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Abstract: Coronavirus 2019 (COVID-19) is causing a severe pandemic that has resulted in millions of
confirmed cases and deaths around the world. In the absence of effective drugs for treatment, non-
pharmaceutical interventions are the most effective approaches to control the disease. Although some
countries have the pandemic under control, all countries around the world, including the United
States (US), are still in the process of controlling COVID-19, which calls for an effective epidemic
model to describe the transmission dynamics of COVID-19. Meeting this need, we have extensively
investigated the transmission dynamics of COVID-19 from 22 January 2020 to 14 February 2021 for
the 50 states of the United States, which revealed the general principles underlying the spread of
the virus in terms of intervention measures and demographic properties. We further proposed a
time-dependent epidemic model, named T-SIR, to model the long-term transmission dynamics of
COVID-19 in the US. It was shown in this paper that our T-SIR model could effectively model the
epidemic dynamics of COVID-19 for all 50 states, which provided insights into the transmission
dynamics of COVID-19 in the US. The present study will be valuable to help understand the epidemic
dynamics of COVID-19 and thus help governments determine and implement effective intervention
measures or vaccine prioritization to control the pandemic.

Keywords: COVID-19; epidemic model; transmission; epidemiology; vaccine prioritization

1. Introduction

Coronavirus disease 2019 (COVID-19) is a currently ongoing pandemic that has
resulted in over 187 million confirmed cases and 4.04 million deaths globally [1]. Although
several countries have the pandemic under relative control, all countries around the
world, including the US, are still in the process of controlling the spread of COVID-
19 [2]. In the US, a total of more than 27 million confirmed cases and over 480 thousand
deaths have been reported as of 14 February 2021 [1]. Unfortunately, there are still no
efficient antiviral drugs for the treatment of COVID-19. Vaccines and non-pharmaceutical
interventions are therefore the only two available measures to control the transmission
of the disease. As of 14 February 2021, more than 10 vaccines have been permitted
by at least one national regulatory agency for distribution. However, current levels of
vaccination are still insufficient to control the spread of the disease. In the US, over
97,000 new cases were reported on 14 February 2021 [1]. Therefore, government decisions
on policies and interventions will be essential in controlling the spread of COVID-19
in the following months. Non-pharmaceutical interventional measures including social
distancing, mandatory mask-wearing, isolation, and contact tracing are still crucial in
controlling the spread of the disease [3–11].

Given the critical importance of non-pharmaceutical interventions in the control of
COVID-19, modeling the past spread and predicting the future trends of the COVID-19
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epidemic will play a vital role in decision-making by health officials regarding appro-
priate containment measures [12–22]. In the past year, many studies have been carried
out to model or forecast the transmission dynamics of COVID-19 in various countries,
regions, or cities around the world [23–29]. Among these, classical compartmental models
have been widely used and obtained many successful predictions. Among different com-
partment models, the Susceptible-Infectious-Removed (SIR) model is the simplest model
and provides the most primary transmission principles of all compartmental models [30].
Therefore, the SIR model and its extended versions have been widely used to describe the
epidemic pattern of infectious diseases [31–36]. One basic parameter to describe the dynam-
ics of an epidemic is the reproduction number, R0, which represents the average number
of secondary cases caused by one case in a large susceptible population. When R0 > 1,
an epidemic outbreak is expected to occur in a population, when R0 < 1, the epidemic is
under control, and when R0 = 1, the epidemic is in relatively stable growth [31].

Traditionally, R0 is assumed to be constant or arbitrarily change at specific times
during the spread of a disease in compartmental models. This can be true for mildly
infectious diseases like the flu [32], for which no preventive interventions are normally
enforced by the government. However, this would not be the case for highly infectious
diseases like COVID-19, for which no effective pharmaceutical remedies are available to
control the disease. As mentioned before, many non-pharmaceutical interventions like
mask-wearing, social distancing, prohibition of gathering, and school closure, have been
enforced to control the spread of COVID-19. Therefore, with the development of the
COVID-19 epidemic, the basic reproduction number R0 is expected to gradually reduce
due to the increasing number of preventive measures implemented over the course of the
epidemic [37–39]. As such, the basic reproduction number R0 will be time-dependent and
should be represented by a dynamic value, Rt, which is defined as the average number
of secondary infectious individuals generated by one infectious individual at time t. To
incorporate such time-dependent dynamics, some studies have modified the traditional
SIR compartmental model to track the early depleting transmission dynamics or forecast
the relatively short-term trends of the COVID-19 epidemic [40,41]. Despite some successes
using these models, they were only proposed for modeling the spread of COVID-19 in the
early stages. These models would not be suitable for modeling the long-term transmission
dynamics for an extended period of time. In addition, current models were only designed
to predict the trends of epidemic situations with one outburst; however, situations with
multiple outbursts cannot be predicted. Analysis of the data reported by different states
in the US with high population densities shows a situation in which there is one outburst
that is seemingly controlled, followed by a second outburst. The second outbursts occur
at around the same time for each state. Therefore, previous models designed to predict
only one outburst are unable to predict the epidemic trends in these areas. In addition,
the epidemic dynamics of COVID-19 in the US are highly demography-dependent. Some
states only show one apparent outbreak, while the others show two. Moreover, some
outbreaks occurred in March–April 2020, but some occurred in June–August 2020, which
would also be demographically dependent.

