A Liquid Chromatography with Tandem Mass Spectrometry-Based Proteomic Analysis of the Proteins Secreted by Human Adipose-Derived Mesenchymal Stem Cells

Yoshiki Nakashima', Saifun Nahar ${ }^{2}$, Chika Miyagi-Shiohira ${ }^{1}$, Takao Kinjo ${ }^{3}$, Zensei Toyoda ${ }^{3}$, Naoya Kobayashi ${ }^{4}$, Issei Saitoh ${ }^{5}$, Masami Watanabe ${ }^{6}$, Jiro Fujita ${ }^{\mathbf{2}}$, and Hirofumi Noguchi ${ }^{1}$ ©

Abstract

Liquid chromatography using a tandem mass spectrometer (LC-MS/MS) is a method of proteomic analysis. A shotgun analysis by LC-MS/MS comprehensively identifies proteins from tissues and cells with high resolution. The hepatic function of mice with acute hepatitis following the intraperitoneal administration of CCL4 was improved by the tail vein administration of the culture conditional medium (CM) of human mesenchymal stem cells from adipose tissue (hMSC-AT). In this study, a secreted protein expression analysis of hMSC-AT was performed using LC-MS/MS; 128 proteins were identified. LC-MS/MS showed that 106 new functional proteins and 22 proteins (FINC, PAII, POSTN, PGS2, TIMPI, AMPN, CFAH, VIME, PEDF, SPRC, LEGI, ITGBL, ENOA, CSPG2, CLUS, IBP4, IBP7, PGSI, IBP2, STC2, CTHRI, CD9) were previously reported in hMSC-ATCMs. In addition, various proteins associated with growth (SAP, SEM7A, PTK7); immune system processes (COIA2, COIAI, CATB, TSPI, GAS6, PTX3, CI S, SEM7A, G3P, PXDN, SRCRL, CD248, SPON2, ENPP2, CDI09, CFAB, CATLI, MFAP5, MIF, CXCL5, ADAM9, CATK); and reproduction (MMP2, CATB, FBLNI, SAP, MFGM, GDN, CYTC) were identified in hMSC-ATCMs. These results indicate that a comprehensive expression analysis of proteins by LC-MS/MS is useful for investigating new factors associated with cellular components, biological processes, and molecular functions.

Keywords

Human mesenchymal stem cells from adipose tissue (hMSC-AT), acute hepatitis, conditional medium (CM), LC-MS/MS analysis

Introduction

The clinical application of liver cell therapy using stem cells has great significance. The liver can develop acute hepatitis or chronic liver failure due to the influence of factors such as drugs, xenobiotics, and viruses. Eventually, chronic hepatitis and fibrosis develop and the ability to regenerate hepatocytes is lost ${ }^{1}$. At present, the only effective treatment is liver transplantation; however, liver transplantation is associated with problems such as rejection and limitation of donors. Thus, alternative approaches are necessary, and stem cells are attracting attention as a therapeutic approach. Mesenchymal stem cells (MSCs) represent an outstanding candidate stem cell for clinical treatment. MSCs have been collected from various organs, including the bone marrow (BM) ${ }^{2}$, cord blood ${ }^{3}$, placenta ${ }^{4}$. and adipose tissue (AT) ${ }^{5,6}$. Currently, attention is being given to adipose tissue as a source of MSCs
${ }^{1}$ Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
${ }^{2}$ Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
${ }^{3}$ Department of Basic Laboratory Sciences, School of Health Sciences in Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
${ }^{4}$ Okayama Saidaiji Hospital, Okayama, Japan
${ }^{5}$ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
${ }^{6}$ Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Submitted: January 16, 2018. Revised: July 25, 20I8. Accepted: July 26, 2018.

Corresponding Author:

Hirofumi Noguchi, MD, PhD, Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-02I5, Japan.
Email: noguchih@med.u-ryukyu.ac.jp
for regenerative medicine ${ }^{5-7}$. Adipose tissue contains large amounts of MSCs (adipose-derived mesenchymal stem cells (ADSCs)) and is considered to be a useful source of cells for clinical application because of its fast proliferation and high cellular activity.

In recent years, treatment methods using conditional medium of mesenchymal stem cells (MSC-CM) have been reported ${ }^{8-11}$. Because the culture supernatant does not contain cellular components, there is a high possibility that they will have clinical applications because of the extremely low risk of complications (i.e. pulmonary embolism) associated with the administration of cells in the blood and canceration of the administered cells. Proteins are important components in the regulation of cellular functions such as cell proliferation, cell death, and the immune function, and in the induction of differentiation. Thus, proteomic analyses, which detect the expression of protein, are considered to be a powerful tool for analyzing the system biology and exploring the active factors in MSC-CMs.

Liquid chromatography by tandem mass spectrometry (LC-MS/MS) is an analytical chemistry technique that combines the physical separation capability of liquid chromatography (or high-performance liquid chromatography (HPLC)) and the mass spectrometric ability of mass spectrometry ${ }^{12}$. MS involves a mass separation step; the ionized component is detected as it is. In soft ionization methods such as electrospray ionization (ESI) ${ }^{13-15}$, molecular weight-related ions are mainly detected (mass spectrum). In tandem mass spectrometry (MS/MS), specific ions are first selected by a mass separator (MS1). In addition, the fragmentation of ions occurs due to the collision of ions with inert gas. The fragment ions obtained are separated and detected by a second mass separator (MS2) (product ion spectrum). Molecular weight-related ions are mainly detected by MS, and precursor ions and product ions are detected by MS/MS. LC-MS/MS allows for the identification of proteins fragmented into peptides by trypsin. Our protocol was based on the bottom-up strategy of a proteomic MS analysis. Enzymatic digestion was carried out using the Filter Aided Sample Preparation (FASP) method with trypsin as protease ${ }^{16}$. The peptide mixture was treated with ZipTip and then on-line coupled nano-liquid chromatography (nano LC) was performed using an Orbitrap Elite Hybrid Mass Spectrometer (Thermo Fisher Scientific, Tokyo, Japan). In addition, an on-line LC-MS/MS system for quantitative proteomics based on data-dependent protein IDs and shotgun-based quantitative proteomics methods was used.

This study was performed to identify functional protein components in the conditional medium of human mesenchymal stem cells from adipose tissue (hMSC-AT-CM) using LC-MS/MS. The identification of the secreted protein components of hMSC-AT and protein components with therapeutic effects is expected to be useful for future cell therapy.

Materials and Methods

Reagents

The MSCGM-CD ${ }^{\text {TM }}$ Mesencymal Stem Cell Growth Medium BulletKit ${ }^{\mathrm{TM}}$ was obtained from Lonza (Basel, Switzerland). hMSC-ATs (46-year-old Caucasian female) (PromoCell, Heidelberg, Germany) were cultured. Fetal bovine serum (FBS) was obtained from BioWest (Nuaille, France). D-MEM/Ham's F-12 medium was obtained from Wako (Osaka, Japan). Plastic dishes were obtained from TPP (Trasadingen, Switzerland). All other materials used were of the highest commercial grade.

Flow Cytometry

Cell flow cytometry was performed using a NovoCyte ${ }^{\circledR}$ Flow Cytometer (ACEA Biosciences, Inc., San Diego, CA, USA) according to the manufacturer's instructions. Briefly, hMSC-ATs (1×10^{5} cells) were mixed into 0.5 mL of Perfusion Solution (CORNING, Manassas, VA, USA). Each antibody ($1 / 100$ of the volume) was added to the cell admixture, which was then incubated on ice for 30 minutes. After washing the cells with Brilliant Stain Buffer (BD Biosciences, Franklin Lakes, NJ, USA), fluorescence activated cell sorting (FACS) measurement was carried out. The following primary antibodies were used: APC Mouse Anti-Human CD29, BV421 Mouse Anti-Human CD44, BV421 Mouse IgG2b к Isotype Control, APC Mouse IgG1 к Isotype Control (BD Biosciences, Franklin Lakes, NJ, USA); FITC anti-human CD90 (Thy1) Antibody, FITC Mouse IgG1 к Isotype Ctrl Antibody, PerCP anti-human CD34 Antibody, PerCP Mouse IgG1 к Isotype Ctrl Antibody, PE/Cy7 anti-human CD45 Antibody, and PE/ Cy7 Mouse IgG1 к Isotype Ctrl Antibody (BioLegend, Inc., San Diego, CA, USA).

Animal Care

All experimental protocols were in accordance with the guidelines for the care and use of laboratory animals set by Research Laboratory Center, Faculty of Medicine and the Institute for Animal Experiments, Faculty of Medicine, University of the Ryukyus (Okinawa, Japan). The experimental protocol was approved by the Committee on Animal Experiments of University of the Ryukyus (permit number: A2017101). C57BL/6 male mice (8-week-old; Japan SLC, Shizuoka, Japan) were maintained under controlled temperature $\left(23 \pm 2^{\circ} \mathrm{C}\right)$ and light conditions (lights on from 08:3020:30). Animals were fed standard rodent chow pellets with ad libitum access to water. All efforts were made to minimize the suffering of the animals.

Preparation of the Mouse Model of Acute Liver Failure

Carbon tetrachloride (CCL4) (Wako 035-01273) diluted with olive oil (Wako 150-00276) was administered

Fig. I. Illustration of the preparation of conditional medium for hMSC-AT. (a) The procedure for administering $100 \mu \mathrm{~L}$ hMSC-AT-CM concentrate to the tail vein of the mouse. (b) The procedure for preparing the hMSC-AT-CM concentrate for the LC-MS/MS analysis.
intraperitoneally ($0.5 \mathrm{~mL} / \mathrm{kg}$) to 8 -week-old C57BL/6 male mice as a mouse model of acute liver failure. Nine mice each were used for both treated and control animals. At 4 h after the administration of CCL4, 20-fold concentrated culture supernatant was administered via the mouse tail vein (100 μl of PBS and hMSC-AT-CM solution was administered via the mouse tail vein). Blood and liver tissues were sampled at 24 h after the administration of CCL4. Under anesthesia, approximately $500 \mu \mathrm{~L}$ of blood was collected from the descending aorta using a 1 mL syringe (22 G injection needle) passed through heparin, centrifuged ($150 \mathrm{~g}, 30 \mathrm{~min}, 4^{\circ} \mathrm{C}$) after the coagulation, $100 \mu \mathrm{~L}$ of blood was obtained. Four hundred microliters of physiological saline were added to $100 \mu \mathrm{~L}$ of serum and diluted, and the blood components were analyzed (commissioned to SRL). The liver was fixed in formalin after sampling and HE staining was performed after the preparation of tissue sections. Fragmented DNA generated during apoptosis was detected by a TdT-mediated dUTP nick end-labeling (TUNEL) assay to identify apoptotic cells in the liver tissue. TUNEL staining was performed using the In Situ Apoptosis Detection kit (Takara Bio Inc., Shiga, Japan) and visualized using DAB as the chromogen. The Ki67 protein present in the nucleus of cells in G1, S, G2, M cycles (cell growth phase) was detected by using immunostaining in order to identify cells in the growth phase in liver tissue. The reagent Histofine Simple Stain MAX PO (Rubbit) (NICHIRE BIOSCIENCES INC., Tokyo, Japan) and anti-Ki67 antibody (ab 15580) (Abcam, Cambridge, UK) were used.

Preparations of hMSC-AT-CMs for Animal Studies and the Analysis of the Protein Expression by LC-MS/MS

The hMSCs used in this study are limited to three to five passages in order to match the cell nature with clinically used hMSCs. Two milliliters of DMEM/F12 medium was added to hMSC-AT (1×10^{6} cells) and cultured for 48 h to prepare hMSC-AT-CMs; this was concentrated to $1 / 20$ of the original volume using a 10 k filter, $100 \mu \mathrm{~L}$ was injected per mouse. The 20 -fold concentrated hMSC-AT-CM was serous and successfully passed through a 32 G injection needle (Fig. 1(a)). Two milliliters of clinical Xeno-free medium (MSCGM-CD mesenchymal stem cell BulletKit [Lonza]) was added to hMSC-AT (1×10^{6} cells $)$ and cultured for 48 h to prepare $\mathrm{hMSC}-A T-C M s$ and then concentrated to $1 / 20$ of the original volume using a 10 k filter, after which the component proteins were analyzed by LC-MS/MS. Twenty-fold concentrated hMSC-AT-CM was subjected to LC-MS/MS. If the medium's albumin concentration is high, the accuracy of a protein analysis decreases. Thus, after washing these cells with phosphate buffered saline (PBS), they were cultured in albumin-free medium and the resulting culture supernatant was used for this study (Fig. 1(b)). One hundred twenty-eight proteins were identified from the hMSC-AT-CM samples; the identified proteins are listed in Table 1. In this study, DMEM/F12 (containing 0\% FBS) was used to prepare hMSC-AT-CMs to be administered to mice, due to the difficulty of accurately observing the therapeutic effect of hMSC-AT-secreted protein when the
Table I. Details of the hMSC-AT Secreted Protein Identified.

