
agent. Similarly, adiponectin is upregulated by the HO
system [40–44, 47, 48, 108–113]. Therefore the synergistic
effects of PPARγ and the HO system in improving insulin
sensitivity and glucose metabolism may be a novel approach
to combat insulin resistance and related cardiometabolic
complications.

3.2. The HO System, cJNK, and Inflammation. JNK proteins
belong to the mitogen activated protein kinase family and
control transcriptional activity of AP-1 via phosphorylation
of c-Jun [92]. Three closely related JNK isoforms including
JNK1, JNK2, and JNK3 have been described. Generally,
JNK-signalling is activated by inflammatory cytokines and
environmental stressors [177]. Reports indicate that the
different JNK isoforms are implicated in a wide variety
of pathophysiological conditions caused by inflammatory
insults. These include insulin resistance, T2D, infectious
diseases, stroke, Parkinson’s disease, and cardiovascular
disorders [92]. The tissue distribution and activities of
JNK1, JNK2 and JNK3 isoforms are different. JNK1 and
JNK2, are widely expressed in tissues and are involved
in different activities including T-cell activation and brain
development [92]. On the contrary, JNK3 is less-diffused and
is predominantly expressed in neurons in the hippocampus
and mediates neuronal apoptosis.

In obesity, JNK activity is increased in the liver, muscle,
and fat tissues probably due to the increase of free fatty acids
and TNF-α [92, 177]. Interestingly, JNKs are key signalling
molecules that link inflammation and insulin resistance
(Figure 2). The role of JNK in insulin resistance is highlighted
in studies showing that the abrogation of JNK prevents
insulin resistance in obese and diabetic mice [178–180].
In contrast, overexpression of a dominant-negative proteins
for JNKs or knocking down JNK1 by RNA interference
assay resulted in the inhibition of JNK with improved
insulin sensitivity [178–180]. Similarly, genetic disruption of
JNK1 gene reportedly prevented the development of insulin
resistance in obese and diabetic mice [181]. Moreover, under
diabetic conditions, oxidative stress activates JNK, which in
turn suppresses insulin biosynthesis [100] causing impaired
insulin-signalling and glucose metabolism. Conversely, the
suppression of JNK resulted in reduced insulin resistance and
improved glucose tolerance in diabetic mice [100].

The role of JNK in insulin resistance has been further
highlighted by its interaction with IRS-1. An important

step during the insulin-signal transduction cascade is the
activation of insulin receptor tyrosine kinase and the
resulting phosphorylation of IRS-1. Subsequently, through
the activation of phosphatidylinositol 3-phosphate kinase
(PI3K), insulin regulates different metabolic pathways. These
include the activation of glucose uptake in muscle and fat,
downregulation of gluconeogenesis in liver, upregulation
of glycogen synthesis, and induction of protein synthesis.
However, these important insulin-mediated signalling events
could be halted if serine of the IRS-1 is phosphorylated
instead of tyrosine. Several stress-related kinases, including
JNK, induce the serine phosphorylation of IRS-1 and thus
inhibit the insulin-signal transduction cascade. Interestingly,
JNK-mediated phosphorylation of serine is a common
pathophysiological event in obesity [90, 91]. In a related
study, obesity-induced stress was shown to cause insulin
resistance via JNK-mediated phosphorylation of inhibitory
serine residues IRS-1 [90, 91]. Collectively, these studies
underscore the important role of JNK in insulin resistance
and suggest that inhibitors of JNK-signalling may be used as
insulin sensitizing agents. Thus, the genetic ablation of one
or more JNK isoforms may be a novel strategy against insulin
resistant T2D and related obesity-induced cardiometabolic
complications.