To address these issues, we propose a new time-dependent SIR model, named T-SIR,
to model the transmission dynamics of COVID-19 from 22 January 2020 to 14 February 2021
for the 50 states in the US. Our T-SIR model provides a comprehensive picture of different
scenarios of the long-term COVID-19 epidemic in the US. We analyzed the relationships
between the epidemic parameters of our T-SIR model and the demographic properties of
the states. The present study will be significant in predicting the future spread of COVID-19
at the state level. Utilizing this model, epidemic trends in certain areas can be used to
help health officials make appropriate decisions on public health policies, including social
distancing, wearing face masks, travel bans, lockdowns, and vaccine prioritization.
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2. Methods
2.1. T-SIR Model

We have used the SIR compartmental model as the basis to build our time-dependent
epidemic model for the spread of COVID-19. First, the SIR model is a classical compart-
mental model that was initially used to model the epidemic patterns of the flu. Despite
its simplicity, the SIR model provides the most basic principles of transmission dynamics
and has been widely used to model the spread of various infectious diseases [31]. Second,
the SIR model is the simplest compartmental model and includes the fewest assumptions
and a minimal number of parameters [40]. Therefore, the model would involve the least
amount of overfitting problems possible and give a general description of the epidemic
dynamics. Third, the SIR model has been used to model the transmission dynamics of
COVID-19 in previous studies, which have shown the overall best fit for the early-time
data of COVID-19 among different models including SIR, SEIR, and branching process
models [25].

In the SIR model, individuals in a population are assigned to three compartments
or categories: susceptible (S), infectious (I), and removed (R). Here, the S compartment
stands for the susceptible individuals who are not immune to the virus and can become
infected when they are exposed to the virus. Susceptible individuals cannot infect others
because they have not carried the virus yet. The I compartment represents those individuals
who are carrying the virus and infectious. The R compartment indicates those removed
individuals who have either recovered or died from the disease and become immune to
further infection. In this compartmental model, two important parameters determine the
transmission dynamics of a disease. One is the transmission rate, β, which characterizes the
probability of a susceptible individual becoming infected when the individual is exposed
to an infectious individual during contact. The other is the removal rate, γ, which stands
for the probability of an infectious individual becoming a removed individual during a
specific time interval. For a population of N individuals, the SIR model can be described
by the following set of differential equations [31]:

dS
dt

= −β
IS
N

,
dI
dt

= β
IS
N

− γI,
dR
dt

= γI (1)

where the total population, N = S(t) + I(t) + R(t), remains a constant during the spread
of the disease.

Since the time for an infectious individual to recover is relatively stable, the removal
rate, γ, is often regarded as a constant. With these two parameters, β and γ, the basic
reproduction number can be defined as R0 = β/γ. Due to the awareness-driven behavior
and public health interventions in the spread of COVID-19, previous studies have shown
that the transmission rate γ and corresponding reproduction number Rt will gradually
decrease over time. Therefore, considering the time-dependent trend in the transmission
dynamics of COVID-19 and the multiple-outbreak feature of the COVID-19 epidemic in
the US, we propose a dynamic epidemic model, named T-SIR, with a time-dependent
transmission rate, β(t), for modeling the spread of COVID-19 in the US as follows:

β(t) =


β1t−σ1

γ
β2t−σ2

t0 < t ≤ t1
t1 < t ≤ t2

t > t2

(2)

where β1 and β2 stand for the initial transmission rate constants for the first and second
outbreaks. The time t is in the unit of days and ranges in [1, ∞]. Between two outbreaks,
there is a relatively stable stage with a reproduction number of Rt ≈ 1, i.e., β(t) ≈ γ. The
parameter σ1 and σ2 are the corresponding exponents to describe the power decreasing
feature of transmission rates and normally have a value between 0 and 1. Therefore, σ
can be defined as the intervention parameter reflecting the force of intervention in the
epidemic control of COVID-19. When σ = 0, our time-dependent epidemic model T-SIR
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returns to the original SIR model. When σ is larger, the intervention force is stronger and
the transmission rate β(t) will reduce faster with time t. As the removal rate γ is assumed a
constant in the model, the dynamic reproduction number Rt = β(t)/γ will show a similar
time-dependent relationship to the transmission rate β(t). In this study, we will use our
time-dependent SIR model, shown in Equations (1) and (2), to model the transmission
dynamics of COVID-19 from 22 January 2020 to 14 February 2021 for the 50 states in the US.

2.2. Data Sources and Processing
2.2.1. Epidemiological Data

Similar to the previous study [12], we obtained the COVID-19 epidemic data from
the COVID-19 Data Repository managed by the Center for Systems Science and Engi-
neering (CSSE) at Johns Hopkins University (JHU) [42]. First, the time series table file,
“time_series_covid19_confirmed_US.csv”, was downloaded from the JHU CCSE COVID-19
Dataset website [42]. The time series data are updated once a day and includes the time
series data of the cumulative daily confirmed cases from 22 January 2020 to 14 February
2021 in the 50 US states as of our download date. The original data, which is presented
daily, reported the confirmed cases at the county level in each state. We then processed
the data to obtain the total number of confirmed cases on different dates for each state by
summing the corresponding data for all counties in the respective state. The processed
data of confirmed cases can be freely accessed at https://github.com/HuangDerek/T-SIR
(accessed on 3 July 2021).