UniProt/SWISSPROT ID	Description	Protein score ${ }^{\text {a }}$	Protein mass (kDa)	$\mathrm{pl}^{\text {b }}$	Num. of matches ${ }^{\text {c }}$	Num. of significant matches ${ }^{\text {d }}$	Num. of sequences ${ }^{\text {e }}$	Num. of significant sequences ${ }^{f}$	Num. of unique sequences ${ }^{\text {b }}$	Sequence coverage ${ }^{\text {h }}$	emPAl ${ }^{\text {i }}$
FINC_HUMAN	Fibronectin	17,045	262,460	5.46	1127	667	120	99	53	0.67	7.1
BGH3_HUMAN	Transforming growth factor-beta-induced protein ig-h3	5287	74,634	7.62	161	135	26	18	26	0.61	2.83
CO6AI_HUMAN	Collagen alpha-I(VI) chain	4997	108,462	5.26	168	126	33	25	33	0.49	1.83
CO6A3_HUMAN	Collagen alpha-3(VI) chain	4217	343,457	6.26	224	169	85	66	85	0.41	1.32
COIA2_HUMAN	Collagen alpha-2(I) chain	3164	129,235	9.08	209	129	51	38	46	0.63	2.65
PAII_HUMAN	Plasminogen activator inhibitor I	2264	45,031	6.68	95	59	19	12	19	0.56	2.64
FSTLI_HUMAN	Follistatin-related protein I	1973	34,963	5.39	50	38	13	10	13	0.53	2.69
POSTN_HUMAN	Periostin	1936	93,255	7.27	146	83	41	32	41	0.62	4.49
MMP2_HUMAN	72 kDa type IV collagenase	1619	73,835	5.26	106	66	25	23	15	0.65	3.35
COIAI_HUMAN	Collagen alpha-I(I) chain	1576	138,857	5.6	206	87	36	28	27	0.44	1.47
FBNI_HUMAN	Fibrillin-I	1557	312,022	4.81	95	54	46	27	43	0.29	0.44
FBN2_HUMAN	Fibrillin-2	1479	314,558	4.73	106	54	55	25	52	0.38	0.4
CATB_HUMAN	Cathepsin B	1327	37,797	5.88	46	31	12	9	12	0.56	2.35
LAMBI_HUMAN	Laminin subunit beta-I	1302	197,909	4.83	62	43	29	19	29	0.35	0.5
PGS2_HUMAN	Decorin	1223	39,722	8.75	28	18	9	4	9	0.36	0.69
CO6A2_HUMAN	Collagen alpha-2(VI) chain	1144	108,512	5.85	79	56	23	14	23	0.32	0.78
LTBPI_HUMAN	Latent-transforming growth factor beta-binding protein I	1125	186,673	5.63	77	53	31	21	22	0.31	0.71
TSPI_HUMAN	Thrombospondin-I	1023	129,300	4.71	56	39	22	14	20	0.28	0.68
TIMPI_HUMAN	Metalloproteinase inhibitor I	961	23,156	8.46	58	43	7	6	7	0.54	2.48
AMPN_HUMAN	Aminopeptidase N	896	109,471	5.31	23	17	10	5	10	0.17	0.21
CO3AI_HUMAN	Collagen alpha-I(III) chain	868	138,479	6.21	57	30	24	14	22	0.24	0.57
CFAH_HUMAN	Complement factor H	790	139,005	6.21	41	28	20	15	20	0.3	0.57
LTBP2_HUMAN	Latent-transforming growth factor beta-binding protein 2	765	194,923	5.06	54	28	26	15	26	0.26	0.38
CO5AI_HUMAN	Collagen alpha-I(V) chain	664	183,447	4.94	32	19	12	6	11	0.12	0.15
LG3BP_HUMAN	Galectin-3-binding protein	640	65,289	5.13	29	21	10	7	10	0.32	0.56
LAMCI_HUMAN	Laminin subunit gamma-I	590	177,489	5.01	54	31	28	15	28	0.3	0.42
MFAP2_HUMAN	Microfibrillar-associated protein 2	579	20,812	4.86	11	10	3	3	3	0.21	0.81
VIME_HUMAN	Vimentin	531	53,619	5.06	36	16	14	7	14	0.37	0.86
PCOCI_HUMAN	Procollagen C-endopeptidase enhancer I	522	47,942	7.41	47	23	17	11	17	0.63	1.84
COBAI_HUMAN	Collagen alpha-I(XI) chain	513	180,954	5.06	26	16	12	4	11	0.17	0.12
PEDF_HUMAN	Pigment epithelium-derived factor	497	46,283	5.97	15	13	9	7	9	0.3	0.88
SPRC_HUMAN	SPARC	435	34,610	4.73	40	25	13	9	6	0.63	2.32
GAS6_HUMAN	Growth arrest-specific protein 6	433	79,625	5.84	19	12	9	5	9	0.24	0.3
LEGI_HUMAN	Galectin- I	420	14,706	5.34	12	11	3	3	3	0.32	1.31
OLFL3_HUMAN	Olfactomedin-like protein 3	390	45,981	6.17	24	14	10	6	10	0.36	0.72
PTX3_HUMAN	Pentraxin-related protein PTX3	381	41,949	4.94	33	21	12	10	12	0.42	1.7
LAMA2_HUMAN	Laminin subunit alpha-2	364	343,684	6.01	39	13	27	8	27	0.17	0.1
ITGBL_HUMAN	Integrin beta-like protein I	361	53,884	5.39	24	15	14	9	14	0.38	1.01

Table I. (continued)

UniProt/SWISSPROT ID	Description	Protein score ${ }^{\text {a }}$	Protein mass (kDa)	$p l^{\text {b }}$	Num. of matches ${ }^{\text {c }}$	Num. of significant matches ${ }^{\text {d }}$	Num. of sequences ${ }^{\text {e }}$	Num. of significant sequences ${ }^{f}$	Num. of unique sequences ${ }^{\text {g }}$	Sequence coverage ${ }^{\text {h }}$	emPAl ${ }^{\text {i }}$
AEBPI_HUMAN	Adipocyte enhancer-binding protein I	361	130,847	5.05	9	7	5	4	5	0.07	0.14
CO5A2_HUMAN	Collagen alpha-2(V) chain	355	144,82 1	6.07	18	10	9	4	8	0.12	0.12
FBLNI_HUMAN	Fibulin-I	352	77,162	5.07	20	12	13	9	6	0.29	0.63
ENOA_HUMAN	Alpha-enolase	350	47,139	7.01	13	10	3	3	3	0.13	0.3
FBLN5_HUMAN	Fibulin-5	341	50,147	4.58	22	13	9	6	9	0.34	0.94
LUM_HUMAN	Lumican	311	38,405	6.16	35	12	11	5	11	0.37	0.72
DKK3_HUMAN	Dickkopf-related protein 3	290	38,365	4.59	9	8	4	4	4	0.25	0.54
CO4A2_HUMAN	Collagen alpha-2(IV) chain	285	167,449	8.89	11	8	4	3	4	0.05	0.08
CSPG2_HUMAN	Versican core protein	282	372,590	4.43	24	11	17	9	17	0.1	0.11
SRPX_HUMAN	Sushi repeat-containing protein SRPX	279	51,538	8.98	25	14	14	8	14	0.48	0.91
CIS_HUMAN	Complement Cl s subcomponent	272	76,635	4.86	27	13	14	8	14	0.35	0.55
ECMI_HUMAN	Extracellular matrix protein I	268	60,635	6.25	39	16	17	9	17	0.41	0.86
NIDI_HUMAN	Nidogen-I	248	136,291	5.12	35	18	19	11	17	0.26	0.4
SAP_HUMAN	Prosaposin	242	58,074	5.06	18	12	10	4	10	0.28	0.33
SEM7A_HUMAN	Semaphorin-7A	229	74,776	7.57	21	12	15	10	15	0.37	0.85
CLUS_HUMAN	Clusterin	225	52,461	5.89	9	7	4	3	4	0.18	0.27
LYOX_HUMAN	Protein-lysine 6-oxidase	224	46,915	8.36	18	13	8	4	8	0.3	0.56
QSOXI_HUMAN	Sulfhydryl oxidase I	209	82,526	9.13	18	8	8	6	8	0.18	0.36
G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	196	36,030	8.57	8	6	6	5	6	0.34	0.78
TICNI_HUMAN	Testican-I	184	49,092	5.74	12	8	9	6	9	0.34	0.66
EMILI_HUMAN	EMILIN-I	177	106,601	5.07	9	5	7	4	7	0.15	0.17
WISP2_HUMAN	WNTI-inducible-signaling pathway protein 2	168	26,807	8.32	11	4	5	2	5	0.35	0.36
TFPII_HUMAN	Tissue factor pathway inhibitor	164	34.992	8.61	24	3	2	I	2	0.13	0.13
PXDN_HUMAN	Peroxidasin homolog	164	165,170	6.79	18	6	10	4	10	0.12	0.11
PGBM_HUMAN	Basement membrane-specific heparan sulfate proteoglycan core protein	159	468,532	6.06	22	7	11	4	11	0.06	0.04
IBP4_HUMAN	Insulin-like growth factor-binding protein 4	149	27,915	6.81	16	6	10	5	10	0.52	1.1
VASN_HUMAN	Vasorin	145	71,668	7.16	8	7	4	4	4	0.09	0.26
GPNMB_HUMAN	Transmembrane glycoprotein NMB	141	63,882	6.17	5	4	2	I	2	0.06	0.07
SRCRL_HUMAN	Soluble scavenger receptor cysteine-rich domaincontaining protein SSC5D	140	165,639	5.71	26	3	4	I	4	0.04	0.03
FBLN3_HUMAN	EGF-containing fibulin-like extracellular matrix protein I	138	54,604	4.95	21	9	10	4	10	0.32	0.36
PLTP_HUMAN	Phospholipid transfer protein	137	54,705	6.53	8	4	4	2	4	0.16	0.16
PROFI_HUMAN	Profilin-I	135	15,045	8.44	5	4	3	2	3	0.31	0.72
IBP7_HUMAN	Insulin-like growth factor-binding protein 7	134	29,111	8.25	12	7	5	3	5	0.3	0.53
PGSI_HUMAN	Biglycan	133	41,628	7.16	10	4	6	3	6	0.27	0.35
NUCBI_HUMAN	Nucleobindin-I	124	53,846	5.15	20	5	14	4	14	0.45	0.36
CD44_HUMAN	CD44 antigen	119	81,487	5.13	8	4	3	1	3	0.08	0.05
AGRIN_HUMAN	Agrin	114	217,092	6.01	10	4	7	4	7	0.09	0.08
MFGM_HUMAN	xLactadherin	111	43,095	8.47	16	6	6	3	6	0.2	0.34

Table I. (continued)

UniProt/SWISSPROT ID	Description	Protein score ${ }^{\text {a }}$	Protein mass (kDa)	$\mathrm{pl}^{\text {b }}$	Num. of matches ${ }^{\text {c }}$	Num. of significant matches ${ }^{\text {d }}$	Num. of sequences ${ }^{\text {e }}$	Num. of significant sequences ${ }^{f}$	Num. of unique sequences ${ }^{\text {g }}$	Sequence coverage ${ }^{\text {h }}$	emPAl ${ }^{\text {i }}$
RCNI_HUMAN	Reticulocalbin-I	111	38,866	4.86	3	2	I	I	I	0.06	0.11
FAM3C_HUMAN	Protein FAM3C	109	24,665	8.52	3	3	I	I	I	0.07	0.18
CATZ_HUMAN	Cathepsin Z	108	33,846	6.7	6	4	4	3	4	0.25	0.44
PDIAI_HUMAN	Protein disulfide-isomerase	106	57,081	4.76	5	4	3	2	3	0.14	0.16
IBP2_HUMAN	Insulin-like growth factor-binding protein 2	104	34,791	7.48	7	4	5	3	5	0.27	0.43
TPPI_HUMAN	Tripeptidyl-peptidase I	103	61,210	6.01	3	2	2	I	2	0.08	0.07
GDN_HUMAN	Glia-derived nexin	99	43,974	9.35	16	5	8	4	8	0.28	0.46
CD248_HUMAN	Endosialin	93	80,807	5.18	5	4	3	3	3	0.09	0.17
SPON2_HUMAN	Spondin-2	92	35,824	5.35	26	8	12	7	12	0.44	1.25
MARCS_HUMAN	Myristoylated alanine-rich C-kinase substrate	91	31,536	4.47	3	2	2	1	2	0.1	0.3
LAMAI_HUMAN	Laminin subunit alpha-I	90	336,867	5.93	17	3	11	3	11	0.08	0.04
SERPH_HUMAN	Serpin HI	90	46,411	8.75	15	5	6	2	6	0.2	0.2
PLODI_HUMAN	Procollagen-lysine,2-oxoglutarate 5-dioxygenase I	84	83,497	6.47	12	4	9	3	9	0.18	0.16
CO4AI_HUMAN	Collagen alpha-I(IV) chain	80	160,514	8.55	7	2	6	2	6	0.1	0.05
GOLMI_HUMAN	Golgi membrane protein I	79	45,306	4.91	10	4	6	2	6	0.19	0.2
ENPP2_HUMAN	Ectonucleotide pyrophosphatase/ phosphodiesterase family member 2	78	98,930	7.14	11	6	8	4	8	0.17	0.18
LAMA4_HUMAN	Laminin subunit alpha-4	77	202,397	5.89	15	3	11	3	11	0.11	0.06
TARSH_HUMAN	Target of Nesh-SH3	77	118,569	9.48	7	3	6	2	6	0.08	0.07
PTK7_HUMAN	Inactive tyrosine-protein kinase 7	75	118,317	6.67	3	2	3	2	3	0.04	0.07
SAP3_HUMAN	Ganglioside GM2 activator	73	20,825	5.17	6	3	3	2	3	0.4	0.48
CDI09_HUMAN	CDI09 antigen	72	161,587	5.59	12	I	6	I	6	0.06	0.03
PAMRI_HUMAN	Inactive serine protease PAMRI	70	80,146	7.57	5	2	5	2	5	0.16	0.11
KPYM_HUMAN	Pyruvate kinase PKM	68	57,900	7.96	7	3	4	3	4	0.16	0.24
PTGDS_HUMAN	Prostaglandin-H2 D-isomerase	64	21,015	7.66	3	I	2	I	2	0.17	0.22
IBP6_HUMAN	Insulin-like growth factor-binding protein 6	64	25,306	8.15	3	2	3	2	3	0.25	0.39

 peptides exceeding the identification criteria matched to proteins,
Protein Abundance Index (http://www.matrixscience.com/help/quant_empai_help.html).

