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ABSTRACT
Affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) is an assay developed to monitor the 
propensity of antibody self-association, hence assessing its colloidal stability. It has been widely used by 
pharmaceutical companies to screen antibodies at the early discovery stages, aiming to flag potential 
issues with high concentration formulation. However, the original assay format is not suitable for certain 
formulation conditions, in particular histidine buffer. In addition, the previous data extrapolation method 
is suboptimal and cumbersome for processing large amounts of data (100s of molecules) in a high- 
throughput fashion. To address these limitations, we developed an assay workflow with two major 
improvements: 1) use of a stabilizing reagent to enable screening of a broader range of formulation 
conditions beyond phosphate-buffered saline, pH 7.4; and 2) inclusion of a novel algorithm and robust 
data processing schema that empowers streamlined data analysis. The optimized assay format expands 
the screening applicability to a wider range of formulation conditions critical for downstream develop-
ment. Such capability is enhanced by a custom data management workflow for optimal data extraction, 
analysis, and automation. Our protocol and the R/Shiny application for analysis are publicly available and 
open-source to benefit the broader scientific community.
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Introduction

In recent years, timelines on biologics discovery and develop-
ment for unmet medical needs have been continually reduced. 
With the goals of higher success rates and less triaging at later 
stages of drug development, it is critical to identify and accelerate 
the discovery of therapeutic antibodies with both superior bio-
logic activity and suitable developability profiles. Meanwhile, the 
increasing demand for liquid formulation for possible subcuta-
neous administration has driven device and formulation choices 
toward ease-of-use and products amenable to self- 
administration. This usually requires stable liquid formulation 
at high concentration (≥ 100 mg/mL) for efficacy and manage-
able viscosity (< 30 centipoise (cP)) for self-administration and 
patient compliance.1 Therefore, proper colloidal stability has 
become an increasingly crucial aspect for therapeutic monoclo-
nal antibody (mAb) development. However, assessing colloidal 
stability at the early stages on many discovery molecules with 
limited material availability remains challenging.

Affinity-capture self-interaction nanoparticle spectroscopy 
(AC-SINS) is one of the many surrogate methods developed 
for assessing the self-association tendency of therapeutic 
mAbs, with the intention to prioritize mAbs that have favor-
able developability attributes.2–5 Fundamentally, AC-SINS 
takes advantage of the colloidal stability of gold nanoparticles 
(AuNPs) to capture the self-association propensity of mAbs, 
which is reflected by the plasmon wavelength shift upon AuNP 
aggregation. Since its origination in 2013,5 many research 

groups have continued optimizing the method for improved 
sensitivity and consistency.2–4,6 Due to its low material con-
sumption, low concentration requirement, and predictive 
potential for mAb solution behavior on colloidal stability, AC- 
SINS has garnered much attention among pharmaceutical 
companies and has become a method of choice for early devel-
opability assessment.7–9

Two major implications have emerged from the reported uses 
of AC-SINS for mAb discovery and development. One relates to 
the screening nonspecific binding, which could result in unde-
sirable pharmacokinetic effects.10–12 Avery et al.11 explored the 
correlations between in vitro physiochemical properties and 
in vivo human pharmacokinetics using 42 mAbs. Among the 
panel of in vitro assays tested, AC-SINS reasonably differentiated 
mAbs with faster in vivo clearance, by a Spearman correlation 
coefficient of 0.7 between AC-SINS assay score and observed 
clearance. Subsequently, Jones et al.10 developed a mAb physio-
logically based pharmacokinetic prediction model that incorpo-
rated the nonspecific interaction aspect of mAbs represented by 
AC-SINS data for calibration. The final model, using AC-SINS 
data as input, was able to accurately predict the trend in phar-
macokinetic properties across the 21 mAbs tested and correctly 
categorize those mAbs with poor in vivo properties.

The second implication, which is the focus here, relates to 
the colloidal stability and high-concentration behavior of 
mAbs. Several studies have reported that AC-SINS effectively 
identifies mAbs with either low solubility or high 

CONTACT Qing Chai qingchai@lilly.com Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, 10290 Campus Point Dr, San 
Diego, CA 92121

Supplemental data for this article can be accessed online at https://doi.org/10.1080/19420862.2022.2094750

MABS                                                           
2022, VOL. 14, NO. 1, e2094750 (16 pages) 
https://doi.org/10.1080/19420862.2022.2094750

© 2022 Eli Lilly and Company. Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-6273-905X
https://doi.org/10.1080/19420862.2022.2094750
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19420862.2022.2094750&domain=pdf&date_stamp=2022-07-12


viscosity.3,5,13–15 Considering that viscosity determination typi-
cally requires at least 20 mg of protein per condition, whereas 
AC-SINS consumes only microgram quantities of proteins, the 
potential of using AC-SINS to screen hundreds of molecules is 
particularly attractive for early-stage antibody discovery, where 
large numbers of molecules are available in minute amounts. 
The previous case studies, such as wild-type (WT) and variants, 
appear to be supportive of such use.14,16 Yet the general pre-
dictability of AC-SINS for high-concentration behavior across 
a diverse set of molecules remains elusive. Multiple factors may 
contribute to this, such as assay protocol variations including 
suboptimal data analysis, limited end-point results (e.g., visc-
osity), and misaligned formulation conditions between viscos-
ity and AC-SINS. These complications prevented aggregating 
data for systematic analysis.

In 2020, Kingsury et al.7 published a comprehensive study 
on high-concentration behavior of mAbs, investigating 
a variety of experimentally determined attributes and molecu-
lar descriptors for their predictive potential. Importantly, the 
researchers collected viscosity and opalescence data (10 mM 
histidine·HCl (pH 6.0)) across a diverse panel of therapeutic 
mAbs (total of 59) for correlation analysis. The study indicated 
that the diffusion interaction parameter (kD) measured at 
10 mM histidine·HCl, (pH 6.0) is an effective predictor for 
high-concentration behavior. However, the Kingsury study 
did not reveal a correlation between AC-SINS data measured 
in phosphate-buffered saline (PBS) and viscosity data mea-
sured in histidine at pH 6.0. Protein colloidal stability, such 
as viscosity, is highly formulation-dependent. Buffer species, 
pH, salt, as well as excipients, can have a significant impact on 
viscosity. It would be more meaningful to correlate AC-SINS 
results measured in histidine (pH 6.0) with viscosity data 
measured in the same formulation (histidine), to evaluate the 
predictive potential of AC-SINS.

This highlights the alignment of AC-SINS assay conditions 
to the targeted formulation conditions for proper assessment of 
high-concentration colloidal behavior. According to a recent 
survey of therapeutic mAbs,17 the most prevalent formulation 
is histidine-based, followed by acetate, with pH values around 
5.7 +/− 0.4. Therefore, it is desirable to perform AC-SINS in 
histidine- and acetate-based conditions. However, the domi-
nant AC-SINS assay condition is PBS, according to studies 
reported in the literature, likely due to the intrinsic hurdles 
associated with the AC-SINS assay, and the practical conveni-
ence offered by the PBS condition. In early discovery, hundreds 
of molecules are usually prepared and normalized in PBS 
(1 mg/mL) to be compatible with functional or activity assays, 
as well as the panel of developability screening assays com-
monly enlisted, including AC-SINS. Thus, discovery hits were 
usually compared in only one formulation condition (e.g., PBS) 
by high-throughput biophysical screenings9 due to scarcity of 
both sample and time. It is still a matter of debate as to how 
these high throughput predictive methods collectively inform 
overall mAb developability, especially when it comes to high- 
concentration risk assessment.