2.2.2. Geographical and Demographic Data

The most recent and accurate population data for each state were obtained from 1 July
2020 estimations from the US Census Bureau [43]. Total land area data were obtained from
the US Census Bureau [44]. Population density data were obtained by calculations of the
population divided by total land area for each state.

2.2.3. Mobility Data

The mobility data table of the US states during the COVID-19 pandemic, named
2020_US_Region_Mobility_Report.csv, was first downloaded from the Google COVID-19
Community Mobility Reports website at https://www.google.com/covid19/mobility/
(accessed on 14 February 2021). The original region CSV table contains six types of mo-
bility data including “retail_and_recreation”, “grocery_and_pharmacy”, “parks”, “tran-
sit_stations”, “workplaces”, and “residential” at the country, state, and county level, which
are characterized by the “percent_change_from_baseline”. We then extracted the state-level
mobility data from the table file because the present study focused on the epidemic dynam-
ics of different states. Our examinations showed that the six types of mobility data are well
correlated with each other. Therefore, for simplicity, we used the “retail_and_recreation”
mobility data, which is also the most complete data in the table, to represent societal mobil-
ity during the COVID-19 pandemic. The processed mobility data for the different states can
be freely accessed at https://github.com/HuangDerek/T-SIR (accessed on 3 July 2021).

2.3. Fitting

To accurately model the epidemic trends, the T-SIR model parameters, β1, β2, σ1, σ2,
and γ, are required to be determined by fitting the model with the cumulative data, where
the corresponding dynamic reproduction numbers R1 = β1/γ and R2 = β2/γ. We fitted
our T-SIR model using the grid search of parameters R1, R2, σ1, σ2, and γ in reasonable
ranges. The ranges for Rx, σx , and γ were set to [0.1, 5], [0, 0.3], and [0, 0.3] with steps
sized 0.1, 0.01, and 0.01, respectively [25]. The parameters of our T-SIR model, R1, R2, σ1,
σ2, and γ, were then automatically determined through the best fit between the predicted
data of T-SIR model and the reported COVID-19 data according to the mean squared
error (MSE), where the three times, t0, t1, and t2, in Equation (2) were also automatically
determined during the model fitting.

https://github.com/HuangDerek/T-SIR
https://www.google.com/covid19/mobility/
https://github.com/HuangDerek/T-SIR
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3. Results
3.1. COVID-19 Epidemics of the 50 States in the US
3.1.1. Times of COVID-19 Outbreaks

Figures S1 and S2 show the graphs of the daily numbers of confirmed cases and new
cases with respect to the time period of 22 January 2020 to 14 February 2021 for each
of the 50 US states, where the daily new cases were obtained by the confirmed cases of
the current day minus those of the previous day. It can be seen from the figures that all
states experienced at least one COVID-19 outbreak during the period. During a COVID-19
outbreak, the number of daily confirmed cases increased rapidly at an increasing rate in
the early stages, which corresponds to the increasing numbers of daily new cases. After
the number of daily new cases reached a maximum, the increase of daily confirmed cases
became slower until it reached a relatively stable state. Therefore, a COVID-19 outbreak
showed an obvious peak on the curve of daily new cases and a significant plateau on the
curve of daily confirmed cases following the outbreak (Figure 1).

Figure 1. The daily confirmed cases (upper row) and corresponding new cases (lower row) of COVID-19 for three selected
states: Missouri (a), New Jersey (b), and Arizona (c), in the US that represent three categories (one outbreak; two outbreaks,
with first outbreak in March–April; and two outbreaks, with first outbreak in June–August, respectively) of transmission
dynamics in the US, where the dashed yellow lines indicate the epidemic outbreak peaks.

From Figures S1 and S2, one can also see that all the outbreaks occurred in one of the
three different time windows (Figure 1). The first time window for COVID-19 outbreaks
was March–April, 2020, example states for which include Connecticut, Delaware, Maryland,
Massachusetts, and New Jersey (Figure 2a). The main reason for the outbreak during this
time period may be due to the high infectivity of COVID-19 in the cold weather because
the virus survives longer and has a higher infectious ability at lower temperatures [45].
In addition, part of the outbreak in this time window may have been caused by the early
introduction of the coronavirus to these states with little to no measures enacted to control
the spread because in the early stages, both the individuals and the government had little
knowledge about the virus and were not aware of the high risk of the virus. The period
between the first and second outbreaks where the spread of the coronavirus becomes
relatively stable is the result of warmer weather in which the disease experiences a loss in
the reproduction rate as well as the enacted measures to prevent the spread of the disease.
The second time window for COVID-19 outbreaks is June–August 2020. Examples of
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states that underwent an outbreak during the period include Alabama, Arizona, California,
Florida, and Texas (Figure 2a). Theoretically, an outbreak was not expected to occur
during this summer period because the infectious ability of the virus decreases at a higher
temperature. However, the outbreaks occurred due to human behavior more than the
infectivity of the virus. This is indeed the case because several “Black Lives Matters
(BLM)” protests occurred in many states during this period of time. These protests may
have led to the fast spread of the COVID-19 virus due to large gatherings of people. As
shown in Figure 2a,b, those states with large and extreme protests are likely to have an
outbreak during this time, which confirms the important impact of protests on the COVID-
19 outbreak. Additionally, summer break, which caused a higher mobility of people and
lower awareness of the coronavirus, resulting in less incentive to maintain preventive
measures, may have played a role. As shown in Figure 2a, many states with this outbreak
have coastline access to the ocean or neighbor coastal states. As such, these states would
involve more gatherings of people due to vacations, tours, beach activities, etc., which
favor the spread of COVID-19. The third time window for COVID-19 outbreaks is October
2020–January 2021. Interestingly, all states show a COVID-19 outbreak during this time
(Figures S1 and S2). The outbreak in this time widow could be attributed to both the
infectious virus and human behavior. On one hand, the virus becomes more infectious at
lower temperatures and has a higher transmission ability in cold weather. On the other
hand, after a long period of fighting against the virus, individuals may tend to lower their
sensitivity to the virus due to a lack of awareness and the relaxation of the public health
interventions by governments due to economic reasons.