Table 2. Sequences of Primers used for the RT-PCR.

Gnens	GenBank number	Forward primer (5'-3')	Reverse primer (5'-3')	Product size (bp)
human CD29	NM_002211.3	CTGAAGACTATCCCATTGACCTCTA	GCTAATGTAAGGCATCACAGTCTTT	179
human CD34	NM_001025109.1	CCTGCTCTCTTGTAATGATATAGCC	GAGACTAGAACTGAGCTGTTTGTCC	227
human CD44	NM_000610.3	ACTAGTGTTCAAGTGCCTCTTGTTT	GCCTCTTTTTGGGAATATCTAGAAG	227
human CD45	NM_001267798.1	TTCTTAGGGTAACAGAGGAGGAAAT	ACAAATACTTCTGTGTCCAGAAAGG	167
human HGF	NM_000601.5	ACAGTCATAGCTGAAGTAAGTGTGT	GCAGGATACATGGTGAAGAGAAATG	511
human SCAI	NM_001144877.2	CTTCACTCGTATTGCTGTGTCTCTA	GCATTGCACGTATTTACTATCCTCT	183
human VEGFA	NM_001025366.2	AAGTGGTGAAGTTCATGGATGTCTA	AAGTACGTTCGTTTAACTCAAGCTG	558
human GAPDH	NM_00I256799.2	AGAAGTATGACAACAGCCTCAAGAT	CCAAATTCGTTGTCATACCAGGAAA	544

protein component of clinical Xeno-free medium rich in growth factor proteins is concentrated.

Real-time PCR and RT-PCR

Five microliters of a cell admixture (concentration, 1×10^{7} cells $/ \mathrm{ml}$) was collected. RNA was prepared for a qPCR using a SuperPrep Cell Lysis and RT kit according to the manufacturer's instructions (Toyobo Co., Ltd., Osaka, Japan). Quick Taq HS DyeMix was used according to the manufacturer's instructions (Toyobo Co., Ltd.). Real-time PCR analyses were performed using a LightCycler 96 Real-Time PCR system (Roche, Basel, Switzerland). The FastStart Essential DAN Green Master (Roche) was used according to the manufacturer's instructions. An RT-PCR was performed using a GeneAtlas 482 thermal cycler (Astec Co., Ltd., Fukuoka, Japan). Images were recorded using an Aplegen ${ }^{\circledR}$ Omega Lum C (Gel Company, San Francisco, CA, USA), and procedures were performed using the primers listed in Table 2.

Preparation of hMSC-AT

hMSC-ATs (46-year-old Caucasian female) were cultured $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$ on a coated $100-\mathrm{mm}$ culture plate (TPP 93100). The passage of cells was performed every 3 to 4 days after reaching 80% confluence after sowing the cells. The cells were washed with PBS (calcium, magnesium-free), and hMSC-ATs were dissociated using a dissociation solution. Subculturing was carried out by plating on uncoated $100-\mathrm{mm}$ culture plate. An MSCGM-CD mesenchymal stem cell BulletKit (Lonza 00190632) was used for the culture medium. Trypsin/EDTA (Lonza CC-3232) was used for the dissociation solution.

Preparation of Culture Supernatant

hMSC-ATs were cultured on a 100 mm culture plate using an MSCGM-CD mesenchymal stem cell BulletKit (the number of cells was $3 \times 10^{6} /$ plate) until reaching 80% confluence. The cells were cultured for 24 h in D-MEM/Ham's F-12 medium (Wako 4230795) containing 10% FBS, after which the cells were washed with PBS (calcium,
magnesium-free); 2 ml of D-MEM/Ham's F-12 medium was then added to 1×10^{6} cells and the cells were cultured for 48 h . After 48 h , the culture supernatant was aspirated with a pipette and centrifuged ($1500 \mathrm{~g}, 30$ minutes, $4^{\circ} \mathrm{C}$) to remove the cells. After the centrifugation of the medium, the supernatant was concentrated 20 times using Amicon Ultra-15, PLGC Ultracell-PL membrane, 10 kDa (UFC901008) (MERCK, Kenilworth, NJ, USA) and a concentrated solution of culture supernatant was obtained.

Protein Identification by a Nano LC-MSIMS Analysis

A protein solution of $2066 \mu \mathrm{~g} / \mathrm{ml}$ was obtained from the concentrated solution of culture supernatant. Finally, 0.4 $\mu \mathrm{g}$ of protein was used for nanoLC-MS/MS. The samples were analyzed via nano LC using an UltiMate 3000 RSLC nano system (Thermo Fisher Scientific, Tokyo, Japan) at the Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School by Ikuko Sagawa. In brief, protein-containing solutions were reduced with 10 mM DTT/ 8 M urea and Tris buffer containing 2 mM EDTA (pH 8.5), alkylated with 25 mM iodoacetamide $/ 8 \mathrm{M}$ Urea and Tris buffer containing 2 mM EDTA (pH 8.5), subsequently diluted with trypsin (pigderived trypsin) and digested overnight at $37^{\circ} \mathrm{C}$. Peptides were purified and concentrated by solid-phase extraction (SPE) in ZipTip $\mu \mathrm{C} 18$ pipette tips (Merck Millipore, Darmstadt, Germany). Nano LC-MS/MS was carried out using an UltiMate 3000 RSLC nano system. The reconstituted peptides were injected into an Acclaim PepMap C18 trap column ($75 \mu \mathrm{~m} \times 15 \mathrm{~cm}, 2 \mu \mathrm{~m}$, C18) (Merck Millipore, Darmstadt, Germany). Solvent A was 0.1% formic acid. Solvent B was 80% acetonitrile $/ 0.08 \%$ formic acid. The peptides were eluted in a $229-\mathrm{min}$ gradient of 4% solvent B in solvent A to 90% solvent B in solvent A at $300 \mathrm{nl} / \mathrm{min}$. Orbitrap Elite's ionization method was set to NanoflowLC ESI, positive, and the capillary voltage was set to 1.7 kV . Tandem mass spectrometry was performed using the Proteome Discoverer software program, version 1.4 (Thermo Fisher Scientific, Tokyo, Japan). Charge stated deconvolution and deisotoping were not performed.

Fig. 2. The phenotype and differentiation potential of hMSC-AT in culture. (a) The morphological appearance of hMSC-AT on day 3. (b) The results of flow cytometry of the cell surface markers of hMSC-AT. (c) The results of real-time PCR to detect cell surface markers of hMSCAT. The expression was calculated using the $\Delta \Delta \mathrm{Ct}$ method. The expression of the target gene was corrected by the expression of the housekeeping gene. The relative values are indicated. $\mathrm{n}=\mathrm{I}$. (d) The results of an RT-PCR to evaluate the growth factor and cell surface markers mRNA expression of hMSC-AT. (e) The results of an ELISA to evaluate the growth factor protein expression of hMSC-AT-CM. (f) Representative images of adipocyte and osteocyte differentiation of hMSC-AT cultured in growth or differentiation medium.

Fig. 3. The culture supernatant concentrate significantly improved the symptoms of acute liver failure caused by the administration of CCL4. (a) Micrographic image of H\&E staining (left panel), TUNEL assay (middle panels) and tissue immunostaining of Ki67 (right panel) of liver specimens. Scale bar $=200 \mu \mathrm{~m}$. (b) In the group to which the culture supernatant concentrate was administered, the total bilirubin (95%), AST (74\%), ALT (57\%), LD (28\%), and ALP (83\%) decreased in comparison with the group to which PBS was administered. The decrease in the ALT, LD, and ALP values was significant ($* * P<0.01, n=9$).

Data Analyses

Database Searching

All raw data were searched against the SwissProt 2016-07 database using the Mascot 2.5 .1 software program (Matrix Science, London, UK) (unknown version, 551705 entries). The peptide tolerance was set to 10 ppm , and the MS/MS tolerance was set to 0.6 Da . The false discovery rates (FDRs) were calculated for each of the samples using the following formula: FDR $=($ Ndecoy $/$ Nreal + NDecoy $) \times 100$. This is an indication of the percentage of the random or "false" peptide identifications in the raw data. The relative abundance of the proteins identified by LC-MS/MS was estimated by determining the protein abundance index (PAI) and the exponentially modified protein abundance index (emPAI). Visualized and validated complex LC-MS/MS proteomics
experiments were performed using Scaffold (version 4.7.3, Proteome Software Inc., Portland, OR, USA - http://www. proteomesoftware.com/) to compare samples in order to identify biological relevance.

The Criteria for Protein Identification

The Scaffold software program was used to validate the MS/ MS-based peptide and protein identifications. Peptide identifications were accepted if they could be established at $>$ 46.0% probability to achieve an FDR of $<1.0 \%$ by the Scaffold Local FDR algorithm. Protein identifications were accepted if they could be established at $>5.0 \%$ probability to achieve an FDR of $<1.0 \%$ and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm ${ }^{17}$. Proteins that contained similar peptides
and could not be differentiated based on MS/MS alone were grouped to satisfy the principles of parsimony. Proteins that shared significant peptide evidence were grouped into clusters. A protein GO analysis was performed using the GO analysis function of the Scaffold 4 software program with imported data (goa_uniprot_all.gaf [downloaded 2016/10/ 14]) from the external GO Annotation Source database.

Results

The Characteristics and Cell Quality of hMSC-ATs

hMSC-ATs were cultured to an 80% confluent state using Clinical Xeno-free medium. We observed the absence of abnormalities in cell size, shape, and culture state with a normal microscope (Fig. 2(a)). Flow cytometry was performed using markers of hMSC-AT (CD 29, CD 44), hematopoietic stem cells (CD 34), and leukocytes (CD 45). Markers of CD29 and CD44 were expressed in hMSC-AT, while the expression of CD34 and CD45 was not detected (Fig. 2(b)). The expression of hMSC-AT markers (CD29, CD44), hematopoietic stem cells (CD34), and leukocytes (CD45) was examined by realtime PCR. CD29 and CD44 were expressed by hMSC-AT, while the expression of CD34 and CD45 was not detected (Fig. 2(c)). The PCR method was used to examine the mRNA expression levels of hepatocyte growth factor (HGF), a suppressor of cancer cell invasion (SCAI) and vascular endothelial growth factor A (VEGFA) expressed in hMSC-AT. (Fig. 2(d)). hMSC-AT-CM was prepared using DMEM/F12 medium. Prior to concentrating hMSC-AT-CM to $1 / 20$ using a 10 k filter, the protein concentration was measured using an ELISA (Fig. 1(a)). The expression of hMSC-AT secreted proteins was examined by an ELISA (R\&D Systems, Minneapolis, MN, USA), which revealed that hMSC-AT secreted VEGFA proteins into the culture medium (control group: <20 [N.D] \pm $0.00 \mathrm{pg} / \mathrm{ml}, \mathrm{n}=3$; hMSC group: $886.67 \pm 28.93 \mathrm{pg} / \mathrm{ml}, \mathrm{n}=3$) (Fig. 2(e)). hMSC-AT have been reported to secrete HGF9. In our experiments, we could not show the measurement because the detection limit of the ELISA (Otuka, Tokyo, Japan) to detect HGF ($0.3 \mathrm{ng} / \mathrm{ml}$) was high (control group: <0.3 [N.D] $\pm 0.00 \mathrm{ng} / \mathrm{ml}, \mathrm{n}=3 ; \mathrm{hMSC}$ group: $<0.3 \pm 0.00 \mathrm{ng} / \mathrm{ml}, \mathrm{n}=3$). We induced differentiation into adipocytes (Fig. 2(f), upper panels) and osteoblasts (Fig. 2(f), lower panel) using hMSCAT. Mature adipocytes were stained with Oil Red O and mature osteoblasts were stained with alkaline phosphatase (Fig. 2(f), right panel). hMSC-ATs were cultured in three wells of a six-well plate. Adipocytes stained red with Oil Red O staining in all three wells and osteoblasts stained blue with alkaline phosphatase staining in all three wells were confirmed with a normal microscope.

hMSC-AT-CM Improves the Liver Function of Mice with Acute Liver Failure

CCL4 was intraperitoneally (i.p.) administered to mice to induce hepatic cell damage and model mice were prepared.

Fig. 4. The biological processes, cellular components and molecular function of the hMSC-AT-CM proteins (as determined by GO). The PCA of proteome dynamics based on the protein information generated by high-resolution mass spectrometry. (a) The ordinate shows each protein's biological function, and the abscissa indicates the proteins that were identified. The names of the proteins classified in Table 3 are listed by their abbreviated names. (b) The ordinate shows the name of each organelle, and the abscissa indicates the number of proteins identified. The names of the proteins classified in Table 4 are listed by their abbreviated names. (c) The ordinate shows each protein's molecular function, and the abscissa indicates the proteins identified. The names of the proteins classified in Table 5 are listed by their abbreviated names.

The upper part of the photo shows the liver histology at 24 h after the administration of CCL4. The hepatocytes of the centrilobular region showed necrotic change. However, when hMSC-AT-CM was injected into the tail vein at 4 h after the administration of CCL4, the number of necrotic cells was reduced. Cells in the growth phase (shown in the panels of Ki67) and apoptotic cells (shown in the panels of the TUNEL assay) of liver tissue sections were detected. In
Table 3. Biological Process.