Given that formulation conditions have a major impact on 
the colloidal stability of mAbs, it is critical to screen mAbs for 
their high-concentration behavior in several representative 
formulation conditions. We have routinely applied PEG- 

induced precipitation for solubility screening and ranking 
order under designated formulation conditions.18 While useful 
for solubility screening, PEG-induced precipitation does not 
distinguish opalescence and viscosity behavior. The gap has 
stimulated us to further develop an AC-SINS assay that can be 
performed in relevant formulation conditions, in addition to 
PBS. Our aspirational goal is to establish such methods and 
collect reliable, sizable data, in matching formulation condi-
tions, to perform systematic correlation analysis on the pre-
dictability of AC-SINS or combinations of other assays with 
respect to high-concentration formulation.

The colloidal stability of gold nanoparticles (AuNPs) is 
sensitive to pH, buffer, small molecules and amino acids.19,20 

Zakaria et al.20 performed a systematic study investigating 
the interaction of AuNPs with amino acids and small mole-
cules at variable pH. They presented models suggesting that 
charge reduction and bridging of linkers is a potential 
mechanism leading to AuNP aggregation. In part, colloidal 
gold is stabilized in the presence of anionic carboxyl (citrate- 
capped shell) at the last step of manufacturing. 
Neutralization by protonation at lower pH, or interaction 
with amino acids (such as histidine) or small molecules 
account for the accelerated AuNP agglomeration. Similarly, 
immunogold conjugates aggregate readily in the presence of 
histidine buffer.15 We hypothesized that the carboxyl groups 
composed of citrate-capped shells on AuNP could react with 
the histidine moiety in solution at pH 6.0, which results in 
bead aggregation (bead and nanoparticle are used inter-
changeably in the following text). Based on this, we explored 
use of stabilizing reagents that could prevent histidine- 
induced instability of AuNPs by blocking potential reactive 
sites. Our engineered method significantly stabilized immu-
nogold conjugates in histidine buffer, as well as citrate and 
acetate buffers, which enables meaningful and reliable eva-
luation for a wider range of formulation conditions that are 
relevant to high-concentration formulation. We have subse-
quently developed a streamlined assay format and incorpo-
rated it into our developability assessment drill for mAb 
discovery programs.

At or near the same time we performed our study, Starr15 

developed a method addressing the same limitation by use of 
poly-lysine to stabilize AuNPs in histidine·HCl (pH 6.0). The 
authors showed that co-adsorption of charged molecules (poly- 
lysine) is sufficient to stabilize the conjugates, and therefore suffi-
cient to evaluate mAb self-association in histidine buffer. While 
Starr applies poly-lysine to increase bead charge for repulsive and 
stabilizing effects, we use an inert, stabilizing reagent (PEG2000) 
for masking bead surfaces, achieving a generic measure to control 
nonspecific bead agglomeration due to buffer or pH changes. The 
two approaches offer alternative and complementary ways to 
overcome the technical hurdles.

In our practice of running high-throughput, plate-based 
AC-SINS assays, another challenge is data processing and 
analysis. The original Excel sheet-based approach tends to be 
error prone and unstable (crashing during the process) when 
handling larger sets of data. This posed major hurdles for 
method development, productivity, reproducibility, as well as 
data aggregation. We developed an in-house data processing 
application to address these concerns and prepare for a long- 
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term, structured data capture workflow. We first used “local 
estimated scatterplot smoothing” (LOESS) as a consistent 
means for characterizing the plasmon wavelength and more 
accurate peak extrapolation. Then, we developed an R/Shiny 
application to streamline data processing, as well as data visua-
lization and comparison on demand. Finally, we devised 
a statistical analysis for data quality check, and built standar-
dized outputs and reports. The customized design enabled us 
to integrate experimental flow, data uploading, and processing 
into one streamlined process, reducing the tedious hands-on 
steps while allowing transparent and flexible data analysis.

In summary, we report a solution that enables the perfor-
mance of AC-SINS in several formulation conditions (histidine 
buffer at pH 6.0; citrate buffer at pH 6.0; and acetate buffer at 
pH 5.0) beyond PBS, by PEG2000-stabilized (PS) immunogold 
conjugates, which provides richer, relevant information for 
evaluating the self-association propensity of mAbs. Moreover, 
our enhanced data processing and automated data capture 
schema enable use of the AC-SINS assay’s full potential, pro-
viding multi-formulation profiling as needed for comprehen-
sive decision-making. Our protocol and R/Shiny application is 
publicly available and open-source to ensure widespread dis-
semination and easy implementation. We anticipate that this 
will make the PS-SINS method substantially more accessible, 
robust, and easier to adopt by the scientific and industrial 
communities.

Results

Optimization of AC-SINS for screening mAbs in histidine 
formulation

We are able to perform the AC-SINS assay in either PBS or 
citrate (10 mM citrate, 150 mM NaCl pH 6.0) conditions with 
reproducible results, using the original protocol.3,6 As a first 
step toward optimizing our assay for analyzing mAbs in histi-
dine formulation, we sought to establish the baseline of AuNP 
response to solution changes. As expected, histidine buffer 
induces gold particle aggregation of both unconjugated 
AuNP and immunogold conjugates under standard proce-
dures, as evidenced by a pink-to-blue color change. The corre-
sponding plasmon wavelength (pwl) for the conjugates (range 
574 ~ 600 nm) is much higher than that of stable antibody-gold 
conjugates (~530 nm).5,6,15

We view that controlling bead aggregation and reestablishing 
the normal profile of immunogold conjugates in histidine (pH 
6.0) is a critical first step. Per manufacturer specifications, the 
20 nm AuNPs are final polished with citrate capping. This 
standard treatment produces nanoparticles with surface electro-
statically stabilized by adsorbed citrate anions. The negatively 
charged citrate shell, consisting of a large, negative zeta potential, 
stabilizes AuNP in a well-dispersed state in solution. It is 
believed that disruption of the negatively charged shell or reduc-
tion of surface charge leads to rapid aggregation of AuNPs.15,20

Based on the theory, we explored stabilization reagents that 
can block such reactivity between histidine and surface capping 
citrate. We experimented with several common blocking and 
stabilizing reagents (bovine serum albumin, non-capturing 
antibody, or polymer). As our initial results indicated that 

PEG2000 is most effective, further optimization efforts focused 
on this agent. In the original protocol, a low level of thiolated 
PEG2000 was added to the gold-antibody conjugates at the 
quenching step (final concentration of 0.2 µg/mL PEG2000) 
to prevent nonspecific interactions. We investigated if a higher 
level of PEG2000, introduced at different steps in the assay, can 
stabilize immunogold conjugates in histidine buffer.

Initially, we increased PEG2000 to 1 µg/mL at the quench-
ing step after the conjugation reaction (conjugation of poly-
clonal goat-anti human Fc), with the intention of blocking the 
bead surface completely (citrate shell). When examining the 
beads alone, or beads with anti-Fc conjugation in histidine (pH 
6.0), we observed pwl left shift, indicating bead aggregation was 
decreased, but not completely abolished (data not shown). 
Encouraged by the result, we supplemented an additional 
0.1 µg/mL of PEG2000 in the final reaction mixture, when 
immunogold conjugates and testing mAbs were incubated in 
histidine buffer. This further reduced bead aggregation, result-
ing in a broad and low-intensity plasmon wavelength curve, 
peaking at ~ 544 nM (Figure 1). This result was promising, yet 
not sufficient for screening purposes.