A number of different pharmacological agents capa-
ble of inhibiting JNK are presently under investiga-
tions. These include different classes of inhibitors: small-
molecule JNK inhibitors which may be derivatives of an-
thrapyrazolone, imidazoles, anilinoindazole, pyrazoloquino-
linones, aminopyridines, or pyridine carboxamide [182,
183]. Other classes of compounds under studies are
ATP-competitive JNK inhibitors and peptide substrate-
competitive ATP-noncompetitive JNK inhibitors [182, 183].
These include diaryl-imidazoles, anilinoindazoles, pya-
zoloquinolinones, aminopyridines, pyridine carboxamides,
anilino-bipyridines, and anilino-pyrimidines and compound
SP600125 [182, 183]. Although these compounds are
promising as they are endowed with good potency and
greater selectivity, their practical application in clinics is a
long way ahead; so other alternative modalities to block
JNK-signalling would be useful. Interestingly, we recently
showed that upregulation of the HO system with hemin
suppressed JNK and improved insulin sensitivity and glucose
metabolism in STZ-induced diabetes, insulin resistant T2D
models like ZDF and GK; as well as in hypertensive
models like SHR and uinnephrectomised DOCA-salt rats
[41–44, 47, 48]. The attenuation of JNK by hemin was
consistent with previous reports in which an upregulated HO
system reportedly abrogated JNK [184]. Although significant
contributions have been made in delineating the role of
JNK and its isoforms in cardiometabolic complications,
further studies are needed to identify more specific inhibitors
and/or novel compounds with improved pharmacokinetics
and pharmacodynamics.

3.3. The HO System and Obesity and Inflammation. Obesity
and insulin resistance are pathophysiological cardinal fea-
tures of metabolic syndrome. Generally, obesity and insulin
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Figure 1: In the human body, carbon monoxide is formed at a rate of 16.4 μmol/h and daily production can reach 500 μM (Piantadosi,
Antioxid Redox Signal, 2002, 4:259-70). About 86% comes from HO-catalyzed degradation of heme while 14% from lopid peroxidation
xenobiotics and other sources.

resistance are closely associated with a state of low-grade
inflammation of white adipose tissue as a result of chronic
activation of the innate immune system leading to impaired
glucose tolerance, diabetes and other cadiometabolic com-
plications [37]. Although epidemiological studies had linked
inflammation with obesity for decades, the underlying mech-
anisms remained obscured until the last decade when strong
evidence indicated that obesity is a condition associated with
chronic inflammatory activity due to incessant activation of
a wide variety of inflammatory mediators including NF-κB,
TNF-α and JNK [25–35]. Similarly, free fatty acids binding
innate immune receptors like Toll-like receptor (TLR4) have
been shown to trigger significant inflammatory activities
in the condition of obesity. Consistent with this notion
are reports indicating that in TLR4-knockout mice, diet-
induced obesity and inflammation is abrogated [185]. On the
other hand, the binding of free fatty acids to TLR4 activates
the IKKβ/NF-κB complex and the JNK pathway to initiate
a cascade of other inflammatory and proinflammatory
factors [186]. Therefore, the secretion of proinflammatory
factors by the adipose tissue and the regulation of these
secretions by increasing adiposity sustain the notion of an
ongoing low-grade inflammatory process in obesity. Emerg-
ing evidence indicates that adipocytes from different body
compartments have distinct inflammatory phenotype based
on their anatomical location and genetic differences between
intraabdominal visceral-fat and peripheral subcutaneous-fat

[187]. Importantly, visceral adiposity is more malignant than
subcutaneous adiposity. These differences are reflected in
the contrasting roles of visceral and subcutaneous adipos-
ity in the pathogenesis of obesity-related cardiometabolic
complications like insulin resistant T2D and coronary artery
disease in lean and obese individuals [187]. Generally,
resident macrophages in visceral adipose tissue generate
higher levels of proinflamatory cytokines like TNF-α and
IL6, but reduced levels of the anti-inflammatory adipokine,
adiponectin [187]. Changes in the levels of these cytokines
are amongst the fundamental causes of inducing insulin
resistance and play a major role in the pathogenesis of
endothelial dysfunction, T2D, and related cardiometabolic
complications like atherosclerosis, especially in the condition
of obesity.