UniProt/SWISSPROT ID	Biological adhesion	Biological regulation	Cell killing	Cellular process	Developmental process	Establishment of localization	Growth	Immune system process	Localization	Locomotion	Metabolic process	Multi-organism process	Multicellular organismal process	Pigmentation	Reproduction	Reproductive process	Response to stimulus	Rhythmic process	Viral process
FINC HUMAN BGH3_HUMAN	FINC	FINC		FINC	FINC	FINC		FINC	FINC	FINC	FINC		FINC				FINC		
CO6AI_HUMAN	CO6AI			CO6AI	CO6AI						CO6AI		CO6AI				CO6A		
CO6A3_HUMAN	CO6A3	CO6A3		CO6A3	CO6A3						CO6A3		CO6A3						
COIA2_HUMAN		COIA2		COIA2	COIA2			COIA2	COIA2	COIA2	COIA2		COIA2				COIA2		
PAII_HUMAN		PAII		PAII	PAII	PAII			PAII			PAII	PAll				PAII	PAII	
FSTLI_HUMAN		FSTLI		FSTLI													FSTLI		
POSTN_HUMAN	POSTN	POSTN		POSTN	POSTN		POSTN						POSTN				POSTN		
MMP2_HUMAN		MMP2		MMP2	MMP2						MMP2	MMP2	MMP2		MMP2	MMP2	MMP2		
COIAI_HUMAN		COIAI		COIAI	COIAI	COIAI		COIAI	COIAI	COIAI	COIAI		COIAI				COIAI		
FBNI_HUMAN	FBNI	FBNI		FBNI	FBNI				FBNI		FBNI		FBNI				FBNI		
FBN2_HUMAN		FBN2		FBN2	FBN2				FBN2				FBN2						
CATB_HUMAN		CATB		CATB	CATB			CATB			CATB	CATB	CATB		CATB	CATB	CATB		CATB
LAMBI_HUMAN	LAMBI	LAMBI		LAMBI	LAMBI				LAMBI	LAMBI			LAMBI						
PGS2_HUMAN		PGS2		PGS2	PGS2						PGS2	PGS2	PGS2		PGS2	PGS2	PGS2		
CO6A2_HUMAN	CO6A2			CO6A2							CO6A2		CO6A2				CO6A2		
LTBPI_HUMAN		LTBPI	LTBPI	LTBPI					LTBPI				LTBPI				LTBPI		
TSPI_HUMAN	TSPI	TSPI		TSPI	TSPI	TSPI		TSPI	TSPI	TSPI			TSPI				TSPI		
TIMPI_HUMAN		TIMPI		TIMPI	TIMPI	TIMPI			TIMPI				TIMPI				TIMPI		
AMPN_HUMAN																			
CO3AI_HUMAN	CO3AI	CO3AI		CO3AI	CO3AI						CO3AI		CO3AI				CO3AI		
CFAH_HUMAN		CFAH						CFAH			CFAH						CFAH		
LTBP2_HUMAN		LTBP2		LTBP2		LTBP2			LTBP2								LTBP2		
CO5AI_HUMAN	CO5AI	CO5AI		CO5AI	CO5AI				CO5AI	CO5AI	CO5AI		CO5AI				CO5AI		
LG3BP_HUMAN	LG3BP	LG3BP		LG3BP		LG3BP			LG3BP								LG3BP		
LAMCI_HUMAN	LAMCI	LAMCI		LAMCI	LAMCI				LAMCI	LAMCI									
MFAP2_HUMAN				MFAP2	MFAP2								MFAP2						
VIME_HUMAN		VIME		VIME	VIME							VIME	VIME				VIME		VIME
PCOCI_HUMAN		PCOCI			PCOCI						PCOCI		PCOCI						
COBAI_HUMAN				COBAI	COBAI						COBAI		COBAI				COBAI		
PEDF_HUMAN		PEDF		PEDF	PEDF								PEDF		PEDF	PEDF	PEDF	PEDF	
SPRC_HUMAN		SPRC		SPRC	SPRC	SPRC			SPRC			SPRC	SPRC				SPRC		
GAS6_HUMAN	GAS6	GAS6		GAS6	GAS6	GAS6		GAS6		GAS6	GAS6	GAS6	GAS6				GAS6		GAS6
LEGI_HUMAN		LEGI		LEGI	LEGI			LEGI					LEGI				LEGI		
OLFL3_HUMAN					OLFL3								OLFL3						
PTX3_HUMAN		PTX3				PTX3		PTX3	PTX3			PTX3					PTX3		
LAMA2_HUMAN	LAMA2	LAMA2		LAMA2	LAMA2					LAMA2			LAMA2				LAMA2		
ITGBL_HUMAN																			
AEBPI_HUMAN		AEBPI		AEBPI	AEBPI						AEBPI		AEBPI						
CO5A2_HUMAN		CO5A2		CO5A2	CO5A2						CO5A2		CO5A2				CO5A2		
FBLNI_HUMAN		FBLNI		FBLNI	FBLNI						FBLNI	FBLNI	FBLNI		FBLNI	FBLNI	FBLNI		FBLNI
ENOA_HUMAN	ENOA	ENOA		ENOA							ENOA	ENOA					ENOA		ENOA
FBLN5_HUMAN	FBLN5	FBLN5		FBLN5		FBLN5			FBLN5										
LUM_HUMAN		LUM		LUM	LUM						LUM		LUM				LUM		
DKK3_HUMAN		DKK3		DKK3	DKK3								DKK3				DKK3		
CO4A2_HUMAN		CO4A2		CO4A2	CO4A2						CO4A2		CO4A2				CO4A2		
CSPG2_HUMAN	CSPG2			CSPG2	CSPG2				CSPG2	CSPG2	CSPG2		CSPG2				CSPG2		
SRPX_HUMAN	SRPX	SRPX		SRPX		SRPX			SRPX		SRPX						SRPX		

Table 3. (continued)

UniProt/SWISSPROT ID	Biological adhesion	Biological regulation	Cell killing	Cellular process	Developmenta process	Establishment of localization	Growth	Immune system process	Localization	Locomotion	Metabolic process	Multi-organism process	Multicellular organismal process	Pigmentation	Reproduction	Reproductive process	Response to stimulus	Rhythmic process	Viral process
CIS_HUMAN		CIS						ClS			ClS						CIS		
ECMI_HUMAN		ECMI	ECMI	ECMI	ECMI				ECMI				ECMI				ECMI		
NIDI_HUMAN	NIDI	NIDI		NIDI	NIDI								NIDI						
SAP_HUMAN		SAP		SAP	SAP	SAP	SAP		SAP		SAP		SAP		SAP	SAP	SAP		
SEMTA_HUMAN		SEM7A		SEM7A	SEM7A		SEM7A	SEM7A	SEM7A	SEM7A			SEM7A				SEM7A		
CLUS_HUMAN		CLUS		CLUS	CLUS	CLUS		CLUS	CLUS		CLUS	CLUS	CLUS				CLUS		CLUS
LYOX_HUMAN				LYOX	LYOX						LYOX		LYOX				LYOX		
QSOXI_HUMAN		QSOXI		QSOXI		QSOXI			QSOXI		QSOXI								
G3P_HUMAN		G3P		G3P				G3P			G3P						G3P		
TICNI_HUMAN	TICNI	TICNI		TICNI	TICNI				TICNI	TICNI			TICNI				TICNI		
EMILI_HUMAN	EMILI																		
WISP2_HUMAN	WISP2	WISP2		WISP2													WISP2		
TFPII_HUMAN		TFPII		TFPII							TFPII	TFPII	TFPII				TFPII		
PXDN_HUMAN		PXDN		PXDN				PXDN			PXDN						PXDN		
PGBM_HUMAN				PGBM	PGBM						PGBM		PGBM						
IBP4_HUMAN		IBP4		IBP4	IBP4						IBP4		IBP4				IBP4		
VASN_HUMAN	VASN	VASN		VASN													VASN		
GPNMB_HUMAN	GPNMB	GPNMB		GPNMB	GPNMB					GPNMB			GPNMB				GPNMB		
SRCRL_HUMAN		SRCRL			SRCRL	SRCRL		SRCRL	SRCRL			SRCRL	SRCRL				SRCRL		
FBLN3_HUMAN		FBLN3		FBLN3	FBLN3						FBLN3		FBLN3				FBLN3		
PLTP_HUMAN		PLTP		PLTP		PLTP			PLTP	PLTP			PLTP						
PROFI_HUMAN	PROFI	PROFI		PROFI	PROFI								PROFI				PROFI		
IBP7_HUMAN	1BP7	IBP7		IBP7	1BP7							1BP7	IBP7		IBP7	1BP7	IBP7		
PGSI_HUMAN		PGSI		PGSI							PGSI		PGSI				PGSI		
NUCBI_HUMAN		NUCBI															NUCBI		
CD44_HUMAN	CD44																		
AGRIN_HUMAN		AGRIN		AGRIN	AGRIN				AGRIN		AGRIN		AGRIN				AGRIN		
MFGM_HUMAN	MFGM	MFGM		MFGM	MFGM	MFGM			MFGM		MFGM	MFGM	MFGM		MFGM	MFGM			MFGM
RCNI_HUMAN					RCNI								RCNI						
FAM3C_HUMAN				FAM3C	FAM3C	FAM3C			FAM3C				FAM3C						
CATZ_HUMAN		CATZ		CATZ	CATZ	CATZ			CATZ		CATZ		CATZ						
PDIAI_HUMAN		PDIAI		PDIAI							PDIAI						PDIAI		
IBP2_HUMAN		IBP2		IBP2	IBP2						IBP2	1BP2	IBP2		IBP2	1BP2	IBP2		
TPPI_HUMAN		TPPI		TPPI	TPPI						TPPI		TPPI				TPPI		
GDN_HUMAN		GDN		GDN	GDN	GDN			GDN			GDN	GDN		GDN	GDN	GDN		
CD248_HUMAN		CD248		CD248	CD248			CD248	CD248	CD248			CD248						
SPON2_HUMAN	SPON2	SPON2		SPON2	SPON2	SPON2		SPON2	SPON2	SPON2		SPON2	SPON2				SPON2		SPON2
MARCS_HUMAN		MARCS																	
LAMAI_HUMAN	LAMAI	LAMAI		LAMAI													LAMAI		
SERPH_HUMAN		SERPH		SERPH	SERPH						SERPH		SERPH				SERPH		
PLODI_HUMAN		PLODI		PLODI	PLODI				PLODI		PLODI		PLODI				PLODI		
CO4AI_HUMAN																			
GOLMI_HUMAN		GOLMI		GOLMI															
ENPP2_HUMAN		ENPP2		ENPP2		ENPP2		ENPP2	ENPP2	ENPP2	ENPP2						ENPP2		
LAMA4_HUMAN	LAMA4	LAMA4		LAMA4															
TARSH_HUMAN		TARSH		TARSH															
PTK7_HUMAN	PTK7	PTK7		PTK7	PTK7		PTK7		PTK7	PTK7	PTK7		PTK7				PTK7		
SAP3_HUMAN		SAP3		SAP3		SAP3			SAP3		SAP3		SAP3						

Table 3. (continued)

UniProt/SWISSPROT ID	Biological adhesion	Biological Cell regulation killing	Cellular process	Developmental process	Establishment of localization	Growth	Immune system process	Localization	Locomotion	Metabolic process	Multi-organism process	Multicellular organismal process Pigmentation	Reproduction	Reproductive process	Response to stimulus	Rhythmic process	Viral process
CDI09_HUMAN		CDI09	CDI09	CDI09			CDI09					CDI09					
PAMRI_HUMAN																	
KPYM_HUMAN	KPYM		KPYM														
PTGDS_HUMAN		PTGDS	PTGDS		PTGDS			PTGDS		PTGDS					PTGDS		
IBP6_HUMAN		IBP6	IBP6							IBP6					IBP6		
PROTID	adhesion	regulation killing	process	process	localization	growth	process	localization	locomotion	process	process	organismalprocess pigmentation	reproduction	process	stimulus	process	process
STC2_HUMAN		STC2	STC2	STC2							STC2	STC2	STC2	STC2	STC2		
FI80A_HUMAN CFAB_HUMAN		CFAB					CFAB								CFAB		
CSTNI_HUMAN	CSTNI	CSTNI															
VASI_HUMAN		VASI	VASI		VASI			VASI							VASI		
FBLN4_HUMAN																	
CATLI_HUMAN		CATLI	CATLI				CATLI			CATLI		CATLI			CATLI		
CAB45_HUMAN																	
CTHRI_HUMAN		CTHRI	CTHRI	CTHRI				CTHRI	CTHRI			CTHRI			CTHRI		
MFAP5_HUMAN			MFAP5	MFAP5			MFAP5					MFAP5					
CD59_HUMAN		CD59	CD59		CD59			CD59				CD59			CD59		
MIF_HUMAN		MIF	MIF	MIF			MIF	MIF	MIF	MIF					MIF		
CXCL5_HUMAN		CXCL5	CXCL5				CXCL5	CXCL5	CXCL5		CXCL5				CXCL5		
ADAM9_HUMAN	ADAM9	ADAM9	ADAM9	ADAM9			ADAM9	ADAM9	ADAM9	ADAM9	ADAM9	ADAM9			ADAM9		
SIOAB_HUMAN	SIOAB	SIOAB	SIOAB												SIOAB		
MA2AI_HUMAN		MA2AI	MA2AI	MA2AI						MA2AI		MA2AI					
CATK_HUMAN		CATK	CATK				CATK			CATK		CATK			CATK		
CAPI_HUMAN		CAPI	CAPI	CAPI	CAPI			CAPI	CAPI						CAPI		
CYTC_HUMAN		CYTC	CYTC	CYTC						CYTC							
MXRA8_HUMAN																	
CCD80_HUMAN		CCD80	CCD80														
FBLN2_HUMAN	FBLN2																
CORIC_HUMAN		CORIC	CORIC	CORIC	CORIC			CORIC	CORIC			CORIC			CORIC		
NPC2_HUMAN		NPC2	NPC2		NPC2			NPC2		NPC2	NPC2				NPC2		NPC2
KNLI_HUMAN																	
CD9_HUMAN																	
CDI4_HUMAN																	