We then experimented with salt concentrations. We discov-
ered that addition of salt (15 to 50 mM NaCl) can yield 
a plasmon wavelength profile (histidine pH 6.0) similar to 
that of PBS conditions, with buffer blank peak at ~ 530 nm 
(Table 1). The minimal salt concentration required for con-
trolling bead aggregation is 15 mM NaCl. At the discovery 
stage, mAbs are routinely buffered in PBS at the last purifica-
tion step and subsequently normalized to 1 mg/mL for a variety 
of characterization assays. We dilute mAb samples (prepared 
in PBS at 1 mg/mL) into the final reaction mixture to reach the 
targeted formulation conditions. In the case of the histidine 
buffer condition, this procedure yields a final assay condition 
around 10 mM histidine, 30 mM NaCl, at pH 6.0, which we 
considered a proxy of the desired formulation condition 
(10 mM histidine, pH 6.0) and useful for the initial phase of 
early screening. Thus, we opted for dilution, not buffer 
exchange of samples, for a practical and high-throughput 
process.

In summary, our final optimized assay procedure 
includes the following changes: addition of 1 µg/mL of 
PEG2000 after the bead conjugation step, followed by an 
additional 0.1 µg/mL PEG2000 in the reaction mixture; 
and testing mAb (1 mg/mL in PBS), immunogold conju-
gates stock, diluted with corresponding formulation buffer. 
Interestingly, after PEG2000 treatment, immunogold con-
jugates in citrate buffer condition (pH 6.0) do not rely on 
salt for stabilization (Figure 1; Table 1), presenting simi-
larly stable profiles regardless of C6 or C6N30. In addi-
tion, the performance of immunogold conjugates in PBS 
condition is unaffected by PEG2000 treatment or salt, 
suggesting PEG2000 treatment does not adversely affect 
assay performance. Based on these results, we uniformly 
prepare each batch of immunogold conjugates with 
PEG2000 as specified above. The PEG2000 stabilized 
immunogold conjugates are subsequently aliquoted for 
assays in the designated formulation conditions chosen 
for high-throughput screening, which we abbreviated as 
H6N30, C6N30, A5N30, or PBS (Table 1).
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Robust and high-throughput PS-SINS workflow

We use seven mAbs of known behavior as controls for 
calibration purposes when performing PS-SINS. The results 
of control mAbs are aggregated for variation analysis, dis-
played in a box and whisker plot grouped by the three 
formulation conditions (C6N30, H6N30, and PBS) 
(Figure 2). We find that the PS-SINS results qualitatively 
correlate with the high-concentration behavior of the control 
mAbs previously characterized. Based on independent mea-
surements shown in Figure 2, mAbs of low Δpwl (controls 2, 
3, and 4) have tight assay-to-assay variability. On the other 
hand, mAbs of high Dpwl (>10), such as controls 1, 5, 6, and 
7, tend to have higher assay variability. Certain mAbs (such 
as controls 1, and 6) demonstrate significant Dpwl change in 
response to citrate, histidine buffer, or PBS, suggesting PS- 
SINS can capture the differential behavior of mAbs in 
a consistent manner. Substantial pwl right shift indicates 
higher aggregation levels of the immunogold conjugates 

induced by self-associative mAbs. The agglomerates are 
likely composed of heterogeneous clusters, which could 
manifest variably by pwl, therefore resulting in the higher 
variability of Dpwl seen in controls 5, 6, and 7. Based on the 
observations, we use Dpwl of 10 and 20 as empirical thresh-
olds to categorize mAbs on their self-association risk (inter-
mediate and high, respectively) for the respective 
formulations.

The calibrated and reliable performance of PS-SINS in 
several formulation conditions, including H6N30, C6N30, 
A5N30, and PBS, prompted us to pursue a workflow suited 
for high-throughput screening (Figure 3). The material 
requirement is ~20 µg mAb per formulation condition, which 
covers quadruplicate measurement of each sample by default. 
Each result (Dpwl) is averaged from quadruplicates with stan-
dard deviation reported. The panel of control mAbs (shown in 
Figure 2) are included as internal references for all AC-SINS 
experiments. Moreover, the plate layout and data processing 

Figure 1. Stabilization of immunogold conjugates by incorporation of PEG2000 and low level of salt (30 mM NaCl). This can be seen in the absorbance spectra profile 
overlay (a) and table (b): Histidine buffer condition requires both PEG2000 and low level of salt to regain normal peak profile, while citrate-based buffer condition is 
indifferent to salt, only requires PEG2000 stabilization. H6: 10 mM histidine buffer, pH 6.0; H6N30: 10 mM histidine buffer, pH 6.0, 30 mM NaCl; C6: 10 mM citrate buffer, 
pH 6.0; C6N30: 10 mM citrate buffer, pH 6.0, 30 mM NaCl. 
(a) A graph showing four peaks from four different buffers, X-axis is wavelength, Y-axis is absorbance. H6 peak, in red, is broad and low intensity whereas C6, C6N30 and 
H6N30 peaks are higher intensity and less broad. Each buffer condition resulted in one single peak. (b) A table showing four buffer conditions (C6N30, C6, H6N30 and 
H6) in column 1, the unabreviated names of the buffers (citrate, citrate, histidine, histidine) in column 2, amount of PEG at wash step in column 3, amount of PEG at 
reaction in column 4, amount of salt (NaCl) in column 5, ave pwl in column 6 and std dev in column 7. Ave pwl in column 6 are color coded so that the top three rows are 
green and the bottom row (H6) is a dark orange with an ave pwl of 545.6.
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application support flexible custom designs, such as the num-
ber of formulation conditions or options for triplicate/dupli-
cate measurements. Altogether, the wet lab work takes ~ 
4 hours from start to finish. With the automation robot pro-
grammed for sample liquid handling, it is feasible to screen 
100 ~200 mAbs per day.

We have applied PS-SINS to facilitate molecule selection 
for mAb discovery campaigns. For example, a panel of 
mAbs and their PS-SINS results in three formulation con-
ditions are summarized in Table 2. The self-association 
propensity, reflected by Dpwl, reveals the pH and buffer 
species-dependent solution behavior of certain mAbs. It is 
notable that some mAbs are low signal (Dpwl ≤ 5, green, 

no concerns) across all three formulations tested, such as 
mAbs 2c, 3, 4, 5, 6, 7, 8, and 9; while some are high signal 
(pwl ≥ 10, orange to red, intermediate to high concern) 
across all three formulation conditions, such as mAbs 1, 1a, 
10, 11, and 12. However, mAbs 1b, 1c, 2b, 13, 14, 15, and 
16 demonstrated differential behavior among different for-
mulations, ranging from low to high self-association. In one 
case study of mAbs 1, 1a, 1b, and 1c, which differ either by 
subtype only (1 vs 1a), or differ by CDR mutations (1a, 1b, 
1c), PS-SINS captures the mutational effect or subtype 
impact on the mAb’s self-association behavior, consistent 
with their viscosity measurements (data not shown). 
Similarly, we were able to use PS-SINS to characterize 
mAb 2 and its engineered variants (mAbs 2a, 2b, 2c, 2d) 
in an effort to address viscosity and phase separation beha-
vior of mAb 2 (WT). Among the engineered variants, mAb 
2c shows most improvement, followed by 2b and 2a, while 
variant 2d has a WT-like profile. This is consistent with 
confirmatory viscosity measurements.

Taken together, the results suggest that the PS-SINS assay is 
capable of screening molecules for their formulation- 
dependent behavior and is sensitive enough to distinguish 
closely related variants. In our practice, we flag molecules 
that show high pwl shifts (>10) across multiple formulation 
conditions. We recommend close examination of molecules 
bearing differential behavior, either high Dpwl in H6N30 or 
PBS, with orthogonal methods to assess the risk and compat-
ibility by program and development needs.