3.1.2. Properties of COVID-19 Outbreaks

The transmission dynamics of COVID-19 are also state-dependent in terms of epidemic
outbreaks in the US. Roughly, the 50 states can be grouped into two categories according
to the number of COVID-19 outbreaks (Figures S1 and S2). One category is those with
only one COVID-19 outbreak in October 2020–January 2021 (Figure 1a). Examples of states
included in this category are Alaska, Missouri, and South Dakota (Figure S1). In these
states, the number of confirmed cases shows a logistic growth similar to that of the classic
SIR model, which corresponds to a single peak in the curve of daily new cases. The other
category is those with two outbreaks (Figure 1b,c). Examples of states included in this
category are New Jersey, Arizona, and Massachusetts. The number of daily confirmed
cases grows logistically then flattens out into a linear growth for a period of time and then
grows logistically once again, which corresponds to two major peaks in the curves of daily
new cases.

The category of states with two outbreaks can also be further divided into two sub-
categories. The states in these two subcategories all had a second outbreak in October
2020–January 2021 but differ in the time of the first outbreak. One subcategory had the first
outbreak in March–April 2020 (Figure 1b). Examples of states included in this subcategory
include Connecticut, Massachusetts, New Jersey, and New York. The other subcategory
had the first outbreak in June–August 2020 (Figure 1c). Examples of states included in this
subcategory are Alabama, Arizona, California, Florida, and Texas. Interestingly, a few states
like Hawaii, Louisiana, and Maryland seem to show three COVID-19 outbreaks, with out-
breaks occurring in March–April, June–August, and October–January 2021. Nevertheless,
they may be roughly grouped into the two-outbreak category due to one outbreak having
much less impact than the other two. Given such two-outbreak properties of the US states,
where one outbreak can also be effectively regarded as two outbreaks (i.e., one is null and
the other is real), we will be able to model the transmission dynamics of COVID-19 in the
50 states of the US using our two-outbreak epidemic model shown in Equations (1) and (2).
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Figure 2. The color-coded maps of the US states. (a) The states with two epidemic outbreaks occurring in March–April
and October–January are highlighted in green, and those with two epidemic outbreaks occurring in June–August and
October–January are highlighted in yellow. (b) Protests across the US by the number of cities and towns with rallies
or protests in a state, the data for which were taken from https://www.usatoday.com/in-depth/graphics/2020/06/03
/map-protests-wake-george-floyds-death/5310149002. (c) Population densities and (e) populations of the states with two
epidemic outbreaks occurring in March–April and October–January are indicated by a red star, and those with two epidemic
outbreaks occurring in June–August and October–January are indicated by a yellow star. (d) The population densities vs.
areas for the 50 states in the US. (f) The populations vs. areas for the 50 states in the US.

3.1.3. Demographic Impact on COVID-19 Outbreaks

Given that the 50 states of the US have very different populations and areas, it would
be valuable to examine how such geographical and/or demographic features impact the
spread of COVID-19. Table 1 highlights those two-outbreak states in ranked lists of the
states according to their population densities, populations, and areas. It can be seen from
the table that, overall, those states with higher populations or population densities tend to
have two outbreaks. It can be understood because the higher population density causes

https://www.usatoday.com/in-depth/graphics/2020/06/03/map-protests-wake-george-floyds-death/5310149002
https://www.usatoday.com/in-depth/graphics/2020/06/03/map-protests-wake-george-floyds-death/5310149002
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the virus to be easier to spread due to the smaller distance between individuals and the
larger population, leading to a higher possibility for the virus to spread due to the fact that
there are more exposed people.

Table 1. The ranked lists of the 50 states in the US according to their population densities, populations, and areas, where the
states with two epidemic outbreaks occurring in March–April and October–January are highlighted in green, those with
two epidemic outbreaks occurring in June–August and October–January are highlighted in yellow, and those with only one
epidemic outbreak occurring in October–January are not highlighted.