In the adipose tissue chronic overnutrition leads to
macrophage infiltration, resulting in local inflammation
that potentiates insulin resistance. Both TNF-α and JNK
are implicated in inflammation-induced impairment of
insulin signalling in obesity [25–31]. Moreover, NF-κB is
a stimulator of TNFα [91, 93–97]. The role of NF-κB in
inflammation in obesity was demonstrated experimentally in
metabolic tissue, by nutrient overload [32, 33]. Accordingly,
glucose overload was shown to activate NF-κB in the
adipose [128], endothelial, and pancreatic tissues [188–
190]. Similarly, lipid overload increased NF-κB activity in
humans and animals [128, 191]. Moreover, in cultured
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Figure 2: Schematic representation illustrating the protective role of the HO system in glucose metabolism. Inflammatory and
oxidative mediators like NF-κB, JNK, TGF-α, IL1β and IL-6 are amongst the pathophysiological factors that impair insulin signalling.
Generally these substances stimulate oxidative/inflammatory events destroying tissue. Conversely, other factors including cytokines and
inflammatory/oxidative transcription factors like NF-κB, JNK stimulate a variety of different pathophysiological pathways to further
aggravate oxidative/inflammatory insult, creating a vicious cycle of intense inflammation that would severely damage tissue and compromise
many physiological functions including glucose metabolism. However, the HO system suppresses these inflammatory/oxidative mediators
and pro-inflammatory cytokines to enhance insulin signalling and improve glucose metabolism.

cells, tissues and whole animals, NF-κB has been shown
to activate TNFα, IL6, IL-1β, and plasminogen activator
inhibitor 1 (PAI-1) inducing insulin resistance [91, 93–
97]. Collectively, these studies strongly suggest a role of
the NF-κB pathway in nutrition-overload induced insulin
resistance and its involvement in aggravating inflammation
and exacerbating insulin resistance. Moreover, the presence
of NF-κB in different tissues may trigger distinct signals
to mediate the complex manifestations of overnutrition-
induced diseases. Therefore the activation of the NF-κB may
be considered not only a key mechanism for the development
of insulin resistance but also an important contributor for
metabolic dysfunction and the development of nutrition-
overload induced complications. Seen in this light, block-
ade of NF-κB activity would be imperative to maintain
cellular homeostasis and adequate physiological function in
obesity (Figure 2). Moreover, dysfunctional metabolism due
to excessive inflammation may lead to premature aging in
obesity.

Although obesity is escalating in all population groups,
a causal relationship between obesity and premature aging
has been postulated for years. The molecular mechanisms
involved in obesity-induced aging are only beginning to
be unraveled now. Recent evidence suggests that obesity
accelerates the aging of adipose tissue due to increased

formation of reactive oxygen species in fat cells and short-
ened telomeres which ultimately results in activation of the
p53 tumor suppressor, inflammation, and the promotion
of insulin resistance and hypertension [192, 193]. Therefore
obesity may be considered a chronic stress factor that creates
a pathphysiological milieu that may ultimately compromise
the metabolic system. Overnutrition-induced chronic stress
offsets the balance between metabolic and immune functions
and contributes to the development of visceral obesity, T2D;
and the metabolic syndrome. Moreover, obesity-induced
proinflammatory cytokines from the adipose tissue may
act as an additional chronic stimulus for stimulation of
other stress-related pathways including the hypothalamic-
pituitary-adrenal axis [194], creating a vicious cycle between
metabolic and immune responses during nutrient overload.
Accordingly, obesity-induced stress has been reported to
impair the systemic metabolic homeostasis [37]. Conversely,
stress has been linked to the development of visceral obesity
[177]. Generally, stress is characterized by elevated levels of
glucocorticoid, a hormone implicated in the development
and differentiation of preadipocytes [195]. Reports indicate
that glucocorticoids regulate the expression of the stress-
related enzyme 11b-hydroxysteroid dehydrogenase (11b-
HSD). This enzyme has dual function as it converts inactive
cortisone to active 11b-HSD1 or, alternatively, the conversion
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of cortisol to inactive 11b-HSD2 [196]. 11b-HSD1 induces
stress and has been linked to the development of obesity and
insulin resistance [197–199]. Supportive of this notion are
experiments demonstrating that knocking-out 11b-HSD1
suppressed the development of obesity and insulin resistance,
whereas overexpression of 11b-HSD1 led to the development
of obesity [197–199]. Consistently, the activity of 11b-
HSD is elevated in obsessed humans [200, 201]. Of more-
importance and even more intriguing is the finding that the
ability to regulate 11b-HSD is lost in T2D patients, whereas
it is compromised in nondiabetic obsessed individuals [201].
These findings highlight the central role of glucocorticoids
in regulating metabolism via 11b-HSD, and suggest that the
regulation of 11b-HSD is a dynamic process that becomes
gradually impaired or even completely compromised as
the severity of the obesity worsens when it progresses to
metabolic syndrome and/or T2D. Interestingly motifs for
glucocorticoid-responsive element are present in the HO-
1 promoter [160, 161]. Whether this is indicative of a role
of the HO system in the modulation of glucocorticoid-
induced stress and/or involvement in glucocorticoid-induced
regulation of 11b-HSD remains the subject of future inves-
tigations. However, this hypothesis is particularly attractive
because stress is linked to the development of visceral obesity
[177], a condition in which glucocorticoids play a key role
in the development and differentiation of preadipocytes
[195]. Interestingly, the HO system has been shown to
suppress visceral and subcutaneous obesity [40, 111–113,
202]. Therefore, the HO-mediated suppression of visceral
and subcutaneous obesity when combined to other cyto-
protective effects of the HO system such as the attenuation
of NF-κB activity [41–44, 47, 83, 84, 203] may constitute a
protective shield against insulin resistance, obesity, and other
nutrition-overload related complication (Figure 2). Accord-
ingly, the presence of motifs for glucocorticoid-responsive
elements and binding sites for many substances including
sites for inflammatory/oxidative transcription factors like
NF-κB, AP-1 and AP-2 in the HO-1 promoter [160, 161]
suggest that the HO system may be playing a more important
role in metabolism that previously thought.