Improving data extrapolation accuracy by LOESS

To enable high-throughput data processing with enhanced 
accuracy, we developed a systematic and automated approach 
for calculating the plasmon wavelength shift (Dpwl) of the test 
sample. Raw AC-SINS data consist of 151 absorbance reading 
data points for each sample, with each reading at a distinct 
wavelength value ranging from 475 nm to 625 nanometers 
(nm). When the absorbance is plotted against the wavelength 

Table 1. Average plasmon wavelength (Ave pwl) of antibody−gold conjugates in 
various buffer conditions, with or without PEG2000 stabilization of conjugates, 
and at different levels of salt in the final reaction solution (NaCl). Standard 
Deviation (Std Dev) is based on 4 measurements.

Buffer PEG2000
NaCl 
(mM) Ave pwl

Std 
Dev

Condition 
chosen Note

H6 - - 574 ~ 600 - Unable to obtain 
stable 
measurement due 
to aggregation

H6 + - 544.2 6.4 Measurable, yet broad 
and shallow peak

H6 + 15 532.0 0.2 Stable pwl profile, 
similar to that of 
PBS

H6 + 30 532.0 0.2 √ H6N30 is chosen for 
high throughput 
assay

H6 + 40 528.7 0.2
H6 + 50 528.7 0.1
C6 + - 530.0 0 Upon PEG2000 

treatment, C6 
condition does not 
need additional 
salt for stabilization

C6 + 30 529.0 0 √ C6N30
A5 + 30 530.0 0 √ A5N30
PBS - - 530.0 0
PBS + - 530.0 0 √ PBS

Figure 2. PS-SINS results of 7 control mAbs measured in C6N30, H6N30, and PBS over 10 times are displayed in box and whisker plot. 
Three, side-by-side box and whisker plots. The left plot, labeled C6N30, the middle labeled H6N30 and the right labeled PBS. The y-axis is labeled delta pwl. A dashed 
line is drawn across all 3 plots right above the number 10.0. Controls 2–4 are below the dashed line, close to 0, in all 3 plots. Controls 1, 5, 6 and 7 are above the dashed 
line in all 3 plots. The legend is located below the plot to the left, with the different controls having a different color assignment.
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range, the maximum value (i.e., peak), is used for calculating 
Dpwl for self-association assessment. The AC-SINS analysis 
method4,5 commonly practiced by researchers has several 
drawbacks, including inaccuracy due to poor curve fitting as 
well as the use of an unstable Excel macro. The uncertain 
nature of the approach necessitated manual, ad-hoc discern-
ment, which is not suitable for a high throughput format. The 
Excel macro approach called for a curve fit applied only to the 
clustered subset of higher-value data points (peak region) as 
a means of reducing bias of the curve fit to estimate the 
plasmon wavelength. Despite this, we found that the model 
applied did not fit the data points with accuracy or consistency. 
Due to the variation across curve profiles and lack of symme-
try, the curve fit would often overshoot the true plasmon 
wavelength area, producing a calculated plasmon wavelength 
value that did not reflect the true result (Figure 4b). 

Furthermore, the workflow involved in obtaining this value 
was time-consuming and tedious, requiring manual manipula-
tion of the data subset within an Excel workbook and visual 
review. Within a given Excel workbook, Excel Fit was imple-
mented for the curve fit after the data had been subset per case. 
Overall, the previous method faced disadvantages, including 
inaccurate plasmon wavelength value estimations, excessive 
time consumption, and lack of a systematic approach due to 
custom adjustments per dataset.

In an initial assessment of the commonly used AC-SINS ana-
lysis method, we replicated the process of curve fitting the data in 
order to check the effectiveness of the approach. We applied 
multiple curve fits to scatterplots of AC-SINS data across 
a representative sample of AC-SINS datasets and an array of 
polynomial functions of various degrees (Supplemental 
Figure 1). A comprehensive round of curve fitting led us to note 

Figure 3. Optimized PEG-stabilized SINS protocol (PS-SINS) and workflow. Major steps with optimizations are: 1) Couple Au beads and quench with PEG2000 at 1 mg/mL 
for one hour (a). 2) Elution by PBS (0.25x) into concentrated Au NP solution (10x). 3) Add PEG2000 of 0.1 mg/mL to the reaction mixture, with the mAb sample, PEG- 
stabilized immunogold conjugates, and the corresponding buffer solution. This resulted a final mAb concentration of 50 mg/mL in the respective buffer conditions. 4) 
Add buffer to bring up volume for robotic dispensation. 5) upload raw data obtained from plate reader to R/Shiny app for data processing and analysis. 
(a) A reaction flow, going from left to right, of a yellow circle surrounding by negative charge bubbles. An arrow points to the right, showing addition of Y-shaped 
antibodies onto the yellow circle. An arrow to the right of this new yellow circle with antibodies on the surface show the yellow circle now also with squiggly lines in 
between the antibodies, denoting PEG attachment. Another arrow to the right, showing Test Ab addition onto the yellow circle. There are then 2 different arrows, one 
going the upper right corner showing these yellow circles to be close to each other. The arrow going to the lower right corner show 3 yellow circles further apart. (b) 
A workflow going from left to right, then going down and looping back to the left. The workflow starts with a 50 ml conical, add anti-Fc antibody, incubation for 1 hr at 
RT, then add PEG and incubate for 1 hr at RT. Then, 2 syringe filters are shown, 1 with dark pink on the membrane and 1 that looks white. Arrow to the right shows 
concentration of 10x and a darker, smaller volume of the pink gold. The workflow the loopdowns to the bottom and shows a multi-channel pipet in the process of 
adding pink gold solutions onto a well plate. Continuing to the left shows incubation at RT for 50 minutes followed and the note “100ul into 384 WP” right above 
a liquid dispensing robot. It continues to the left with four replicate wells per sample” and a table showing Control and Sample names, with conditionally color coding of 
results.
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excessive variation in reliability from dataset to dataset. 
A consequential portion of the curve fit applications misfit the 
data, inaccurately characterizing the data region around the peak. 
The most successful curve fit applications were those of the fifth- 
and sixth-degree polynomial functions, with their curve shape 
closest to that of the data. However, they indicated plasmon 
wavelength values that were several nanometers different than 
the more obvious value upon visual inspection. After replicating 
the previous AC-SINS analysis method with curve fitting and 
addressing its deficiencies, we concluded that curve fitting would 
not be an appropriate approach to obtaining plasmon wavelength 
values. To address the inaccuracies in the resulting plasmon 
wavelength extrapolation in the previously used analysis 
approach, we began exploring alternatives to conducting AC- 
SINS analysis.

At a pivotal juncture in method exploration, it became evi-
dent that AC-SINS analysis requires a description of the data. 
The ability to describe the data on a case-by-case basis would 
eliminate the conundrum of trying to find a mathematical func-
tion that would fit all cases of AC-SINS data. We focused on the 
fact that the plotted data always had only one global maximum, 
and we were interested in identifying the wavelength at the peak 
of the data after the removal of outlying points. The LOESS 
method was proposed as a candidate during our search for an 
approach that would meet this analytical need. LOESS (also 

associated with the term “local regression”) is a non- 
parametric method that involves fitting a scatterplot in data 
subsets using multiple regression models in a k-nearest- 
neighbor-based meta-model.21 As opposed to a parametric fit, 
the LOESS curve is “obtained empirically rather than through 
stringent prior specifications about the nature of any structure 
that might exist within the data.”22 For each local datapoint and 
its specified neighborhood, a separate regression is applied itera-
tively for each region. We found that by smoothing the data, we 
could remove noise around the peak and capture a reliable 
plasmon wavelength estimation, meeting the needs of AC- 
SINS analysis. In applying LOESS, a set of y-values are generated 
from the smoothing algorithm that corresponds to each nan-
ometer value. In the workflow, once the smoothed absorbance 
values are generated by the algorithm, we select the maximum 
value. The associated nanometer reading (x–value) at that max-
imum (y-value) is the resulting plasmon wavelength estimation. 
A standard example of LOESS applied to a scatterplot of optimal 
and suboptimal AC-SINS data is shown in Figure 4a. A smooth 
curve is drawn through the data points regardless of the global 
trend and is not biased by outlying values near the peak.