mouse liver administered hMSC-AT-CM, the number of apoptotic cells widely observed in liver tissues was reduced by CCL4 administration. Furthermore, the apoptotic cells were localized to the interlobular vein in liver tissues treated with hMSC-AT-CM. Cells in the growth phase were observed around the cells showing apoptosis due to the administration of CCL4 (Fig. 3(a), left and middle panels). However, cells in the growth phase were uniformly observed in liver tissues treated with hMSC-AT-CM. Ki67 was expressed only in the nucleus, and cells in the proliferation phase had brown-stained nuclei. Mouse hepatocytes in the group treated with hMSC-AT-CM showed more nuclearstained cells than those in the group treated with PBS, thus indicating that hMSC-AT-CM promoted hepatocyte proliferation (Fig. 3(a), right panel). We also counted the number of positively stained cells in images of TUNNEL-stained sections ($\times 100$). The numbers of positively stained cells in the PBS and CM groups were 15.25 ± 3.96 and 10.00 ± 5.07, respectively ($\mathrm{n}=4 ; \mathrm{P}=0.18$) (Fig. 3(a), middle panels). We also counted the number of cells with positively stained nuclei on images of Ki67-stained sections ($\times 100$). The numbers of cells with positively stained nuclei in the PBS and CM groups were 10.25 ± 4.23 and 90.75 ± 38.42, respectively ($\mathrm{n}=4$; ${ }^{* *} \mathrm{P}<0.01$) (Fig. 3(a), right panels). These results indicate that hMSC-AT-CM rapidly recovered because of the generation of new viable cells as the older cells died due to CCL4 administration (Fig. 3(a)).

Our experiments show that the administration of MSC-AT-CM from a single vein rapidly promoted the cellular proliferation of mouse hepatocytes. The proteins associated with a growth function (GO analysis), identified by the presence of MSC-AT-CM, were POSTN, SAP, SEM7A, PTK7 (Table 3). Of course, it is not possible to explain the proliferative effect of hepatocytes based on the presence of four proteins. Periostin, which is encoded by the POSTIN gene, has been reported as an extracellular factor that promotes hepatosteatosis ${ }^{18,19}$; however, many points about proteins with the ability to promote the cellular proliferation of hepatocytes remain unclear. P component (SAP) is a protein that is expressed in hepatocytes and secreted into serum, and is known to be involved in processes associated with immune regulation, such as the action of opsonins ${ }^{20}$. Whether SAP is involved in the cellular proliferation of hepatocytes is unknown. Semaphorin 7A (SEM7A) is known to contribute to TGF- β mediated hepatic fibrosis ${ }^{21}$. It is unknown whether SEM7A promotes hepatocyte cell proliferation. Thus, future studies should investigate whether the growth-associated proteins that are newly identified by GO analyses promote the cellular proliferation of hepatocytes with CCL4-induced impairment. At approximately 10 days of gestation, during the development of the liver, the hematopoietic cells flow from the aorta-gonad-mesonephros region (AGM region) and placenta, and the liver begins to function as a hematopoietic organ ${ }^{22}$. It has been clarified that HGF and various extracellular matrices produced by non-parenchymal cells promote the differentiation of hepatoblasts into hepatocytes
during this period ${ }^{23}$. In addition, a recent theory suggests that the biliary tree functions as a source of liver and pancreatic stem cells and progenitor cells. It is known that VEGF is secreted by the biliary tree due as a stress response ${ }^{24}$. From these developmental perspectives, it can be hypothesized that the HGF and VEGF secreted by MSC-AT-CMs have an extremely strong promoting effect on hepatocyte proliferation.

Serum from the model mice was sampled and biochemically analyzed. The average value of each measurement was s as follows (correction was not made by diluting $100 \mu \mathrm{~L}$ of serum with $400 \mu \mathrm{~L}$ of physiological saline). Total bilirubin (PBS 0.04 ± 0.02, supernatant concentrate 0.03 ± 0.01 (unit $\mathrm{mg} / \mathrm{ml}$)), AST (PBS 2956 ± 1133, supernatant concentrate 2195 ± 1319 (unit IU/L)), ALT (PBS 2538 ± 663, supernatant concentrate 1448 ± 608 (unit IU/L)), LD (PBS 3574 ± 1873, supernatant concentrate 997 ± 572 (unit IU/ L)), ALP (PBS 120 ± 15, supernatant concentrate 99 ± 18 (unit IU/L)). The serum liver injury markers (ALT, LD and ALP) were significantly reduced at 20 h after the administration of hMSC-AT-CM (Fig. 3(b)).

The Biological Processes, Cellular Components and Molecular Function of Proteins Identified from hMSC-AT-CM

The biological processes of proteins were analyzed using the Mascot software program with the SwissProt 2016 database.

In this study, a secreted protein expression analysis of hMSC-AT was performed using LC-MS/MS and 128 proteins were identified (Table 1). LC-MS/MS showed that 106 new functional proteins and 22 proteins (FINC, PAI1, POSTN, PGS2, TIMP1, AMPN, CFAH, VIME, PEDF, SPRC, LEG1, ITGBL, ENOA, CSPG2, CLUS, IBP4, IBP7, PGS1, IBP2, STC2, CTHR1, CD9) were previously reported in hMSC-AT-CMs. In addition, various proteins associated with growth (SAP, SEM7A, PTK7); immune system processes (CO1A2, CO1A1, CATB, TSP1, GAS6, PTX3, C1 S, SEM7A, G3P, PXDN, SRCRL, CD248, SPON2, ENPP2, CD109, CFAB, CATL1, MFAP5, MIF, CXCL5, ADAM9, CATK); and reproduction (MMP2, CATB, FBLN1, SAP, MFGM, GDN, CYTC) were identified in hMSC-AT-CMs.

Biological processes. FINC, CATB, TSP1, GAS6, SAP, SEM7A, SRCRL, MFGM, GDN, SPON2, PTK7, ADAM9 and CYTC all seemed to be widely involved in the function of hMSC-AT-CM under the classification of 'biological processes' (Table 3). FINC was distributed in sites such as those associated with the response to biological adhesion, biological regulation, cellular processes, the developmental process, the establishment of localization, the immune system process, localization, locomotion, the metabolic process, the multicellular organismal process, and response to stimulus. Collagen types I, V, VI and XII, and fibronectin (ECM components) were detected in hMSC-AT-CM by MALDI-
Table 4. Cellular Component.

UniProt/SWISS-PROTID	golgi apparatus	cytoplasm	cytoskeleton	endoplasmic reticulum	endosome	extracellular region	intracellular organelle	membrane	mitochondrion	nucleus	organelle membrane	organelle part	plasma membrane	ribosome
FINC_HUMAN		FINC				FINC	FINC	FINC				FINC	FINC	
BGH3_HUMAN	BGH3	BGH3				BGH3	BGH3	BGH3				BGH3	BGH3	
CO6AI_HUMAN		CO6AI		CO6AI		CO6AI	CO6AI	CO6AI			CO6AI	CO6AI	CO6AI	
CO6A3_HUMAN		CO6A3		CO6A3		CO6A3	CO6A3	CO6A3				CO6A3	CO6A3	
COIA2_HUMAN		COIA2		COIA2		COIA2	COIA2					COIA2		
PAII_HUMAN		PAII				PAII	PAII	PAII				PAII	PAII	
FSTLI_HUMAN						FSTLI								
POSTN_HUMAN	POSTN	POSTN				POSTN	POSTN					POSTN		
MMP2_HUMAN		MMP2				MMP2	MMP2	MMP2	MMP2	MMP2		MMP2	MMP2	
COIAI_HUMAN	COIAI	COIAI		COIAI		COIAI	COIAI					COIAI		
FBNI_HUMAN						FBNI								
FBN2_HUMAN						FBN2								
CATB_HUMAN		CATB			CATB	CATB	CATB		CATB	CATB		CATB		
LAMBI_HUMAN		LAMBI				LAMBI								
PGS2_HUMAN	PGS2	PGS2				PGS2	PGS2					PGS2		
CO6A2_HUMAN		CO6A2		CO6A2		CO6A2	CO6A2	CO6A2				CO6A2	CO6A2	
LTBPI_HUMAN						LTBPI								
TSPI_HUMAN		TSPI		TSPI		TSPI	TSPI	TSPI				TSPI	TSPI	
TIMPI_HUMAN		TIMPI				TIMPI	TIMPI					TIMPI		
AMPN_HUMAN		AMPN				AMPN	AMPN	AMPN			AMPN	AMPN	AMPN	
CO3AI_HUMAN		CO3AI		CO3AI		CO3AI	CO3AI					CO3AI		
CFAH_HUMAN						CFAH								
LTBP2_HUMAN						LTBP2								
CO5AI_HUMAN		CO5AI		CO5AI		CO5AI	CO5AI					CO5AI		
LG3BP_HUMAN		LG3BP				LG3BP	LG3BP	LG3BP				LG3BP		
LAMCI_HUMAN						LAMCI								
MFAP2_HUMAN						MFAP2								
VIME_HUMAN		VIME	VIME			VIME	VIME	VIME				VIME	VIME	
PCOCI_HUMAN						PCOCI								
COBAI_HUMAN		COBAI		COBAI		COBAI	COBAI					COBAI		
PEDF_HUMAN		PEDF				PEDF	PEDF							
SPRC_HUMAN		SPRC				SPRC								
GAS6_HUMAN	GAS6	GAS6		GAS6		GAS6	GAS6					GAS6		
LEGI_HUMAN		LEGI				LEGI	LEGI			LEGI				
OLFL3_HUMAN						OLFL3								
PTX3_HUMAN						PTX3								
LAMA2_HUMAN						LAMA2		LAMA2					LAMA2	
ITGBL_HUMAN						ITGBL								
AEBPI_HUMAN		AEBPI				AEBPI	AEBPI			AEBPI				
CO5A2_HUMAN		CO5A2		CO5A2		CO5A2	CO5A2					CO5A2		
FBLNI_HUMAN						FBLNI								
ENOA_HUMAN		ENOA				ENOA	ENOA	ENOA		ENOA		ENOA	ENOA	
FBLN5_HUMAN						FBLN5								
LUM_HUMAN	LUM	LUM				LUM	LUM					LUM		
DKK3_HUMAN						DKK3								
CO4A2_HUMAN		CO4A2		CO4A2		CO4A2	CO4A2					CO4A2		

Table 4. (continued)

UniProt/SWISS-PROTID	golgi apparatus	cytoplasm	cytoskeleton	endoplasmic reticulum	endosome	extracellular region	intracellular organelle	membrane	mitochondrion	nucleus	organelle membrane	organelle part	plasma membrane	ribosome
CSPG2_HUMAN	CSPG2	CSPG2				CSPG2	CSPG2	CSPG2				CSPG2		
SRPX_HUMAN		SRPX		SRPX			SRPX	SRPX						
CIS_HUMAN						CIS								
ECMI_HUMAN		ECMI				ECMI	ECMI					ECMI		
NIDI_HUMAN						NIDI								
SAP_HUMAN		SAP				SAP	SAP	SAP	SAP		SAP	SAP		
SEM7A_HUMAN						SEM7A		SEM7A					SEM7A	
CLUS_HUMAN	CLUS	CLUS		CLUS		CLUS								
LYOX_HUMAN						LYOX	LYOX			LYOX				
QSOXI_HUMAN	QSOXI	QSOXI				QSOXI	QSOXI	QSOXI			QSOXI	QSOXI		
G3P_HUMAN		G3P	G3P			G3P	G3P	G3P		G3P	G3P	G3P	G3P	
TICNI_HUMAN		TICNI				TICNI								
EMILI_HUMAN						EMILI								
WISP2_HUMAN						WISP2								
TFPII_HUMAN		TFPII		TFPII		TFPII	TFPII	TFPII			TFPII	TFPII	TFPII	
PXDN_HUMAN		PXDN		PXDN		PXDN	PXDN							
PGBM_HUMAN	PGBM	PGBM				PGBM	PGBM	PGBM				PGBM	PGBM	
IBP4_HUMAN						IBP4								
VASN_HUMAN		VASN				VASN	VASN	VASN	VASN		VASN	VASN	VASN	
GPNMB_HUMAN		GPNMB					GPNMB	GPNMB					GPNMB	
SRCRL_HUMAN		SRCRL				SRCRL		SRCRL						
FBLN3_HUMAN						FBLN3								
PLTP_HUMAN						PLTP								
PROFI_HUMAN		PROFI	PROFI			PROFI	PROFI	PROFI		PROFI				
IBP7_HUMAN						IBP7								
PGSI_HUMAN	PGSI	PGSI				PGSI	PGSI	PGSI				PGSI	PGSI	
NUCBI_HUMAN	NUCBI		NUCBI	NUCBI	NUCBI									
CD44_HUMAN								CD44					CD44	
AGRIN_HUMAN	AGRIN	AGRIN				AGRIN	AGRIN	AGRIN				AGRIN	AGRIN	
MFGM_HUMAN						MFGM		MFGM					MFGM	
RCNI_HUMAN		RCNI		RCNI			RCNI					RCNI		
FAM3C_HUMAN	FAM3C	FAM3C				FAM3C	FAM3C					FAM3C		
CATZ_HUMAN	CATZ	CATZ		CATZ		CATZ	CATZ	CATZ			CATZ	CATZ	CATZ	
PDIAI_HUMAN		PDIAI		PDIAI		PDIAI	PDIAI	PDIAI				PDIAI	PDIAI	
IBP2_HUMAN		IBP2				IBP2	IBP2	IBP2					IBP2	
TPPI_HUMAN		TPPI				TPPI	TPPI		TPPI			TPPI		
GDN_HUMAN		GDN				GDN	GDN	GDN					GDN	
CD248_HUMAN		CD248				CD248		CD248						
SPON2_HUMAN						SPON2								
MARCS_HUMAN		MARCS	MARCS			MARCS	MARCS	MARCS		MARCS		MARCS	MARCS	
LAMAI_HUMAN						LAMAI								
SERPH_HUMAN		SERPH		SERPH		SERPH	SERPH	SERPH				SERPH		
PLODI_HUMAN		PLODI		PLODI		PLODI	PLODI	PLODI			PLODI	PLODI		
CO4AI_HUMAN						CO4AI								
GOLMI_HUMAN	GOLMI	GOLMI				GOLMI	GOLMI	GOLMI					GOLMI	
ENPP2_HUMAN						ENPP2		ENPP2					ENPP2	