Although obesity was first described as low-grade
inflammation more than a decade ago, it is only recently
that obesity-induced increase of macrophage infiltration
of adipose tissue and elevated number of classically acti-
vated macrophages or M1-type has been associated with
obsessed individuals [204–206]. It is becoming increasingly
clear that the adipose tissue is infiltrated by macrophages
that trigger inflammatory events in obesity [207, 208].
Moreover, the dramatic shift of the pool of macrophages
from the alternatively-activated M2-type to the classically-
activated M1-type results in changes in secreted cytokines
from predominantly anti-inflammatory (M2-type) to proin-
flammatory (M1-type) in obese conditions, although the
exact mechanism for this shift remains largely unclear
[204–206]. Since alternatively activated macrophages have
a beneficial role in regulating nutrient homeostasis, an
increase of alternatively-activated M2-type might be a useful
strategy for treating insulin resistant T2D [205]. Given
that PPARγ is necessary for the maturation of alternatively

activated macrophages [205], and PPARγ is a transcription
factor that regulates adipogenesis, insulin sensitization and
inflammation, the potentiation of PPARγ-signalling would
be beneficial in obesity [209–213].

Interestingly emerging evidence indicates that the HO
system suppresses different inflammatory events includ-
ing macrophage infiltration [54, 63, 111, 202, 214] and
potentiate insulin sensitivity and glucose metabolism in
obesity [40, 111, 113] in a similar way as PPARγ [209–213].
Accordingly, cross-talk between PPARγ and the HO system
has been reported [215]. Moreover, analysis of human HO-
1 promoter using a combination of transient transfection
experiments, mutational analysis, and gel shift assays has
demonstrated the direct transcriptional regulation of HO-1
by PPARγ and PPARα [215]. Consistently, the notion that
HO-1 is a PPAR target gene [216, 217] has been further
strengthened by the observation that HO-1 enhances the
levels of PPARγ protein expression and activity [218]. On
the other hand, PPARγ has also been shown to induce
HO-1 [217]. Therefore, a mutual reciprocal stimulatory
relationship between PPARγ and the HO system can be
envisioned [217, 218] and coordination of this synergistic
interaction between these two systems may constitute a novel
and potent strategy to combat obesity-induced complica-
tions and other related problems like T2D, insulin resistance,
hypertension, and metabolic syndrome. Given the recent
findings that HO inducers enhance insulin sensitivity and
improve glucose metabolism in different insulin resistant
rats strains including ZDF and GK [219, 220] and obese
mouse [40, 111, 113], it is tempting to speculate that the HO-
mediated suppression of macrophage infiltration constitutes
not only an important anti-inflammatory mechanism to
limit tissue insult in hypertension but also a mechanism that
could be explored to improve insulin sensitivity and glucose
metabolism in obsessed individuals with insulin resistance
and overt T2D.