The programming language R is a highly useful data 
science tool with an open-source format and a trove of 
libraries for statistical computing. We used a package 
called “LOESS” from the R Stats Package, which has the 
functionality of applying LOESS modeling to numerical 
vectors and producing new predicted values. This is highly 
pertinent for our goal to describe the AC-SINS data plot 
and find the peak, as the function performs local regres-
sion fitting for each absorbance value, producing a vector 
of “smoothed” y-values from which we can extract 
a plasmon wavelength result.

The three most influential parameters to be adjusted in the 
“LOESS” function application are: 1) smoothing span, also 
known as bandwidth; 2) the degree of polynomial for local 
fit; and 3) a weight function. The smoothing span determines 
how much of the data is used to fit each polynomial, i.e., the 
size of the neighborhood around each target point. Increasing 
the smoothing percentage increases the smoothing effect for 
the whole plot. The polynomial degree parameter can take on 
a value of 0, 1, or 2, respectively, corresponding to whether the 
local fit should be constant, linear, or quadratic. Finally, the 
weight function assigns weights to points based on their dis-
tance to the point of estimation; in other words, it dictates how 
strongly influenced the smoothed value is by its distance to the 
point of estimation.

In order to determine the smoothing span to apply in 
the LOESS function, we compared the performance of 
smoothing spans from 10% to 90%, applied to both optimal 
and suboptimal data. Optimal data included examples in 
which the absorbance varied minimally around the peak 
region, whereas suboptimal data included examples in 
which the absorbance varied significantly around the peak. 
In our initial exploration of LOESS performance, we found 
that a useful indicator to monitor was whether the LOESS- 
smoothed vector contained an inflection point near the 
peak. If an inflection point appeared around the absorbance 
peak area, we interpreted it as an indication that the LOESS 
curve was being influenced by an outlying value, and that 

Table 2. Profiling of a panel of mAbs on their self-association propensity, under 3 
formulation conditions.

CDRs Subtype C6N30H6N30 PBS
Mab 1 WT G4 19.9 16.3 19.7
Mab 1a WT G1 28.4 20.5 26.6
Mab 1b variant G1 3 23.8 0.5
Mab 1c variant G1 13.5 18.8 3.4
Mab 2 WT G4 26 12.9 10.5
Mab 2a variant G4 24 11.0 6.4
Mab 2b variant G4 17 7.5 5
Mab 2c variant G4 0 0.1 5
Mab 2d variant G4 24 12.1 9
Mab 3 G4 1.4 0.8 0.5
Mab 4 G1 0.8 5.5 0.4
Mab 5 G1 1.1 2 0.6
Mab 6 G1 0.7 -3.6 0.5
Mab 7 G1 0.7 -2.7 0.6
Mab 8 G1 1.3 0.3 0.8
Mab 9 G1 0.5 -3.5 0.5
Mab 13 G4 14.3 13.5 6.2
Mab 14 G4 12 12.2 5.6
Mab 15 G4 14.4 9.8 6.3
Mab 16 G4 16.4 11.3 6.9
Mab 10 G4 22.8 19 23.4
Mab 11 G1 20.4 13.7 22.4
Mab 12 G4 23.2 19.4 23.7
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the smoothing span was insufficient for an accurate plas-
mon wavelength estimation. If the LOESS curve appeared 
to disregard outlying points, we considered the smoothing 
span to be more appropriate. Supplemental Figure 2A 
demonstrates the difference in LOESS curves across nine 
different smoothing span values, applied to an example of 
AC-SINS data.

After an overview of the full range of smoothing span 
values across multiple datasets, we decided that we needed 
a statistical justification to pinpoint a smoothing span value 
between 40% and 60%, as the performance of these models 
appear highly comparable across the varied datasets. 
Overwhelmingly, the plasmon wavelength estimation was 
the same across these three smoothing span values. The data 

Figure 4. Apply LOESS method for improved accuracy capturing the peak of plasmon wavelength (a). Peak of plasmon wavelength can be extrapolated robustly, 
regardless of suboptimal (left) or optimal (right) raw data, by drawing a smooth curve through the data points and unbiased by outlying values near the peak. LOESS 
method avoids the pitfall of the commonly practiced method (EXCEL macro and EXCEL fit), which can mis-calculate the peak of plasmon wavelength due to local 
fluctuation of readings (b). The top panel of (B) shows the raw data (entire scan) and the bottom panel is the zoom in of the peak area, the outlier points can challenge 
curve fitting of the traditional method. 
(a) Two panels of plasmon wavelength plots. Both plots show absorbance on the y axis and wavelength on the x axis. Each panel has plasmon wavelength data and 
a smooth line drawn through the data. The left panel has suboptimal data that is scattered about the line. The right panel has data that is mostly on the line. (b) Six 
plasmon wavelength plots in two rows of three. The plots in the bottom row zoom into the peak of the plots in the top row. The plots in the bottom row show how the 
outliers could lead to the incorrect maximum being determined.
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indicates the average difference in plasmon wavelength out-
put across the entire data set, comparing 40% to 50% as well 
as 50% to 60%, for both optimal and suboptimal data 
(Supplemental Figure 2B). For AC-SINS analysis, we ulti-
mately selected a smoothing span of 50% as the middle 
ground of the comparable smoothing span value range. We 
decided that a smoothing span of 50% was the safest and most 
reliable choice to apply across all scatter plot instances, as it 
has produced satisfactory performance across all data output 
that we have encountered thus far, after both quantitative and 
visual investigation.

The next important parameter to consider is the degree of 
polynomial used for each local fitting. By default, the LOESS 
function applies a quadratic polynomial within each neighbor-
hood. Degrees 0 and 1 were obvious to eliminate as the subsets 
of data are neither constant nor linear. As the data takes on 
a somewhat Gaussian form, a quadratic polynomial appeared 
to be the best selection for our purposes.

The final parameter of the three important ones men-
tioned is the weight function. The integration of weights 
acts as a method of assigning more importance to points 
closer to the target. As noted by Cleveland and Loader,23 

“ . . . [the] weight function, w(u), that gives greater weight to 
the [data points] in the neighborhood that are close to [the 
target point] and lesser weight to those that are further”. We 
found that the LOESS function performed well without 
a need to specify starting weights, as the model adapted 
successfully to the data. The “LOESS” package in R includes 
a feature that allows the user to modify the fitting method as 
Ga ussian or Symmetric. The Gaussian method is the default 
for the function, utilizing least squares regression, which 
minimizes the sum of squared distances between the fitted 
LOESS value and the raw absorbance value in the neighbor-
hood. The Symmetric method uses a re-descending 
M estimator with Tukey’s bi-weight function, which assigns 
weights valuing from 0 to 1 based on central tendency toward 
the estimation point. We conducted a comparison between 
Gaussian and Symmetric fits for the data, and Gaussian had 
superior performance – oftentimes, the Symmetric fit would 
not actually generate a LOESS curve that ran through the 
peak region of the scatter plot.