Table 4. (continued)

UniProt/SWISS-PROTID	golgi apparatus	cytoplasm	cytoskeleton	endoplasmic reticulum	endosome	extracellular region	intracellular organelle	membrane	mitochondrion	nucleus	organelle membrane	organelle part	plasma membrane	ribosome
LAMA4_HUMAN						LAMA4								
TARSH_HUMAN						TARSH								
PTK7_HUMAN								PTK7					PTK7	
SAP3_HUMAN		SAP3				SAP3	SAP3	SAP3	SAP3			SAP3	SAP3	
CDI09_HUMAN						CDIO9		CDI09					CDIO9	
PAMRI_HUMAN						PAMRI								
KPYM_HUMAN		KPYM				KPYM	KPYM	KPYM	KPYM	KPYM			KPYM	
PTGDS_HUMAN	PTGDS	PTGDS		PTGDS		PTGDS	PTGDS	PTGDS		PTGDS	PTGDS	PTGDS		
IBP6_HUMAN	IBP6	IBP6				IBP6	IBP6							
STC2_HUMAN	STC2	STC2		STC2		STC2	STC2							
FI80A_HUMAN						FI80A								
CFAB_HUMAN						CFAB								
CSTNI_HUMAN	CSTNI	CSTNI		CSTNI		CSTNI	CSTNI	CSTNI		CSTNI	CSTNI	CSTNI	CSTNI	
VASI_HUMAN		VASI			VASI	VASI	VASI	VASI			VASI	VASI		
FBLN4_HUMAN						FBLN4								
CATLI_HUMAN		CATLI			CATLI	CATLI	CATLI			CATLI		CATLI		
CAB45_HUMAN														
CTHRI_HUMAN		CTHRI				CTHRI								
MFAP5_HUMAN						MFAP5								
CD59_HUMAN	CD59	CD59		CD59		CD59	CD59	CD59			CD59	CD59	CD59	
MIF_HUMAN		MIF				MIF	MIF			MIF		MIF		
CXCL5_HUMAN						CXCL5								
ADAM9_HUMAN						ADAM9		ADAM9					ADAM9	
SIOAB_HUMAN		SIOAB				SIOAB	SIOAB			SIOAB				
MA2AI_HUMAN	MA2AI	MA2AI				MA2AI	MA2AI	MA2AI			MA2AI	MA2AI		
CATK_HUMAN		CATK			CATK	CATK	CATK					CATK		
CAPI_HUMAN		CAPI	CAPI			CAPI	CAPI	CAPI				CAPI	CAPI	
CYTC_HUMAN		CYTC		CYTC	CYTC	CYTC	CYTC	CYTC		CYTC	CYTC	CYTC		
MXRA8_HUMAN														
CCD80_HUMAN						CCD80								
FBLN2_HUMAN						FBLN2								
CORIC_HUMAN		CORIC	CORIC				CORIC	CORIC					CORIC	
NPC2_HUMAN		NPC2		NPC2		NPC2	NPC2							
KNLI_HUMAN														
CD9_HUMAN														
CDI4_HUMAN														

Table 5. Molecular Function.

UniProt/SWISS-PROT ID	Antioxidant activity	Binding	Catalytic activity	Chemoattractant activity	Chemorepellent activity	Electron carrier activity	Enzyme regulator activity	Molecular function	Molecular transducer activity	Motor activity	Structural molecule activity	Transporter activity
FINC_HUMAN		FINC					FINC	FINC				
BGH3_HUMAN		BGH3						BGH3				
CO6AI_HUMAN		CO6AI						CO6AI				
CO6A3_HUMAN							CO6A3	CO6A3				
COIA2_HUMAN		COIA2						COIA2			COIA2	
PAII_HUMAN		PAII					PAII	PAII				
FSTLI_HUMAN		FSTLI						FSTLI				
POSTN_HUMAN		POSTN						POSTN				
MMP2_HUMAN		MMP2	MMP2					MMP2				
COIAI_HUMAN		COIAI						COIAI			COIAI	
FBNI_HUMAN		FBNI						FBNI			FBNI	
FBN2_HUMAN		FBN2						FBN2			FBN2	
CATB_HUMAN		CATB	CATB					CATB				
LAMBI_HUMAN								LAMBI			LAMBI	
PGS2_HUMAN		PGS2					PGS2	PGS2				
CO6A2_HUMAN												
LTBPI_HUMAN		LTBPI	LTBPI					LTBPI	LTBPI			
TSPI_HUMAN		TSPI						TSPI				
TIMPI_HUMAN		TIMPI					TIMPI	TIMPI				
AMPN_HUMAN		AMPN	AMPN					AMPN	AMPN			
CO3AI_HUMAN		CO3AI						CO3AI			CO3AI	
CFAH_HUMAN		CFAH						CFAH				
LTBP2_HUMAN		LTBP2						LTBP2				
CO5AI_HUMAN		CO5AI						CO5AI			CO5AI	
LG3BP_HUMAN								LG3BP	LG3BP			
LAMCI_HUMAN								LAMCI			LAMCI	
MFAP2_HUMAN												
VIME_HUMAN		VIME						VIME			VIME	
PCOCI_HUMAN		PCOCI					PCOCI	PCOCI				
COBAI_HUMAN		COBAI						COBAI			COBAI	
PEDF_HUMAN		PEDF					PEDF	PEDF				
SPRC_HUMAN		SPRC						SPRC				
GAS6_HUMAN		GAS6					GAS6	GAS6				GAS6
LEGI_HUMAN		LEGI						LEGI				
OLFL3_HUMAN												
PTX3_HUMAN		PTX3						PTX3				
LAMA2_HUMAN		LAMA2						LAMA2			LAMA2	
ITGBL_HUMAN												
AEBPI_HUMAN		AEBPI	AEBPI					AEBPI				
CO5A2_HUMAN		CO5A2						CO5A2			CO5A2	
FBLNI_HUMAN		FBLNI					FBLNI	FBLNI			FBLNI	
ENOA_HUMAN		ENOA	ENOA					ENOA				

Table 5. (continued)

UniProt/SWISS-PROT ID	Antioxidant activity	Binding	Catalytic activity	Chemoattractant activity	Chemorepellent activity	Electron carrier activity	Enzyme regulator activity	Molecular function	Molecular transducer activity	Motor activity	Structural molecule activity	Transporter activity
FBLN5_HUMAN		FBLN5						FBLN5				
LUM_HUMAN		LUM						LUM			LUM	
DKK3_HUMAN												
CO4A2_HUMAN								CO4A2			CO4A2	
CSPG2_HUMAN		CSPG2						CSPG2			CSPG2	
SRPX_HUMAN												
CIS_HUMAN		CIS	CIS					CIS				
ECMI_HUMAN		ECMI						ECMI				
NIDI_HUMAN		NIDI						NIDI				
SAP_HUMAN		SAP					SAP	SAP				
SEM7A_HUMAN		SEM7A			SEM7A			SEM7A				
CLUS_HUMAN		CLUS	CLUS					CLUS				
LYOX_HUMAN		LYOX	LYOX					LYOX				
QSOXI_HUMAN			QSOXI					QSOXI				
G3P_HUMAN		G3P	G3P					G3P				
TICNI_HUMAN		TICNI					TICNI	TICNI				
EMILI_HUMAN		EMILI						EMILI			EMILI	
WISP2_HUMAN		WISP2						WISP2				
TFPII_HUMAN							TFPII	TFPII				
PXDN_HUMAN	PXDN	PXDN	PXDN					PXDN			PXDN	
PGBM_HUMAN		PGBM						PGBM				
IBP4_HUMAN		IBP4						IBP4				
VASN_HUMAN		VASN						VASN				
GPNMB_HUMAN		GPNMB		GPNMB				GPNMB				
SRCRL_HUMAN		SRCRL						SRCRL	SRCRL			
FBLN3_HUMAN		FBLN3	FBLN3					FBLN3	FBLN3			
PLTP_HUMAN		PLTP						PLTP				
PROFI_HUMAN		PROFI					PROFI	PROFI				
IBP7_HUMAN		IBP7						IBP7				
PGSI_HUMAN		PGSI					PGSI	PGSI			PGSI	
NUCBI_HUMAN		NUCBI						NUCBI				
CD44_HUMAN		CD44						CD44				
AGRIN_HUMAN		AGRIN						AGRIN			AGRIN	
MFGM_HUMAN		MFGM						MFGM				
RCNI_HUMAN		RCNI						RCNI				
FAM3C_HUMAN		FAM3C						FAM3C				
CATZ_HUMAN		CATZ	CATZ					CATZ				
PDIAI_HUMAN		PDIAI	PDIAI					PDIAI				
IBP2_HUMAN		IBP2						IBP2				
TPPI_HUMAN		TPPI	TPPI					TPPI				
GDN_HUMAN		GDN					GDN	GDN				
CD248_HUMAN		CD248						CD248				
SPON2_HUMAN		SPON2						SPON2				

Table 5. (continued)

UniProt/SWISS-PROT ID	Antioxidant activity	Binding	Catalytic activity	Chemoattractant activity	Chemorepellent activity	Electron carrier activity	Enzyme regulator activity	Molecular function	Molecular transducer activity	Motor activity	Structural molecule activity	Transporter activity
MARCS_HUMAN		MARCS						MARCS				
LAMAI_HUMAN		LAMAI						LAMAI			LAMAI	
SERPH_HUMAN		SERPH					SERPH	SERPH				
PLODI_HUMAN		PLODI	PLODI					PLODI				
CO4AI_HUMAN								CO4AI			CO4AI	
GOLMI_HUMAN		GOLMI						GOLMI				
ENPP2_HUMAN		ENPP2	ENPP2					ENPP2	ENPP2			
LAMA4_HUMAN		LAMA4						LAMA4			LAMA4	
TARSH_HUMAN		TARSH						TARSH				
PTK7_HUMAN		PTK7	PTK7					PTK7	PTK7			
SAP3_HUMAN			SAP3				SAP3	SAP3				SAP3
CDI09_HUMAN		CDIO9					CDI09	CDI09				
PAMRI_HUMAN		PAMRI						PAMRI				
KPYM_HUMAN		KPYM	KPYM					KPYM				
PTGDS_HUMAN		PTGDS	PTGDS					PTGDS				
IBP6_HUMAN		IBP6						IBP6				
STC2_HUMAN		STC2						STC2				
FI80A_HUMAN												
CFAB_HUMAN			CFAB					CFAB				
CSTNI_HUMAN		CSTNI						CSTNI				
VASI_HUMAN		VASI	VASI					VASI				
FBLN4_HUMAN		FBLN4						FBLN4			FBLN4	
CATLI_HUMAN		CATLI	CATLI					CATLI				
CAB45_HUMAN												
CTHRI_HUMAN		CTHRI						CTHRI				
MFAP5_HUMAN								MFAP5			MFAP5	
CD59_HUMAN		CD59						CD59				
MIF_HUMAN		MIF	MIF	MIF				MIF				
CXCL5_HUMAN		CXCL5						CXCL5				
ADAM9_HUMAN		ADAM9	ADAM9					ADAM9				
SIOAB_HUMAN		SIOAB						SIOAB				
MA2AI_HUMAN		MA2AI	MA2AI					MA2AI				
CATK_HUMAN		CATK	CATK					CATK				
CAPI_HUMAN		CAPI						CAPI				
CYTC_HUMAN		CYTC					CYTC	CYTC				
MXRA8_HUMAN												
CCD80_HUMAN		CCD80						CCD80				
FBLN2_HUMAN		FBLN2						FBLN2			FBLN2	
CORIC_HUMAN		CORIC						CORIC				
NPC2_HUMAN		NPC2						NPC2				
KNLI_HUMAN												
CD9_HUMAN												
CDI4_HUMAN												

Table 6. Previous Reports; hMSC Secreted Protein Identified.