3.4. The HO System, Oxidative Stress, and Insulin Signalling.
Many studies have underscored the role of oxidative stress in
insulin resistance [174, 221–223]. Reactive oxygen species are
produced by the electron transport system in mitochondrial
respiration and are increased in conditions associated with
enhanced oxidation of energy substrate such as glucose
and free-fatty acids. Reports indicate that factors that
increase oxidative stress like hyperglycemia, free-fatty acids
and adipokines contribute to insulin resistance [174, 222].
Although the exact mechanism of insulin resistance is not
fully understood, recent data suggest the implication of
oxidative stress in the pathogenesis of multiple forms of
insulin resistance [174, 221–223]. Thus, there is a general
consensus that elevated oxidative stress unleash the cascade
of events that impairs insulin-signalling [174, 222, 223].
As such, insulin resistance may be regarded as a state of
increased exposure to reactive oxygen species [174, 222],
and thus strategies that concomitantly reduce oxidative
stress, glucose/insulin intolerance and lower blood pressure
may improve glucose metabolism. Generally, the skeletal
muscles accounts for 65%–90% of the clearance of glucose
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clearance [140]. Under healthy conditions, the vascular
actions of insulin stimulate the production of NO from the
endothelium leading to vasodilation and increased blood
flow to skeletal muscles that enhance glucose-uptake [224].
However, in hypertensive conditions, elevated levels of
superoxide quenche NO by forming peroxynitrite [225],
that subsequently oxidizes arachidonic acid to generate 8-
isoprostane, a potent vasoconstrictor which may decrease
skeletal muscle blood flow, and thus reduce glucose-uptake.

Although many studies support the link between hyper-
tension and insulin resistance, the underlying mechanisms
are not completely understood. However, CO from the
HO system and NO may be implicated because these
vasoactive gases are important not only as a vasodilators,
but also in the regulation of insulin signaling [45, 46, 226–
230]. Recent evidence indicates that insulin stimulates the
production of NO [45, 46, 226], and thus insulin may
regulate blood pressure via the NO pathway. The binding
and subsequent activation of IRS-1 and IRS-2 by insulin
triggers a cascade of events that ultimately lead to activation
of PI3K and protein kinase (PKB) or Akt. In healthy subjects,
both P13K and Akt activate endothelial NO synthase to
generate NO [231, 232] and thus promote vasodilation.
However, in insulin-resistant conditions, oxidative stress
impairs the activation of P13K/Akt-signaling resulting in
impaired vasorelaxation [232–234]. Similarly, TNFα impairs
vasorelaxation by inhibiting the P13K/Akt-signaling [233,
235]. The P13K/Akt-signaling is important for glucose
transport and is involved in the translocation of GLUT4 to
the cell membrane [232]. However, in hypertensive subjects,
these cascades of events may be impaired, and so insulin-
stimulated NO may be insufficient [232] leading to reduced
vasorelaxation, decreased blood to skeletal muscles, and
impaired translocation of GLUT4. Thus, hypertension and
insulin resistance may compromise endothelial function and
cause overt T2D.

Since GLUT4 and effective dilation of skeletal muscle
and are largely responsible for glucose disposal, reduced
GLUT4 translocation and impaired skeletal muscle dilation
would result in reduced removal of glucose, leading to hyper-
glycemia, hyperinsulinemia, and eventually insulin resistance
[232, 236]. Alternatively, diminished action of insulin and
the resultant hyperglycemia may result in the accumulation
of advanced glycation end-products (AGE) and this would
increase oxidative/inflammatory events [237–239], which in
turn would further increase the production of AGE, and
thus creating a vicious cycle that potentiates the oxidative
destruction of beta-cells in both T1D and T2D [237, 240–
242]. Moreover, increased oxidative stress and AGE may lead
to DNA damage, the activation of NF-κB, and deranged
transcription [235], all of which will accentuate cell damage.
Therefore the progressive loss of beta-cell function and
the corresponding decline of insulin production reported
in TD1 and TD2 could be attributed, at least in part to
oxidative stress [243, 244]. Accordingly, the maintenance of
specialized islet architecture and the regulation of beta-cell
number by antioxidants and antiapoptotic agents may be
important for the preservation of intact pancreatic structure
to safeguard the insulin-producing capability of beta-cells.