Population Density Population Area
Rank State Density (/km2) Rank State Population Rank State Area (km2)

1 New Jersey 393.18 1 California 39,368,078 1 Alaska 1,723,337
2 Rhode Island 264.22 2 Texas 29,360,759 2 Texas 695,662
3 Massachusetts 252.18 3 Florida 21,733,312 3 California 423,967
4 Connecticut 247.75 4 New York 19,336,776 4 Montana 380,831
5 Maryland 188.47 5 Pennsylvania 12,783,254 5 New Mexico 314,917
6 Delaware 153.09 6 Illinois 12,587,530 6 Arizona 295,234
7 New York 136.85 7 Ohio 11,693,217 7 Nevada 286,380
8 Florida 127.61 8 Georgia 10,710,017 8 Colorado 269,601
9 Pennsylvania 107.17 9 North Carolina 10,600,823 9 Oregon 254,799

10 Ohio 100.72 10 Michigan 9,966,555 10 Wyoming 253,335
11 California 92.86 11 New Jersey 8,882,371 11 Michigan 250,487
12 Illinois 83.92 12 Virginia 8,590,563 12 Minnesota 225,163
13 Virginia 77.54 13 Washington 7,693,612 13 Utah 219,882
14 North Carolina 76.05 14 Arizona 7,421,401 14 Idaho 216,443
15 Indiana 71.61 15 Massachusetts 6,893,574 15 Kansas 213,100
16 Georgia 69.59 16 Tennessee 6,886,834 16 Nebraska 200,330
17 Tennessee 63.09 17 Indiana 6,754,953 17 South Dakota 199,729
18 South Carolina 62.92 18 Missouri 6,151,548 18 Washington 184,661
19 New Hampshire 56.43 19 Maryland 6,055,802 19 North Dakota 183,108
20 Hawaii 49.69 20 Wisconsin 5,832,655 20 Oklahoma 181,037
21 Kentucky 42.78 21 Colorado 5,807,719 21 Missouri 180,540
22 Texas 42.21 22 Minnesota 5,657,342 22 Florida 170,312
23 Washington 41.66 23 South Carolina 5,218,040 23 Wisconsin 169,635
24 Michigan 39.79 24 Alabama 4,921,532 24 Georgia 153,910
25 Alabama 36.25 25 Louisiana 4,645,318 25 Illinois 149,995
26 Wisconsin 34.38 26 Kentucky 4,477,251 26 Iowa 145,746
27 Louisiana 34.24 27 Oregon 4,241,507 27 New York 141,297
28 Missouri 34.07 28 Oklahoma 3,980,783 28 North Carolina 139,391
29 West Virginia 28.44 29 Connecticut 3,557,006 29 Arkansas 137,732
30 Arizona 25.14 30 Utah 3,249,879 30 Alabama 135,767
31 Minnesota 25.13 31 Iowa 3,163,561 31 Louisiana 135,659
32 Vermont 25.03 32 Nevada 3,138,259 32 Mississippi 125,438
33 Mississippi 23.65 33 Arkansas 3,030,522 33 Pennsylvania 119,280
34 Arkansas 22.00 34 Mississippi 2,966,786 34 Ohio 116,098
35 Oklahoma 21.99 35 Kansas 2,913,805 35 Virginia 110,787
36 Iowa 21.71 36 New Mexico 2,106,319 36 Tennessee 109,153
37 Colorado 21.54 37 Nebraska 1,937,552 37 Kentucky 104,656
38 Oregon 16.65 38 Idaho 1,826,913 38 Indiana 94,326
39 Utah 14.78 39 West Virginia 1,784,787 39 Maine 91,633
40 Maine 14.73 40 Hawaii 1,407,006 40 South Carolina 82,933
41 Kansas 13.67 41 New Hampshire 1,366,275 41 West Virginia 62,756
42 Nevada 10.96 42 Maine 1,350,141 42 Maryland 32,131
43 Nebraska 9.67 43 Montana 1,080,577 43 Hawaii 28,313
44 Idaho 8.44 44 Rhode Island 1,057,125 44 Massachusetts 27,336
45 New Mexico 6.69 45 Delaware 986,809 45 Vermont 24,906
46 South Dakota 4.47 46 South Dakota 892,717 46 New Hampshire 24,214
47 North Dakota 4.18 47 North Dakota 765,309 47 New Jersey 22,591
48 Montana 2.84 48 Alaska 731,158 48 Connecticut 14,357
49 Wyoming 2.30 49 Vermont 623,347 49 Delaware 6,446
50 Alaska 0.42 50 Wyoming 582,328 50 Rhode Island 4,001

Further examination of two-outbreak states also reveals that those states with higher
population densities tended to have an outbreak in March–April 2020, while states with
higher populations tended to have an outbreak in June–August 2020. As shown in Table 1,
the states with the top seven population densities all had two outbreaks, with the first
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outbreak occurring in March–April (Table 1 and Figure 2c), and the states with the top
three populations all experienced two outbreaks, with the first outbreak occurring in June–
August (Table 1 and Figure 2e). This kind of demography-dependent phenomenon is
also understandable. As mentioned above, the outbreak in March–April is mostly due to
the infectivity of the COVID-19 virus in cold weather. Therefore, it makes sense that the
outbreaks in March–April tended to occur in those states with a high population density
because the virus would be easier to spread due to the closer distance between individuals.
In contrast, the outbreaks in June–August is mainly attributed to human behavior like
BLM protests and high social mobility. For a state with a higher population, there would
be more possible protests and higher social mobility due to the larger number of people,
which explained the outbreaks in June–August, 2020.