| hMSC-AT ${ }^{\text {a }}$-CM ${ }^{\text {d }}$ | | Proteins excluded from protein list of hMSC-AT-CM (overlapped with basal medium) | PLoS ONE
 2007;Issue
 9:e94\|1
 hMSC-
 $B M^{\text {b }}-\mathrm{CM}$ | PLoS ONE 2008;3:el886 hMSC-BMCM^{4} | The Journal of Neuroscience 2015;11:2452-2464 hMSC-BM \& hMSCDP $^{\text {c }}-$ CM 42 | Exp Cell Res 2010;16:
 \|271-I28|
 hMSC-BM-
 CM^{25} | $\begin{gathered} \text { STEM CELLS } \\ 2008 ; 26: 2705- \\ 2712^{8} \end{gathered}$ | | TISSUE ENGINEERING 2012;Part A 18:1479-1489 ${ }^{9}$
 hMSC-BM-CM | Molecular
 Therapy
 2015;23:
 549-560
 hMSC-BM-
 CM^{43} | Scientific
 Reports
 2013;4:3652
 hMSC-BM-
 $C M^{44}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | hMSC-BM-CM | | | | | hMSC-
 AT-CM | | | |
| FINC | PROFI | | ALBU | IBPI | CXCL5 | CXCLI | COLIAI | ILIRA | ILIRA | IGF-I | STCI | SCRGI |
| BGH3 | IBP7 | TRFE | LEP | CSF3 | MMPIO | COLIA2 | IL6 | IL6 | VEGF | | |
| CO6AI | PGSI | HPT | CCL2 | GROA | FST | COL5A2 | IL7 | IL7 | | | |
| CO6A3 | NUCBI | AIBG | IL8 | CCLI | LYVEI | COL6AI | IL8 | IL8 | | | |
| COIA2 | CD44 | HEMO | BMP4 | ILIA | ADAI7 | COLIIAI | ILI5 | ILI5 | | | |
| PAII | AGRIN | FETUA | TNFL6 | ILIB | NRGI | FINC | CSF3 | CSF3 | | | |
| FSTLI | MFGM | HPTR | FGF6 | IL2 | MMP7 | FND3A | CSF2 | CSF2 | | | |
| POSTN | RCNI | PGRP2 | TNFB | IL3 | FURIN | SPRC | X3CLI | X3CLI | | | |
| MMP2 | FAM3C | ITIH4 | CNTF | IL4 | ANGI | IBP7 | CCLII | CCLII | | | |
| COIAI | CATZ | AFAM | IL9 | IL6 | TNRII | | CCL2 | CCL2 | | | |
| FBNI | PDIAI | TTHY | IBP4 | IL8 | LEG7 | | VEGF | VEGF | | | |
| FBN2 | IBP2 | APOH | TGFA | ILIO | NRCAM | | HGF | HGF | | | |
| CATB | TPPI | VTDB | SCF | ILI2 | UFO | | NGF | NGF | | | |
| LAMBI | GDN | ZA2G | CCL22 | CCL2 | MMP3 | | ILI2 | CXLIO | | | |
| PGS2 | CD248 | A2GL | TGFB3 | CSFI | TSLP | | CCL3 | ILI2 | | | |
| CO6A2 | SPON2 | IGKC | CXCL9 | CCL22 | FRIL/H | | EGF | CCL3 | | | |
| LTBPI | MARCS | IGLC2 | CCL27 | CCL4 | TNR27 | | | CCL4 | | | |
| TSPI | LAMAI | CIR | IBP2 | CCL5 | FSTL | | | EGF | | | |
| TIMPI | SERPH | IGLL5 | CXLII | SCF | TNR5 | | | ILIO | | | |
| AMPN | PLODI | CERU | CXCL6 | SDFI | DKK3 | | | ILI7 | | | |
| CO3AI | CO4AI | RET4 | MCP4 | TNFA | RETN | | | | | | |
| CFAH | GOLMI | AIAG2 | TNFA | TNFB | TNNTI | | | | | | |
| LTBP2 | ENPP2 | ATRN | CCL20 | EGF | NIDI | | | | | | |
| CO5AI | LAMA4 | IGHGI | GDNF | IGFI | TRIOB | | | | | | |
| LG3BP | TARSH | CPN2 | BMP6 | ANGI | IL22 | | | | | | |
| LAMCI | PTK7 | HBB | TGFB2 | ONCM | MMP2 | | | | | | |
| MFAP2 | SAP3 | HBA | BDNF | TPO | PRS27 | | | | | | |
| VIME | CDI09 | AMBP | SDFI | VEGF | NCAMI | | | | | | |
| PCOCI | PAMRI | APOD | CXLI3 | PDGFB | MICA | | | | | | |
| COBAI | KPYM | AIAGI | CXLI6 | LEP | FCG2B | | | | | | |
| PEDF | PTGDS | DYH5 | IL6 | BDNF | INS | | | | | | |
| SPRC | IBP6 | CFAI | TIMP2 | FGF4 | SCF | | | | | | |
| GAS6 | | ICI | FGF2 | FGF7 | OSTP | | | | | | |
| LEGI | | CIRL | CCLI5 | FGF9 | TGFBI | | | | | | |
| OLFL3 | | THBG | FGF9 | FLT3L | PLF4 | | | | | | |
| PTX3 | | AGRF4 | CSF3 | X3CLI | IBP6 | | | | | | |
| LAMA2 | | KNGI | IL7 | GDNF | SOMA | | | | | | |
| ITGBL | | FETUB | TGFBI | HGF | D3DMB4 | | | | | | |

Table 6. (continued)

| hMSC-AT ${ }^{\text {a }}$-CM ${ }^{\text {d }}$ | Proteins excluded from protein list of hMSC-AT-CM
 (overlapped with basal medium) | PLoS ONE
 2007;Issue
 9:e94\|11
 hMSC-
 $B M^{b}-C M$ | PLoS ONE 2008;3:el886 hMSC-BM$C M^{4 /}$ | The Journal of Neuroscience 2015;\|l:2452-2464 hMSC-BM \& hMSC-$D^{c}-C^{42}$ | Exp Cell Res 2010;16:
 \|27|-|28|
 hMSC-BM-
 CM ${ }^{25}$ | STEM CELLS
 $2008 ; 26: 2705-$
 2712^{8}
 hMSC- hMSC-
 BM-CM AT-CM | TISSUE ENGINEERING 2012;Part A 18:1479-1489 ${ }^{9}$
 hMSC-BM-CM | Molecular
 Therapy
 2015;23:
 549-560
 hMSC-BM-
 $C M^{43}$ | Scientific Reports 2013;4:3652
 hMSC-BM-
 $C M^{44}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AEBPI | MYO5B | CCL8 | IBP \| | ELAF | | | | | |
| CO5A2 | CFI63 | CSFI | IBP3 | GDFI5 | | | | | |
| FBLNI | 5NT3B | ANGI | IBP4 | ILI9 | | | | | |
| ENOA | FAII | EGF | CXCLIO | BGH3 | | | | | |
| FBLN5 | KLKBI | CCLI 6 | LIF | IL5RA | | | | | |
| LUM | LCAT | AMPLI | TNFI4 | SIGL9 | | | | | |
| DKK3 | | CCL5 | CCL20 | BCAM | | | | | |
| CO4A2 | | ANGP | CXCL7 | HGF | | | | | |
| CSPG2 | | GROA | NTF3 | XCLI | | | | | |
| SRPX | | TIMP4 | NTF4 | VEGFC | | | | | |
| CIS | | IBP6 | CCLI8 | TRIIB | | | | | |
| ECMI | | TIMPI | PLGF | TIMP2 | | | | | |
| NIDI | | INHBA | TGFB2 | MIF | | | | | |
| SAP | | LIF | TGFB3 | CDI66 | | | | | |
| SEM7A | | CCLII | TIMPI | HAVRI | | | | | |
| CLUS | | HGF | TIMP2 | CCL28 | | | | | |
| LYOX | | CXLIO | | TNR8 | | | | | |
| QSOXI | | CCL26 | | CCL2 | | | | | |
| G3P | | PDGFA | | TPO | | | | | |
| TICNI | | BMP7 | | IL6RA | | | | | |
| EMILI | | MMP9 | | SAA | | | | | |
| WISP2 | | PDGFB | | SCRB2 | | | | | |
| TFPII | | IGFI | | MMP8 | | | | | |
| PXDN | | MMPI | | EPOR | | | | | |
| PGBM | | BMP5 | | PIGF | | | | | |
| IBP4 | | ADIPO | | IL6RA/B | | | | | |
| VASN | | ILIRA | | TIMPI | | | | | |
| GPNMB | | CXCL5 | | VEGFA | | | | | |
| SRCRL | | CCLI | | IFNL2 | | | | | |
| FBLN3 | | VEGFA | | TRIOC | | | | | |
| PLTP | | FGF7 | | | | | | | |

[^0]TOF/TOF mass spectrometry ${ }^{25}$. Fibronectin is a major ECM component that supports cell adhesion by presenting an integrin binding domain ${ }^{26}$. FINC in plasma is taken up by the fibrin clot during tissue injury, contributing to the platelet function and hemostasis. The cell's FINC is then synthesized by the cells to reconstitute the damaged tissue ${ }^{27}$. CATB, TSP1, GAS6, SAP, SEM7A, SRCRL, MFGM, GDN, SPON2, PTK7, ADAM9 and CYTC were newly detected in hMSC-AT-CM. MFGM was distributed in sites such as those associated with the response to biological adhesion, biological regulation, cellular processes, the developmental process, the establishment of localization, localization, the metabolic process, multi-organism processes, multicellular organismal processes, reproduction, the reproductive process, and the viral process. Jang et al. presented a pathology model showing that MFGM inhibits hepatic fibrosis via the signal of transforming growth factor (TGF) $-\beta^{28}$ (Fig. 4a).

Cellular components. Proteins synthesized in the rough endoplasmic reticulum are transported to the lumen of the rough endoplasmic reticulum and transported or secreted to the cell membrane via the Golgi apparatus. In hMSC-AT-CM, GAS6, CLUS, NUCB1, CATZ, PTGDS, STC2, CSTN1, and CD59 also seem to be widely involved in the function of hMSC-AT-CM under the classifications of endoplasmic reticulum, Golgi apparatus, membrane, and extracellular region of 'cellular component' (Table 4). STC2 suppresses the oxidative stress-induced cell damage of MSC. In the clinical application of MSC, it was suggested that STC2 promotes the long-term therapeutic effects of therapeutic cells ${ }^{29}$. GAS6, CLUS, NUCB1, CATZ, CSTN1 and CD59 were newly detected in hMSC-AT-CM (Fig. 4b).

Molecular function. In hMSC-AT-CM, LTBP1, AMPN, GAS6, FBLN1, PXDN, FBLN3, PGS1, ENPP2, PTK7 and MIF also seem to be widely involved in the function of hMSC-AT-CM under the classification of 'molecular function' (Table 5).

POSTN, PGS2, TIMP1, PEDF, LEG1 and IBP7, the protein function of which was not especially wide was related to the biological processes, cellular components and molecular function of hMSCs (Table 1). POSTN has previously been reported as a factor that promotes the in vivo proliferation activity of cancer in association with hACS transplantation ${ }^{30}$. POSTN has been reported to promote the cell migration of MSC-BM via PI3K/Akt signaling through receptor integrin $\alpha \mathrm{v} \beta 3^{31}$. The simultaneous administration of MSCBM and PGS2 was reported to significantly improve thioacetamide-induced the rat model of hepatic fibrosis in comparison with the administration of MSC-BM alone ${ }^{32}$. The TIMP1 contained in the culture supernatant of the immortalized MSC line RCB2157 was reported to inhibit the migration and invasion of breast cancer cells ${ }^{33}$. MSCBM in aged mice show the increased expression of PEDF. PEDF was reported to promote or inhibit the growth of cells
affected by myocardial infarction ${ }^{34}$. PEDF has also been reported to promote the expression of bone formation genes and mineral deposition genes of human MSC-BM ${ }^{35}$. It has been reported that IBP7 has an important function in the action of MSC-BM in preparation for immune regulation in a mouse model of colitis ${ }^{36}$. LTBP1, AMPN, GAS6, FBLN1, PXDN, FBLN3, PGS1, ENPP2, PTK7 and MIF were newly detected in hMSC-AT-CM (Fig. 4c).

Discussion

In recent years, genome sequencing and epigenetic analysis techniques have provided important information to help clarify the causes of diseases. The application of cell therapy in regenerative medicine is expected to be useful for the treatment of many types of diseases. Genetic, epigenetic, and proteomic analysis techniques play an important role in inducing the differentiation of cells used for cell therapy. Several papers focusing on the MSCs involved in the treatment of liver diseases have been published and the functions of the factors identified in the latest analysis have been explained.