Interestingly, our recent studies indicate that upregulating
the HO system enhances GLUT4 expression and improves
glucose metabolism [41–44, 47, 48]. On the other hand, the
P13K/Akt-signaling may also regulate vascular contractility
and blood pressure homeostasis by modulating calcium
ion transport [232, 234, 245]. Moreover, insulin triggers
vasodilatation by inhibiting voltage-gated calcium influx
[232, 234]. Similarly, glucose transport and glucose-6-
phosphate synthesis have been reported to reduce smooth
muscle vascular resistance by enhancing calcium efflux
[232, 234]. The P13K/Akt-signaling and glucose transport
may be blunted in the pathophysiological conditions like
insulin resistance and hypertension [232, 234]. The dys-
functional P13K/Akt-signaling coupled to reduced calcium
efflux may result in elevated vascular resistance in insulin
resistant diabetes and hypertensive conditions [232, 234].
Therefore oxidative stress, impaired glucose transport and
utilization, and reduced NO production are amongst the
contributing factors of hypertension and these factors may
also lead to the development of insulin resistance [232, 233,
246].

From the above mentioned studies, it could be envisaged
that elevated vascular resistance may constitute a common
denominator in hypertension and insulin resistant diabetes,
and strategies like HO inducers that enhance vascular
relaxation [228, 229] and improves glucose metabolism [38–
52] may constitute an alternative approach to simultaneously
combat hypertension and insulin resistance in patients
symptomatic with these comorbid conditions. However,
given that many insulin resistant patients are normoten-
sive, further studies are needed to fully characterize the
P13K/Akt-signaling and calcium efflux in hypertension
and insulin resistance. Given the close association between
the P13K/Akt-signaling and the HO system [247–251],
further exploration of these pathways may lead to better
understanding of the multifaceted interaction between the
HO system and the P13K/Akt-signalling and the develop-
ment of novel strategies against hypertension and insulin
resistance.

4. Concluding Remarks

Obesity, insulin resistant T2D, and many related car-
diometabolic complications share a metabolic milieu char-
acterized by elevated inflammatory/oxidative insults. While
inflammation-induced insulin resistance is increasing in par-
allel with the epidemic of obesity and metabolic syndrome,
there are additional unrelated mechanisms associated with
the polygenic conditions of insulin resistance, T2D, and
cardiometabolic complications that create a great challenge
for future therapeutic modalities. With the polygenic nature
of these conditions, treatment strategies should not be lim-
ited to monogenic targets. Interestingly, emerging data have
underscored the role of the HO system in insulin sensitivity
and cellular metabolism. The HO system has been shown
to suppress visceral and subcutaneous obesity [40, 111–113,
202], potentiating the antioxidant status in cells and abating
oxidative/inflammatory mediators including 8-isoprostane
JNK AP-1 and AP-2 [41–44, 47, 83, 84, 203]. These qualities,
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in combination to the HO-mediated attenuation of NF-κB
activity [41–44, 47, 83, 84, 203] may constitute a protective
shield against insulin resistance, obesity, and other nutrition-
overload-related complications. Moreover, the presence of
motifs for glucocorticoid-responsive elements and binding
sites for many substances including sites for inflamma-
tory/oxidative transcription factors like NF-κB, AP-1 and
AP-2 in the HO-1 promoter [160, 161], suggest that the
HO system may be playing a more important role in the
regulation of cellular metabolism.

Finally, the mutual reciprocal stimulatory relationship
between PPARγ and the HO system may be explored in the
design of novel remedies. The coordination of this synergistic
interaction may constitute a novel approach that could be
explored in the search of more-effective and potent strategies
against the polygenic conditions of insulin resistance, T2D,
and cardiometabolic complications.
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(AP-1): Activating protein-1
(AP-2): Activating protein-2
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protein kinase
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