Streamlined data capture and report by R/Shiny 
application

After developing a new analytical approach to the AC-SINS 
method, we planned the implementation of a streamlined analysis 
workflow. We developed an R/Shiny application that would auto-
mate the AC-SINS analysis process, as well as provide 
a convenient interface for scientists. The application includes 
several useful features. Upon uploading a raw AC-SINS data file 
(i.e., the output derived from the plate reader) and corresponding 
sample name data, the user can view an array of tables and plots 
that provide insight on important outcomes. After an initial view 
of the uploaded raw data and verification that it is correct, the user 
can view the first summary table, which is in 384-well format, 
modeled after a plate in the context of the experiment. The 384- 
well summary table contains the sample, buffer, and control 
information, the plasmon wavelength peak determined by our 

implementation of the LOESS method, and additional informa-
tion such as standard error and minimum and maximum absor-
bance values. The next table is the summary table in 96-well plate 
format, which combines the results from the quadruplicate wells 
corresponding to the same sample (Figure 5a). This allows the user 
to view the averaged plasmon wavelength value across four wells, 
the standard deviation of that value, and the individual readings 
for comparison. The user can also view the average plasmon 
wavelength values for the buffers and controls in the data. The 96- 
well view allows the user to see how the individual absorbance 
readings vary for a given sample. In addition, an interactive view 
of the table allows the user to set a threshold value for the number 
of standard deviations away from the average plasmon wave-
length. This helps to systematically remove outliers from the 
results, giving the user a more concise view of the data. 
Additionally, if the user wants to manually select wells to exclude 
from analysis, this can be done in the summary table view. The 
user can select any rows in the table to be excluded and execute the 
exclusion command with an action button on the left-side panel. 
Those wells will not be used in the result calculations. If the user 
makes a mistake in excluding wells, the action can be reversed. The 
application also contains a table that orders all wells by one of two 
“goodness-of-fit” parameters (discussed below). This table pro-
vides a quick view of the most problematic data from the experi-
ment and helps to identify any experimental data that need to be 
more closely examined.

The application also has several visualization features 
(Figure 5). First, there is a plot view for individual wells from 
the 384-well plate, which gives a detailed perspective of the data 
points and plasmon wavelength outcome for an absorbance 
reading for a single sample. The user can select the sample 
name and buffer name combination from a drop-down menu 
to view this individual plot. Next, the user can view two 
different plot grids, each showing the top eight plots of concern 
based on two parameters. One plot grid contains the top eight 
plots of concern based on the root mean squared error 
(RMSE), which gives us a measure of the noisiness of the 
data. That is, it tells us how much the error (i.e., the distance 
from raw datapoint to smoothed LOESS curve) varies. The 
formula for RMSE is the following: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðxi � x̂iÞ
2

q

n 

The other plot grid contains the top eight plots of concern based 
on the “percent in range” goodness-of-fit parameter, which is 
calculated by taking the RMSE of the LOESS model and doubling 
it, then assessing what proportion of points in the plot fall within 
that distance from the LOESS curve. This number reflects how 
reliable the LOESS model is for a given plot, and functions as 
a pseudo-confidence-interval assessment. If it is a good “curve fit,” 
90% of the data points should fall within 2 RMSE measurements 
(one RMSE distance in each direction from the curve). The final 
visualization feature available in the application is a multi-curve 
plot, which allows the user to combine up to eight LOESS 
smoothed curves in a single plot, each with a different sample- 
buffer combination (Figure 5b). Each LOESS curve and plotted 
plasmon wavelength value take on a different color, and the user 
can choose to activate a feature in which vertical lines intersect the 
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Figure 5. R/Shiny app overview and features: bulk raw data upload, followed by guided, step-wise data processing, and customizable data output and report 
generation. 
(a) A screenshot of one of the many views on the R/Shiny app, the 96-well tab. The upper left of the screen shows blue lines for both raw data and sample name file 
upload. A text box below it reads “Bulk upload of raw data files.” Below that are different pull-down menus and a text box over those menu options read “Analyze user 
specified samples or conditions by curve overlay.” The right side of the screen shows views under one of the tabs, with a table of control data on top as well as a table of 
sample data with conditional formatting of delta pwl results. Text boxes on the right side of the screen indicate that results are from 384 to 96 well data aggregation,
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plasmon wavelength value for each LOESS line. This is useful for 
comparison of plasmon wavelength outcomes, as well as visual 
assessment of data shape.

Discussion

AC-SINS presents a promising screening assay for colloidal, 
high-concentration behavior of mAbs by monitoring antibody 
self-association propensity at diluted concentrations. However, 
we and other scientists have recognized the necessity of screen-
ing self-association behavior in matching and relevant formu-
lation conditions. Thus, it is invaluable to obtain AC-SINS data 
in multiple relevant formulation buffers for profiling and for 
proper assessment at the earlier stage of mAb discovery.

Here, we presented PS-SINS, which is an optimized AC- 
SINS method that enabled profiling of mAbs in several 
formulation conditions, including the previously unfeasible 
histidine formulation. The PS-SINS workflow is robust and 
high-throughput friendly, from process to data capture. 
Our experience suggests that the PS-SINS profiling data 
(beyond the single PBS condition) provide richer and 
more valuable information for early-stage antibody triaging.

We investigated the relationship of PS-SINS results in two 
formulation conditions (PBS vs H630N), obtained from 
a collection of diverse molecules (189 mAbs), shown by scat-

terplot (Figure 6). PBS represents physiological conditions 
and has implications in monitoring nonspecific binding and 
undesirable faster clearance. Histidine buffer with low salt is 
one of the preferred high-concentration formulations for 
mAbs. Together, they serve as two basic and minimal condi-
tions screened by PS-SINS. The data points loosely clustered 
into several groups. Quadrant 1 represents molecules with 
low Dpwl (<10) in both PBS and H6N30 conditions, which 
we rate as low risk, indicating favorable high-concentration 
behavior in both formulations. Quadrant 3 includes mole-
cules with high Dpwl (>10) in both PBS and H6N30, which we 
assign red flags for high risk of nonspecific binding and self- 
association. Quadrant 2 represents a large population of 
molecules that have high Dpwl (10 ~25) in H6N30, but low 
Dpwl (<10) in PBS. Interestingly, there are no data points in 
quadrant 4 (high Dpwl in PBS, and low Dpwl in H6N30). 
Applying PS-SINS, we successfully captured the risk pre-
sented in quadrant 2 molecules, which otherwise would 
have been overlooked if solely characterized in PBS. Many 
quadrant 2 molecules demonstrated high-concentration chal-
lenges in histidine formulation when characterized by con-
ventional solubility or viscosity experiments in follow-up 
studies. Among the dataset, there are a few cases representing 
original lead molecule (WT) and engineered variants 
(mutants) targeted for addressing high-concentration risk, 

with a dashboard showing results of buffer blanks and controls, details of processed data with custom color schema. (b) A graph on the left shows an overlay of 5 peaks 
of different colors. The legend is too small to discern details. A text box reads “Select, toggle and visualize the shape of the pwl curve, peak and overall profile for 
comparison.” The screenshot on the right shows a detailed table of sample results on the R/Shiny app, under the 384-well tab. Three sample rows are highlighted in 
blue. The text box reads “Toggle between viewing options, either the detail zoom-in or for summary report. (c) A Screenshot of a view on the R/Shiny app. On the top 
left is a sliding scale for the analyst to tailor the results based upon the desired number of standard deviations away from the average pwl. The table shows rows of 
different samples and controls and details for each of those samples, such as sample name, buffer name, plasmon wavelength, standard deviation, well IDs and their 
corresponding pwl. The text box reads “Structured data capture allowing for data query, data aggregation and data mining.