Interestingly, the two-outbreak feature also seems to correlate with the total land
area of the state. Namely, the outbreaks in March–April tended to occur in states with
smaller areas, while the outbreaks in June–August tended to occur in states with larger
areas (Table 1). However, it should be noted that such an area-dependent phenomenon
on the two-outbreak feature is not truly due to the total area of the state, but rather due
to an indirect effect of population density. As shown in Figure 2, small-area states tend
to have a high population density (Figure 2d), and large-area states tend to have a large
population (Figure 2f). In addition, some states with low population density such as
Nebraska, Nevada, and Idaho, also had two outbreaks. For Nevada and Idaho, we can
see that the first outbreak for these two states occurred in July. Figure 2 shows that these
two states are the neighbors of large-population states like California and Washington,
which had many BLM protests, explaining the increase in transmission. As for Nebraska,
although it shows an increase of daily confirmed cases in March-April, the outbreak was
relatively weak, which would be due to its overall low population density. These findings
are expected to provide valuable guidance for COVID-19 vaccine prioritization in the US.

3.2. Modeling the COVID-19 Dynamics of the US States
3.2.1. Fitting of the T-SIR Model

Based on our two-outbreak T-SIR epidemic model in Equations (1) and (2), we have
modeled the transmission dynamics of COVID-19 in the 50 US states through the fitting of
the T-SIR model to the daily confirmed cases from 22 January 2020 to 14 February 2021,
where the compartments I and R of the model are regarded as the confirmed cases. It can be
seen from the figures that overall, our T-SIR model fits the dynamics of the daily confirmed
COVID-19 cases very well and is consistent with the data from most of the states (Figures
S3 and S4). The model not only fits the COVID-19 dynamics of two-outbreak states like
Alabama, Connecticut, Massachusetts, New Jersey, and New York, but also describes the
epidemic trends of one-outbreak states like Alaska, Colorado, Kentucky, Ohio, and West
Virginia (Figure 3a–c). Similar consistency between the predicted and real data can also
be observed in the fitting of daily new cases, demonstrating the robustness of our T-SIR
model (Figure 3). Nevertheless, for a few states, such as Hawaii, Iowa, and Louisiana, our
T-SIR model seemed to not fit the epidemic dynamics of COVID-19 very well (Figures S3
and S4), which may be due to the multiple waves of the epidemic dynamics in these states
and/or inherent limitations in the reported data.

3.2.2. Implications of T-SIR Model Parameters

Through the model fitting, we can obtain the epidemic parameters of our T-SIR
model, β1, β2, σ1, σ2, and γ, for the 50 states of the US, where β1 and σ1 are for the first
outbreak of COVID-19 occurring in March–April or June–August, and β2 and σ2 are for
the second outbreak occurring in October–January. These epidemic parameters gave a
quantitative description of the COVID-19 transmission dynamics of different states and
will enable the investigation of the impact of state geographic and demographic data on
the spread of the disease. Such investigations will provide a deep understanding of the
epidemic dynamics of COVID-19 in different states and help the government create the
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corresponding measures to prevent the spread of COVID-19. As such, we have investigated
the relationship between the epidemic parameters and the demographic data for the
50 US states. Specifically, the epidemic parameters for fitting the model using respective
state geographic and demographic data were compiled. Pairwise comparisons were made
by examining their Pearson correlations. A significant correlation between two different
variables corresponds to an important linear relationship between the two factors.

Figure 3. The fitting of our T-SIR model to the daily confirmed cases (upper row) and corresponding new cases (lower
row) of COVID-19 for three selected states: Colorado (a), New Jersey (b), and New York (c) in the US that represent three
categories of transmission dynamics in the US, where the dashed lines indicate the predicted data of T-SIR model. Data
were smoothed using a Savitzky–Golay filter for daily new cases [46], where the light-blue shade indicates the standard
deviations of reported data.

Figure 4a–c shows the relationships among the epidemic parameters, β1, σ1, and
R1 = β1/γ, for the first outbreak. High correlations can be seen among three pairs of
parameters, which give a correlation coefficient of 0.954 for R1 vs. β1, 0.869 for σ1 vs. β1,
and 0.894 for σ1 vs. R1. Given the relationship of R1 = β1/γ, the high correlation between
the reproduction number R1 and transmission rate β1 suggests that the removal rate γ is
relatively constant for different states (Figure 4a). This means that people infected by the
virus take about the same time to recover in different states, which is consistent with the
general findings for infectious diseases. It is known that the invention parameter σ is an
indicator of the government’s preventive measures and individuals’ self-protection to con-
tain the coronavirus. A higher σ corresponds to more effective preventive measures. It can
be seen from Figure 4b that there is a high correlation between σ1 and β1. This relationship
can be understood because both individuals and the government adopt more and stricter
preventive measures when the transmission rates are higher. These preventive measures
may be both mandatory and voluntary, as higher caution is taken when large numbers
of people are becoming infected. Figure 4c also shows a high correlation between σ1 and
R1. This relationship is due to σ1 being positively related to β1. , and β1 being positively
correlated R1 in the formulaic relationship R1 = β1/γ, where the γ is relatively a constant.
Similar relationships exist among the epidemic parameters, β2, σ2, and R2 = β2/γ, for the
second outbreak can also be observed, which give a correlation coefficient of 0.896 for R2
vs. β2, 0.724 for σ2 vs. β2, and 0.895 for σ2 vs. R2 (Figure 4d–f). The reasoning for these
relationships is the same as that of the first outbreak.
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Figure 4. The pairwise relationships and their correlation coefficients of three epidemic parameters, R, β, and σ, of the T-SIR
model for the first outbreak (a–c) and second outbreak (d–f), where the solid lines are the linear fittings of the data.