A proteomic analysis using LC-MS/MS provides evidence to support the possible application of cell therapy using MSCs and information regarding the potential application of MSCs in the treatment of liver disease. This information provides important clues for investigating the function. However, MSCs are distributed throughout the body, and there are different types of MSCs, such as mesenchymal stem cells from adipose tissue (MSC-ATs), bone marrow (MSC-BMs), umbilical cord blood (MSCUCs), and dental pulp (MSC-DPs). In previous reports, to identify the proteins expressed in MSCs, MSC-BMs, components contained in the culture supernatant of MSC-DPs and MSC-ATs were examined ${ }^{8,10,11}$. Banas et al. showed that hMSC-AT secreted interleukin (IL)-1 receptor antagonist (IL-1RA), IL-6, IL-8, and granulocyte colonystimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), monocyte chemotactic protein 1 (MCP-1), nerve growth factor (NGF), and HGF using a protein-array analysis ${ }^{8}$. The authors explained that these factors were effective in improving the mouse liver function. Poll et al. showed that the analysis of the serum levels of pro-inflammatory cytokines, which are known to be upregulated during liver injury, revealed a nonsignificant decrease in the levels of IL-1 and significantly lower levels of TNF- α and IL-6 after MSC-CM treatment. On the other hand, the levels of IL-10 (an anti-inflammatory cytokine) were increased four-fold in MSC-CM-treated animals. These data suggest that the infusion of MSC-CM alters the systemic cytokine profile associated with acute liver failure to a more anti-inflammatory state ${ }^{11}$. Yukawa et al. reported that the administration of mouse MSC-ATs into the blood resulted in an improvement of the liver function and a reduction in the blood concentrations of TNF- α, IL- 1β and IL-6 in mice ${ }^{37}$. The authors cited a paper that reported that IL-6 is
effective for improving the liver function of mice among these factors and explained the improvement of the liver function of MSC-CM ${ }^{38}$. Parekkadan et al. reported that the majority ($69 / 174$ [30%]) of proteins contained in MSC-BMCM (according to a protein array) are chemokines and are widely involved in immune regulation and liver regeneration ${ }^{11}$. Similarly to the abovementioned studies, hMSC-ATCM was also shown to improve mouse liver function (Fig. 3(a) and (b)). This study showed that hMSC-AT-CM was administered to mice to ameliorate the symptoms of acute liver failure induced by the administration of CCL4. Our findings indicate that hMSC-AT-CM is likely to have the effect of ameliorating symptoms of human liver disease. Therefore, the MSCGM-CD mesenchymal stem cell BulletKit (Lonza) was used to create hMSC-AT-CM. This medium was a clinical grade medium approved by the Japanese Ministry of Health, Labor and Welfare for use in human clinical treatment research. However, we must bear in mind that the components and amounts of hMSC-AT-CM secreted by hMSC-ATs will likely change depending on the composition of the culture medium.

Since the data in the present study were obtained from the hMSC-AT-CM from one donor, we must consider the reliability of the data. In addition, the proteins were detected by a label-free method. Protein quantification was determined from the peptide ion data obtained by mass spectrometry using the number of peptide fragments identified by the database analysis as an index. This principle is based on the PAI^{39} method, which states that, "quantitatively more proteins can detect more peptide fragments in the same protein." This method was used to determine the emPAI ${ }^{40}$, which estimates the protein abundance based on the peptides calculated and theoretically observed tryptic peptides for each protein using the Scaffold software program. This program identifies and quantitatively displays proteins using proprietary algorithms (Peptide/Protein Prophet, Protein grouping). Thus, the quantification of the amount of protein in this paper is a theoretical value estimated based on the emPAI ${ }^{40}$ function of the Scaffold software program. The ratio of the number of measured peptides to the number of theoretical peptides is linearly related to the logarithm of the protein concentration, and the number obtained by subtracting 1 from the index of the peptide number ratio was defined as the emPAI ${ }^{40}$. The larger the emPAI ${ }^{40}$ value, the greater the amount of protein. Proteins quantified using emPAI were listed from the top in the tables showing the GO analysis results (Tables 1, 3, and 4) in descending order of concentration.

Conclusions

In this study, which used an LC-MS/MS measuring system, we focused on the quantified amount of protein and components contained in hMSC-AT-CM that improve the liver function, with a focus on the function of proteins classified by a GO analysis. These analyses revealed a number of new
candidates associated with growth (SAP, SEM7A, PTK7); the immune system processes (CO1A2, CO1A1, CATB, TSP1, GAS6, PTX3, C1 S, SEM7A, G3P, PXDN, SRCRL, CD248, SPON2, ENPP2, CD109, CFAB, CATL1, MFAP5, MIF, CXCL5, ADAM9, CATK); and reproduction (MMP2, CATB, FBLN1, SAP, MFGM, GDN, CYTC). MSC-CM contains proteins secreted by MSCs and the proteins that were initially added to the culture medium. In Table 6, the proteins identified in hMSC-AT-CM are listed in the far-left column, with the medium component proteins using culture medium for hMSC-ATs listed in the next column. Proteins secreted by hMSC are predicted by the following formula: hMSC-AT-CM containing protein - medium containing protein $=\mathrm{hMSC}-\mathrm{AT}$ secreted protein. Table 6 also lists eight articles that can be searched using the keywords MSC, ADSC, mesenchymal stem cell, LC/MS/MS, CM, conditional medium, protein, and secretion on the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/). Secreted proteins of MSCs are listed in Table 6. This research method differs from a protein array and enables a comprehensive analysis of the protein expression. We succeeded in identifying 106 types of novel proteins contained in MSC-CM. The newly identified protein components contained in hMSC-AT-CM provide valuable information to support the clinical application of hMSC-AT-CM.

Acknowledgements

We thank Naomi Kakazu (University of the Ryukyus) for clerical assistance and Saki Uema, Yuka Onishi, Maki Higa, Youichi Toyokawa, Yuki Kawahira and Saori Adaniya (University of the Ryukyus) for providing technical support. We thank Masayoshi Tsukahara (Kyowa Hakko Kirin Co., Ltd.) for his expert technical advice on cell culture methods, which was provided under a cooperative research contract with Kyowa Hakko Kirin Co., Ltd.

Ethical Approval

Ethical Approval is not applicable for the article. (In this paper, we did not conduct clinical studies that required Institutional review).

Statement of Human and Animal Rights

All experimental protocols were performed according to the guidelines for the care and use of laboratory animals set by Research Laboratory Center, Faculty of Medicine, and the Institute of Animal Experiments, Faculty of Medicine, University of the Ryukyus (Okinawa, Japan). The experimental protocol was approved by the Committee on Animal Experiments of University of the Ryukyus (permit number: A2017101).

Statement of Informed Consent

Statement of Informed Consent is not applicable for the article.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported in part by the Japan Society for the Promotion of Science (JSPS; KAKENHI Grant Number 16H07094), Japan Agency for Medical Research and Development, The Naito Foundation, and Okinawa Science and Technology Promotion Center (OSTC). This work was supported by the Research Laboratory Center, Faculty of Medicine, and the Institute for Animal Experiments, Faculty of Medicine, University of the Ryukyus.

ORCID iD

Hirofumi Noguchi (D) http://orcid.org/0000-0002-0880-6805

Supplemental Material

Supplemental material for this article is available online.

References

1. Thomas MB, Zhu AX. Hepatocellular carcinoma: The need for progress. J Clin Oncol. 2005;23(13):2892-2899.
2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-147.
3. Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22(4):625-634.
4. In't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338-1345.
5. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228.
6. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279-4295.
7. Schaffler A, Buchler C. Concise review: Adipose tissuederived stromal cells - basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818-827.
8. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kawamata M, Kato T, Okochi H, Ochiya T. Ifats collection: In vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells. 2008;26(10):2705-2712.
9. Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A. 2012;18(13-14):1479-1489.
10. van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, Yarmush ML. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology. 2008;47(5): 1634-1643.
11. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. Plos One. 2007;2(9):e941.
12. Nakashima Y, Miyagi-Shiohira C, Kobayashi N, Saitoh I, Watanabe M, Noguchi H. A proteome analysis of pig pancreatic islets and exocrine tissue by liquid chromatography with tandem mass spectrometry. Islets. 2017;9(6): 159-176.
13. Pocsfalvi G, Stanly C, Fiume I, Vekey K. Chromatography and its hyphenation to mass spectrometry for extracellular vesicle analysis. J Chromatogr A. 2016;1439:26-41.
14. Park JO, Choi DY, Choi DS, Kim HJ, Kang JW, Jung JH, Lee JH, Kim J, Freeman MR, Lee KY, Gho YS, Kim KP. Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions. Proteomics. 2013;13(14):2125-2134.
15. Little KM, Smalley DM, Harthun NL, Ley K. The plasma microparticle proteome. Semin Thromb Hemost. 2010;36(8): 845-856.
16. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359-362.
17. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75(17):4646-4658.
18. Wu TT, Wu SS, Ouyang GL. Periostin: A new extracellular regulator of obesity-induced hepatosteatosis. Cell Metabolism. 2014;20(4):562-564.
19. Lu Y, Liu X, Jiao Y, Xiong X, Wang E, Wang X, Zhang Z, Zhang H, Pan L, Guan Y, Cai D, Ning G, Li X. Periostin promotes liver steatosis and hypertriglyceridemia through downregulation of pparalpha. J Clin Invest. 2014;124(8): 3501-3513.
20. Zhou Z, Xu MJ, Gao B. Hepatocytes: A key cell type for innate immunity. Cell Mol Immunol. 2016;13(3):301-315.
21. De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Trozzi L, Candelaresi C, Bataller R, Millan C, Brenner DA, Vivarelli M, Mocchegiani F, Marzioni M, Benedetti A, Sve-gliati-Baroni G. Semaphorin 7a contributes to tgf-betamediated liver fibrogenesis. Am J Pathol. 2013;183(3): 820-830.
22. Soto-Gutierrez A, Navarro-Alvarez N, Caballero-Corbalan J, Tanaka N, Kobayashi N. Endoderm induction for hepatic and pancreatic differentiation of es cells. Acta Med Okayama. 2008;62(2):63-68.
23. Lanzoni G, Oikawa T, Wang YF, Cui CB, Carpino G, Cardinale V, Gerber D, Gabriel M, Dominguez-Bendala J, Furth ME, Gaudio E, Alvaro D, Inverardi L, Reid LM. Concise review: Clinical programs of stem cell therapies for liver and pancreas. Stem Cells. 2013;31(10):2047-2060.
24. de Jong IEM, van Leeuwen OB, Lisman T, Gouw ASH, Porte RJ. Repopulating the biliary tree from the peribiliary glands. Bba-Mol Basis Dis. 2018;1864(4):1524-1531.
25. Walter MN, Wright KT, Fuller HR, MacNeil S, Johnson WE. Mesenchymal stem cell-conditioned medium accelerates skin
wound healing: An in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res. 2010;316(7):1271-1281.
26. Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cellmediated matrix assembly process. Matrix Biol. 2005;24(6): 389-399.
27. To WS, Midwood KS. Plasma and cellular fibronectin: Distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair. 2011;4:21.
28. Jang YJ, An SY, Kim JH. Identification of mfge8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis. BMB Rep. 2017;50(2):58-59.
29. Kim PH, Na SS, Lee B, Kim JH, Cho JY. Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress. BMB Rep. 2015;48(12):702-707.
30. Heo SC, Lee KO, Shin SH, Kwon YW, Kim YM, Lee CH, Kim YD, Lee MK, Yoon MS, Kim JH. Periostin mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth in a xenograft lung adenocarcinoma model. Biochim Biophys Acta. 2011;1813(12):2061-2070.
31. Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N, Nakamura Y. Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the alphavbeta3 integrin/fak/ pi3k/akt pathway. J Periodontal Res. 2015;50(6):855-863.
32. Jang YO, Cho MY, Yun CO, Baik SK, Park KS, Cha SK, Chang SJ, Kim MY, Lim YL, Kwon SO. Effect of functionenhanced mesenchymal stem cells infected with decorinexpressing adenovirus on hepatic fibrosis. Stem Cells Transl Med. 2016;5(9): 1247-1256.
33. Clarke MR, Imhoff FM, Baird SK. Mesenchymal stem cells inhibit breast cancer cell migration and invasion through secretion of tissue inhibitor of metalloproteinase-1 and-2. Mol Carcinogen. 2015;54(10):1214-1219.
34. Liang HL, Hou HY, Yi W, Yang GD, Gu CH, Lau WB, Gao EH, Ma XL, Lu ZF, Wei XF, Pei JM, Yi DH. Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury. Eur Heart J. 2013;34(22):1681-1690.
35. Li F, Song N, Tombran-Tink J, Niyibizi C. Pigment epithelium-derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cells. 2013;31(12):2714-2723.
36. Liao Y, Lei J, Liu M, Lin W, Hong D, Tuo Y, Jiang MH, Xia H, Wang M, Huang W, Xiang AP. Mesenchymal stromal cells mitigate experimental colitis via insulin-like growth factor binding protein 7-mediated immunosuppression. Mol Ther. 2016;24(10):1860-1872.
37. Yukawa H, Watanabe M, Kaji N, Okamoto Y, Tokeshi M, Miyamoto Y, Noguchi H, Baba Y, Hayashi S. Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials. 2012;33(7):2177-2186.
38. Hoek JB, Pastorino JG. Cellular signaling mechanisms in alcohol-induced liver damage. Semin Liver Dis. 2004;24(3): 257-272.
39. Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 2002; 12(8):1231-1245.
40. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (empai) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4(9):1265-1272.
41. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008; 3(4): e1886.
42. Matsubara K, Matsushita Y, Sakai K, Kano F, Kondo M, Noda M, Hashimoto N, Imagama S, Ishiguro N, Suzumura A, Ueda M, Furukawa K, Yamamoto A. Secreted ectodomain of sialic acid-binding ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci. 2015;35(6):2452-2464.
43. Ono M, Ohkouchi S, Kanehira M, Tode N, Kobayashi M, Ebina M, Nukiwa T, Irokawa T, Ogawa H, Akaike T, Okada Y, Kurosawa H, Kikuchi T, Ichinose M. Mesenchymal stem cells correct inappropriate epithelial-mesenchyme relation in pulmonary fibrosis using stanniocalcin-1. Mol Ther. 2015; 23(3):549-560.
44. Aomatsu E, Takahashi N, Sawada S, Okubo N, Hasegawa T, Taira M, Miura H, Ishisaki A, Chosa N. Novel scrg 1/bst1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells. Sci Rep. 2014;4: 3652.

[^0]: ${ }^{\text {a }}$ human Mesenchymal Stem Cells from adipose tissue; ${ }^{\text {b }}$ human Mesenchymal Stem Cells from Bone marrow; ${ }^{\text {c }}$ human Mesenchymal Stem Cells from dental pulp; ${ }^{\text {d }}$ conditional medium.