Figure 6. PS-SINS data distribution of a collection of mAbs, parsed by formulation condition assayed (H6N30 and PBS). Shown in red are lead molecule of mAb T (WT; red 
diamond) and its engineered variants (red circles). When the empirical threshold of 10 is applied, the data points are categorized into quadrant 1, 2, 3 and 4.  
A graph with 4 quadrants. X-axis is Delta pwl H6N30 and Y-axis is Delta pwl PBS. Range is −5 to ~25 on both axes. The legend to the right, in red, is for mAb T (WT) as 
a red diamond and mAb T (engineered variants) as a red circle. Most of the blue dots are found in quadrants 1 & 2 (lower left & lower right, respectively). The red 
diamond (WT) is in the upper corner of quadrant 4 (upper right). This quadrant holds delta pwl values > 10 for both H6N30 and PBS conditions. The red circles 
(engineered variants) are found in the 2 lower quadrants (< 10 delta pwl in PBS) and 1 in the very bottom of the upper right quadrant 3. All red circles are to the left of 
the red diamond (WT) – lower delta pwl in H6N30.
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where PS-SINS was used as the first-tier screening method. 
For example, the lead molecule of project mAb T (Figure 6, 
red diamond) has high risk assigned (Dpwl >10 at H6N30 and 
PBS). Conveniently, with minimal material consumption 
(microgram level), we monitored the variants by PS-SINS 
(red dots), along with other characterization data to guide 
the engineering selection. Compared with the original WT 
lead molecule (in quadrant 3), variants migrated into quad-
rants 1 and 2, suggesting improved self-association behavior 
in either PBS or histidine, or both. The final candidate of the 
mAb T project is selected from quadrant 1, supported by 
other orthogonal characterizations and desired activities.

In addition, we performed correlation analysis on PS-SINS 
with viscosity, where both PS-SINS and viscosity data 
(125 mg/mL, histidine formulation) were available. As 
shown in Figure 7, plotting viscosity against H6N30 
(N = 31), we observed a general trend: higher PS-SINS corre-
lated with higher viscosity, with Pearson correlation of 0.70 
(R2 of 0.50, RMSE of 5.81). Remarkably, all molecules show-
ing high Dpwl at H6N30 (> 10) have viscosity greater than 10 
mPa-s, which is above our targeted viscosity limit. This sug-
gests that PS-SINS can flag concerns (Dpwl ≥10) with high 
confidence before performing the confirmative yet material- 
heavy and labor-intensive high-concentration experiments. 
In this limited dataset, a few molecules have low Dpwl 
(H6N30) yet high viscosity (15 ~20 mPa-s), which cannot be 
explained by existing information or knowledge. One possi-
bility is that these molecules are particularly sensitive to salt 
with respect to their viscosity behavior, and 30 mM NaCl 
resulted in dramatic reduction of self-association. There is 
the caveat that H6N30 (contains 30 mM NaCl) results may 
not be reflective of viscosity measured in histidine formula-
tion with no salt. Moreover, the underlying mechanisms for 
mAb viscosity likely involve multiple pathways, such as Fab- 
Fab attractive interaction, Fab-Fc interaction, or a mixture of 
both.24,25 The current AC-SINS format with anti-Fc capture 
on beads could restrict the detection of Fc-related self- 
associations, which may account for the outliers observed in 
the correlation plot. Granted this is a small dataset, we will 
continue data aggregation and future data mining to deepen 
the understanding of high-concentration behavior by further 
exploring PS-SINS and other techniques.

Not surprisingly, we observed no correlation between visc-
osity and PBS results by PS-SINS (R2 = 0.048; data not shown) 
from the same dataset. The majority of the molecules (29 of 31) 
show low Dpwl signal in PBS (<10), yet 13 mAbs have viscosity 
greater than 10 mPa-s. Our data again indicated that PS-SINS 
in PBS cannot predict viscosity measured in histidine formula-
tion, which is consistent with the previous report.7 Data 
obtained in PBS are still valuable, suggesting nonspecific bind-
ing-related behavior. Taken together, we emphasize the signif-
icance of applying PS-SINS for multi-formulation profiling 
(beyond PBS) during molecule selection. Our data indicate 
that the PS-SINS method is effective at flagging major concerns 
(Dpwl>10) albeit with the occasional false negatives (Dpwl<10, 
yet high viscosity) noted.

Recently, Starr et al. developed a charge-stabilized SINS 
assay, which used polylysine to overcome the limitation of 
the conventional assay. Independently, we addressed the 

instability concern with PEG2000. Both approaches aim to 
stabilize the antibody-gold conjugates, and each uses different 
stabilizing tactics. Our method leverages PEG2000, which is an 
inert, neutral polymer, to block the exposed citrate shell on the 
surface of antibody-gold conjugates, with the intention of pre-
venting histidine-induced bead aggregation. Starr’s method 
applies positively charged polymers to increase the overall 
charge of antibody-gold conjugates for a stabilization effect. 
The authors also experimented with negatively charged poly-
mers and concluded that this reagent is not successful in 
yielding accurate measurement. The evidence corroborates 
the notion that colloidal gold maintains dispersity by the sta-
bilizing, negatively charged citrate shell.20 Hence, neutral 
blocking by PEG2000 or charge coating by polylysine likely 
functions similarly in protecting the reactive surface (charge- 
negative citrate shell) from histidine-induced agglomeration at 
pH 6.0. The two approaches could be complementary to each 
other, providing options if one wants to further enhance and 
expand the utility of AC-SINS. Contrary to the statement by 
Starr et al., our work suggests that AuNP and gold conjugate 
instability is pH-dependent and histidine-specific, not 
a general instability near pH 6.0. We have performed successful 
experiments with PS-SINS in citrate-based buffer (pH 6.0), as 
well as acetate-based buffer (pH 5.0), which yield reproducible 
and meaningful assay readouts, without the need for additional 
salt, as is currently required for the histidine condition. In 
addition to viscosity, suboptimal solubility or opalescence 
represents other concentrated formulation risks. With data 
available from our PEG-induced solubility screening, we do 
not observe a consistent correlation between PS-SINS and 
solubility (data not shown).

A reliable and efficient data processing method is inte-
gral to all high-throughput assays. This, however, was 
absent from traditional AC-SINS, which hindered assay 
exploration as well as data aggregation. Through iterative 
design cycles integrating user’s input, we created a robust 
data processing workflow and user-friendly interface. 
Several highlights include: 1) a LOESS approach that 
uniquely captures the nature of AC-SINS data and is 
more robust, without forcing curve fitting; 2) flexibility 
and adaptability (e.g., user bulk uploads raw data, records 
protocols and plate design; 3) auto-processing with multiple 
quality control matrices to monitor data quality and integ-
rity; and 4) a user-friendly interface allowing curve overlay 
and various report generation schemas. Having an R/Shiny 
application that automates the process of analyzing experi-
mental AC-SINS data significantly increases productivity 
and efficiency. The application automatically identifies the 
sample data for which the LOESS smoothing application is 
“poorest,” sorting a selection of well data that the user can 
inspect. Confirming that the worst of the data is still accu-
rately described by LOESS, the user can feel confident 
about the systematic implementation of our method in R/ 
Shiny. The R/Shiny application has accelerated our experi-
mental method development and optimization. 
Additionally, the application conveniently toggles back- 
and-forth between several views, allowing raw data scruti-
nization and comparison (curve overlays and zoom-in), as 
well as providing a clear table summary highlighting the 
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key metrics. Lastly but importantly, the application enabled 
standardized data capture, which prepared us for data 
aggregation and future data mining.