As the intervention parameter, σ, is an indicator of the response of the government
and individuals to the epidemic outbreak and thus the most important parameter of our
T-SIR model, we will focus the investigation on the σ parameter. Figure 5a,b show the
relationships between the σ parameters and the population densities of the 50 US states
for the first and second outbreaks, respectively. It can be seen from the figure that σ1 has a
positive correlation of ρ = 0.425 with the population density for the first outbreak but shows
a weakly negative correlation of ρ = −0.125 with the population density for the second
outbreak. The different relationships for the two outbreaks may be understood because
σ is the overall effect of both government interventions and individuals’ self-protection
measures. During the first outbreak, the COVID-19 virus was new to the government
and individuals. In this case, both the government and individuals in states with higher
population densities tended to take more preventive measures to contain the coronavirus.
For the second outbreak, the negative correlation between σ2 and population density would
be due to relaxation of preventive measures for the virus, which resulted in an apparently
lower σ for states with higher population densities because the virus spread more easily
in higher-density populations if no strict interventions were enforced. Compared to the
case made for population density, σ shows a weaker relationship with the population
(Figure 5c,d). This is understandable because it is the population density rather than the
population that determines the spread of a disease in a normal epidemic.

We further investigated the relationship between σ and social mobility, where the
mobility during the first outbreak is roughly taken from the average over Mach–June and
that for the second outbreak is taken from the average over October–January. As shown in
Figure 5e, a significant negative correlation of ρ = −0.311 between σ1 and mobility can be
seen for the first outbreak. This is explained by a higher σ indicating that the government
enforced more preventive measures. Measures to control the spread of the disease including
social distancing and stay-at-home isolation orders decreased people’s mobility. However,
a lower correlation of ρ = −0.209 is observed for the second outbreak (Figure 5f). This may
be understood because the effect of σ comes from two parts: government interventions
and individual self-protection measures, where government interventions have a much
higher impact on social mobility than the self-imposed measures that individuals place on
themselves. With the relaxation of government interventions towards the second outbreak,
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σ came more from the less impactful individual self-protection measures, which explains
the smaller correlation between σ2 and mobility.

Figure 5. The intervention parameter σ vs. population density (a,b), population (c,d), and social mobility (e,f) for the 50
states in the US for the first and second outbreaks, respectively. The solid lines are the linear fittings of the data and the
corresponding correlation coefficients are also shown.

In addition, we also compared the magnitudes of the epidemic parameters, R, β, and σ,
of the first and second outbreaks, which are shown in Figure 6. It can be seen from the figure
that the initial transmission rates β1 and corresponding reproduction numbers R1 for the
first outbreak have a wider range than those of the second outbreak. This is understandable
because people knew little about COVID-19 at the beginning, and the government had
not enforced intervention measures to prevent the transmission of the virus yet, which
would lead to a high transmission rate (Figure 6a). At the same time, some states did not
show an outbreak during this early stage due to little introduction of COVID-19, which
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yielded a low transmission rate. However, after the epidemic had gone on for a few months,
both the government and individuals all had a better understanding of COVID-19 and
adopted more efficient prevention measures to stop the spread of the virus in the late
stages of the COVID-19 epidemic, resulting in relatively moderate transmission rates for
the second outbreak (Figure 6b). Similarly, as the government and individuals adopt the
corresponding preventive measures to contain the virus according to the transmission rates,
the range of σ will be similar to that of β, resulting in an overall wider range of σ for the
first outbreak than for the second outbreak (Figure 6c).

Figure 6. The comparison between the three parameters of the T-SIR model for the first outbreaks (blue) and second
outbreaks (green) of the 50 US states. (a) Reproduction numbers R. (b) Transmission rates β. (c) Intervention parameters σ.

4. Discussion

Based on our time-dependent T-SIR model, we have modeled the transmission dynam-
ics of COVID-19 from 22 January 2020 to 14 February 2021 in the 50 states of the US. The
predicted and reported data are well consistent in both the daily confirmed cases and new
cases, suggesting the robustness of our T-SIR model. Nevertheless, there may be limitations
in the reported COVID-19 data because the availability of the reported data depends on
various factors. First, the availability of confirmed data strongly depends on COVID-19
testing capacity. This issue was especially critical in the early stages of the epidemic when
the number of infected individuals was far beyond the testing capacity for COVID-19
capacity. Second, the testing capacity is also state or city-dependent due to the differences
in the hospital resources in different states or cities. Moreover, many people might not go to
the hospital due to having mild or no symptoms even if they were infected, and thus these
infected individuals would not be counted. In addition, compared to the confirmation of
infected individuals, it is much more difficult to track recovered individuals. Therefore, it
is difficult to accurately separate infected and recovered individuals in the confirmed cases.
These issues in the reported data significantly limit the accurate modeling of COVID-19
epidemic dynamics, especially for the dynamics of daily new cases (Figure S4), though the
basic trends can be modeled.