Our experience suggests that PS-SINS with a streamlined 
process supports better informed decision-making at the 
early stage of mAb discovery. Emphasizing formulation- 

Figure 7. Correlation analysis of PS-SINS result (H6N30), and viscosity measured in histidine formulation (a). Of the same set of molecules, their PS-SINS data parsed by 
H6N30 and PBS, and color and sized by viscosity readout. The higher viscosity is indicated by redder and bigger dots. Dpwl (> 10) in both PBS and H6N30 can capture 
most of the viscosity risks among the set of 31 molecules analyzed, and H6N30 (Y-axis) has more differentiation power compared with PBS (X-axis). 
(a) A graph showing blue dots and green dots with 1 yellow dot. The legend to the right reads blue dot is G1, yellow dot is G2, green dot is G4 and dashed line is Delta 
pwl H6N30. X-axis is Apparent Viscosity measured in mPa-s @ 15C, ranging from −10 to 50, from left to right. The Y-axis is Delta pwl H6N30, ranging from −5 to 25 from 
bottom to top. (b) A graph with 4 quadrants. X-axis is Delta pwl PBS and Y-axis is Delta pwl H6N30. N = 31 is written in the upper right. Legend shows little dots to be 
a minimum of 1.27 mPa-s and Large dot to be > 50 mPa-s. Lower left quadrant contains small dots, mostly blue and some shades of blue/gray. Lower left quadrant is 
delta pwl PBS from 0 to 10 and delta pwl H6N30 from −4 to 10. Lower right quadrant is empty. Upper left quadrant contains mostly red dots, some of which are large. 
Upper left quadrant is delta pwl 0 to 10 in PBS and delta pwl 10 to 24 in H6N30. Upper right quadrant contains 2 pink dots. Upper right quadrant is delta pwl 10–24 in 
PBS and delta pwl 10–24 in H6N30. All red and pink dots are above the horizontal dashed line at 10 delta pwl H6N30. All blue dots are < 5 delta pwl in both buffers.
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related properties, we addressed the over-simplification con-
cern (relying on PBS results only), by enabling complemen-
tary, high-throughput assessment of several formulations 
related to high-concentration colloidal stability. In addition 
to the PEG-induced precipitation assay, which evaluates 
mAbs in multiple formulation conditions, PS-SINS has 
become another screening assay capable of profiling mAbs 
for their projected high-concentration behavior in a variety 
of formulation conditions, with higher throughput, and low 
material cost (microgram level). Developability and func-
tional activity may present trade-offs in certain aspects of 
therapeutic mAb development. It is crucial to take a holistic 
view and consider other relevant developability assessments 
and program needs for better decision-making and risk 
mitigation.

In summary, we present the optimized PS-SINS method and 
a high-throughput workflow for evaluating mAb colloidal stability 
in multiple, downstream relevant formulation conditions. The 
profiling approach provides an additional dimension for facilitat-
ing informed decision making. With the publication of the PS- 
SINS method, we also make the R/shiny application open-source 
for the broader scientific community to use and for further cus-
tomization. In preparing for the biopharmaceutical industry’s 
digital transformation, big data and the age of artificial intelli-
gence, we view this harmonized and standardized data capture as 
a critical step leading to higher quality data and larger data 
volumes for future predictive analytics. We hope this benefits 
more people in their research.

Material and methods

Material and reagents

Gold nanoparticles (20 nm) were purchased from BBI 
Solutions, product # EM. GC20. Anti-human Fc antibodies 
were purchased from Jackson ImmunoResearch Laboratories, 
product # 109–005-008. Buffers were prepared in-house, except 
for 1x PBS. 20 mM sodium acetate, pH 4.3 was used for the 
conjugation reaction. 0.25x PBS, prepared from 4x dilution of 
1x PBS was used for conjugate elution and concentration. 
10 mM histidine, pH 6.0 and 1x PBS were used for final 
reactions. Thiolated PEG (MW 2000) was purchased from 
JenKem. Syringes for gold-Ab clean up and concentration are 
from BD. 0.22 µm PVDF syringe filters are from Millipore, 
13 mm and 33 mm. Deep 96-well polypropylene plates for 
sample preparation and incubation are from Thermo 
Scientific and 384-well polystyrene plates for final reads are 
from Greiner. Biomek i7 liquid handler was used for liquid 
transfer from 96 to 384 well plates. Tecan plate reader (475– 
625 nm, in increments of 1 nm, 20 flashes) was used for 
measuring absorbance. Data was analyzed using in-house 
developed apps. – AC-SINS app (R/Shiny) for analysis, Assay 
Dev Toolkit (ADT) for plate setup.

PS-SINS

Methods were adapted from previous published protocols.2–4 

Briefly, goat anti-human Fc antibodies were buffer exchanged 
into 20 mM sodium acetate, pH 4.3 using Zeba desalting spin 

columns and washed 3x. A solution of gold nanoparticles, 
diluted 2:1 with water, was added to the buffer-exchanged anti- 
Fc antibodies and allowed to incubate at room temperature for 
1 hour. The conjugation was quenched with thiolated PEG2000 
and allowed to incubate at room temperature for another hour. 
The coated nanoparticles were then concentrated using 
0.22 µm syringe filters. The gold beads were retained on the 
filter and were subsequently eluted using 0.25x PBS, pH 7.4, 
using 1/10th of the original volume, hence making a 10x con-
centrated bead:Ab solution. A solution of PEG2000 was added 
to the concentrated gold nanoparticles to a final concentration 
of 0.2 µg/mL PEG2000.

Test antibodies were diluted to 1 mg/mL in 1x PBS. They 
were then diluted 4x to 0.25 mg/mL in either 1x PBS or 10 mM 
histidine, pH 6.0 (H6) buffers. 90 µl of each diluted mAb was 
added to a separate well on a 96-well plate, twice for each mAb, 
to be used for PBS or H6 buffers. 90 µl of each buffer was used 
as a blank. 90 µl of the concentrated gold solution was added to 
each mAb and buffer-containing well for a solution of 5x bead: 
anti-Fc conjugate and 0.125 mg/mL test mAb. After 50 minutes 
at room temperature, 270 µl of buffer was added to each well, 
respectively, and incubated for an additional 10 minutes at 
room temperature. The final solution was 50 µg/mL test 
mAb, 2x bead:anti-Fc conjugate and 0.04 mg/mL PEG2000.

100 µl of each conjugate-mAb solution was then transferred 
onto a 384-well plate (polystyrene) in quadruplicate using 
a Biomek liquid handler. The plate was then read in a Tecan 
plate reader. Absorbance was scanned from 475 to 625 nm in 
1 nm increments. The raw data was plugged into the R/Shiny 
application, along with the plate template (created using an in- 
house developed app called ADT) to compile the data and 
apply a color-coded result color scheme. Results were extracted 
into an Excel format and further organized to present data in 
a more user-friendly view, as well as uploaded for storage.

Code repository

The code for the AC-SINS Analysis R Shiny Application has 
been made open-source and is available on GitHub under 
https://github.com/awalmer/AC-SINS_Analysis.

Viscosity

Viscosity measurements were done in-house using the 
Rheosense Initium viscometer. mAbs were buffer exchanged 
into 5 mM histidine, pH 6.0, and then concentrated and nor-
malized to ~125 mg/mL for viscosity measurements at 15°C.

R/Shiny application
The workflow of AC-SINS analysis is as follows. To begin, 
the user prepares the raw AC-SINS data output from the 
experiment, as well as a sample name file, which contains 
sample information in a 384-well format. These two files 
are then uploaded to the AC-SINS Analysis R/Shiny appli-
cation, and the application initiates the generation of all 
tables and visualizations that support the analysis process. 
The user may then view the resulting plasmon wavelength 
(as well as additional results) per sample quadruplicate, as 
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determined by the LOESS method described earlier. Upon 
consideration of the results, plots, and data quality, the user 
can then optimize and download any visualization, and 
download conditionally formatted reports from the applica-
tion to use for his or her presentation purposes, as well as 
uploading into a database.

Abbreviation

mAb – monoclonal antibody; AC-SINS – affinity-capture self-interaction 
nanoparticle spectroscopy; PS-SINS – PEG2000-stabilized self-interaction 
nanoparticle spectroscopy, pwl – plasmon wavelength, Dpwl – plasmon 
wavelength shift, ave – average, H6N30 – 10 mM histidine buffer, pH 6.0, 
30 mM sodium chloride; H6 – 10 mM histidine, pH 6.0; PBS – phosphate- 
buffered solution, pH 7.4.
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