Despite the various limitations in the data of reported COVID-19 cases, our T-SIR
model still modeled the time-dependent transmission dynamics of the virus for the 50 states
of the US well, demonstrating its robustness to model the impact of non-pharmaceutical
interventions on the spread of COVID-19. In other words, our T-SIR model truly reflects
the unique epidemic dynamics of COVID-19 in the US. In our model, the transmission
rate, β(t), reduces quickly in the early stages and then changes more slowly as time passes.
This is consistent with the social scenario of individuals and public health responses to
an outbreak of COVID-19 in the US. During the early stages of an outbreak, the number
of new cases and deaths increased rapidly, which resulted in strong pressure on society
for prevention. Therefore, during this period, both the individuals and government had a
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tendency to adopt strict measures and/or interventions to reduce the transmission of the
disease, resulting in a fast-decreasing transmission rate. When the COVID-19 epidemic
entered the later stages of an outbreak after some time, the transmission rate became lower
and the epidemic seemed to be under control. Correspondingly, the epidemic entered
a relatively stable stage. During this stage, both the individuals and government had a
tendency to relax the measures and/or interventions because of less pressure from the
epidemic and economic considerations, which would result in a second epidemic outbreak,
as shown in the dynamics of COVID-19 (Figures S1 and S2).

Although there is good consistency between the reported data of COVID-19 and the
predicted values by our T-SIR model, it should be noted that the reported data gather only
the infected people controlled by the health system, as mentioned before. These controls
depend on the number of tests performed on people. For instance, people with symptoms
who are not controlled for the system and the asymptomatic are not considered, although
they are also infected. Therefore, the reported data are only a fraction of real infected cases.
These inherent factors may need to be considered when interpreting the present T-SIR and
other epidemic models.

In addition, it is known that vaccination is the ultimate measure to fight against
COVID-19 due to the fact that there are no effective drugs for the treatment of the dis-
ease [47]. Starting from around December 2020, an increasing number of people around
the world began to have the opportunity to receive COVID-19 vaccines. In the US, the
percentage of the population that is fully vaccinated against COVID-19 increased quickly
from 0.48% on 15 January 2021, to 23.47% on 15 April 2020, to 46.31% on 30 June 2021 [48].
The share of people who had received at least one dose of the COVID-19 vaccine increased
from 3.17% on 15 January 2021, to 37.62% on 15 April 2020, to 54.02% on 30 June 2021 [48].
The increasing number of vaccinated people play an important role in stopping the trans-
mission of COVID-19, which may in part explain the decreasing new cases of COVID-19
after January 2021 in all US states (Figures S1 and S2).

5. Conclusions

We have investigated the transmission dynamics of COVID-19 from 22 January 2020 to
14 February 2021 in the 50 states of the US and also proposed a time-dependent Susceptible-
Infectious-Removed model, named T-SIR, to model the epidemic dynamics of the virus.
It was revealed that the 50 states can be roughly divided into two groups according to
the number of occurred epidemic outbreaks: the states with one outbreak and the states
with two outbreaks. Those states with higher populations and/or population densities
tend to have a higher chance of two COVID-19 outbreaks than the other states. Further
examinations revealed that the states with high population density tend to have their first
outbreak occur in March–April, which is mostly due to the high infectivity of COVID1-9 in
the cold weather, while the states with a high population tended to have their first outbreak
occur in June–August, which may be mostly due to protests and gatherings. All states had
a COVID-19 outbreak in October–January, which would be attributed to the relaxation
of both governmental intervention policies and individual self-prevention measures as
well as the colder weather. We further fitted our T-SIR epidemic model to the transmission
dynamics of COVID-19 in the 50 states of the US. It was shown that our T-SIR model
can well describe the epidemic dynamics of all 50 states. The relationships between the
corresponding epidemic parameters and demographic data were extensively investigated,
providing insights into the spread of COVID-19 in different states. The present study will
be valuable for not only understanding the epidemic dynamics of COVID-19 but also
helping the government make effective virus-control policies such as mask wearing and
vaccine prioritization in the US.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18147594/s1, Figure S1: The daily confirmed cases of COVID-19 from 22 January 2020 to
14 February 2021 for the 50 states in the US, Figure S2: The daily new cases of COVID-19 from 22
January 2020 to 14 February 2021 for the 50 states in the US, where the data were calculated from the
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confirmed data, Figure S3: The fitting of our T-SIR model to the daily confirmed cases of COVID-19
for the 50 states in the US, where the dashed lines indicate the predicted data of T-SIR model, Figure
S4: The fitting of our T-SIR model to the daily new cases of COVID-19 for the 50 states in the US,
where the dashed lines indicate the predicted data of T-SIR model. Data were smoothed using a
Savitzky–Golay filter for the daily new cases.
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