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A B S T R A C T

In this paper, a Covid-19 dynamical transmission model of a coupled non-linear fractional differential equation
in the Atangana-Baleanu Caputo sense is proposed. The basic dynamical transmission features of the proposed
system are briefly discussed. The qualitative as well as quantitative results on the existence and uniqueness of
the solutions are evaluated through the fixed point theorem. The Ulam-Hyers stability analysis of the suggested
system is established. The two-step Adams-Bashforth-Moulton (ABM) numerical method is employed to find
its numerical solution. The numerical simulation is performed to accesses the impact of various biological
parameters on the dynamics of Covid-19 disease.
1. Introduction

As per the report of International Committee on Taxonomy of
Viruses, the Coronavirus disease 2019 (Covid-19) are single standard,
enveloped and non-segmented Ribonucleic acid virus which belongs to
the family of Nidovirales and Coronaviridae [1]. Coronavirus disease
2019 formerly known as Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) or 2019-nCoV caused an outbreak of unusual
pneumonia, which is now officially identified as Covid-19 by the World
Health Organization (WHO). The Covid-19 virus was first observed in
Wuhan, Hubei province of China in December 2019 and after quickly
spreading throughout the world [2]. On the 30th of January 2020, the
WHO declared it an outbreak and after that on the 11th of March 2020,
they said it was a pandemic due to its high rate of infection [3]. Further,
this outbreak is resulting in an epidemic throughout the world [4–
6]. Globally, as of 22nd February 2022, there has been approximately
forty-two crore confirmed number of Covid-19 virus cases including
58,90,312 fatalities, recorded by WHO [3].
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1.1. Covid-19 associated symptoms and effects

The coronavirus disease shows effects on human populations in
different methods. The most infected population will develop mild to
intermediate diseases. Covid-19 has the most common symptoms like
cough, tiredness, fever and loss of smell or taste. Its less common
symptoms are headache, diarrhea, sore throat, pains, aches, irritated
or red eyes, discoloration of toes or figures and rashes on the skin.
Also, its serious signs include loss of speech, loss of mobility, loss
of confusion, shortness or trouble breathing and chest pain. These
symptoms normally arise over the human population from time to time
for weather movement. The high rate of infected population recovering
from the ailment without any kind of medical equipment [7,8]. The hu-
man population’s physiological aging medical problems are high blood
pressure, respiratory, heart difficulties, diabetes, sugar patient, infected
mosquitoes affected people and weakened body systems should be
given more attention. This population is at a higher risk of developing
a serious kind of disease.
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When a susceptible person speaks, sneezes, sings, coughs, or breathes
noisily, tiny droplets issuing from nose or mouth are exchanged from
one person to another, especially in poorly congested and ventilated
interior locations when it is impossible to rule out the possibility of
small distance mist. Coronavirus disease can also be brought on by
coming into contact with infected surfaces or objects and then touching
your mouth, nose, eyes, or lips. By some reports, even those who have
no signs and symptoms can spread the Covid-19 infection [9]. But, the
intensity of spreading such dynamical transmissions of coronavirus are
unknown. The maximum index of suspicion is currently being displayed
in terms of attentiveness regionally, locally and worldwide. Human
population with high fever are currently being tested for coronavirus
disease and sent home if the result is negative, indicating that the
possibility has been ruled out. If a case is neglected, the ramifications
of coronavirus disease might be fatal. Infected populations with a high
fever and a Covid-19 infection may be screened [10]. Up to 3.58
people could be affected by a single case of the disease when a patient
has a sickness. The frequent use of chloroquine, hydroxychloroquine
and other treatments in these areas explains the adverse relationship
between coronavirus disease. The effectiveness of chloroquine and
hydroxychloroquine in the treatment of infections was examined during
the initial SARS outbreak. Some previous research expanded that the
utility of hydroxychloroquine in the treatment of SARS-CoV-2, claiming
per/day need of 400 mg of hydroxychloroquine for 10 days was the
most effective treatment option.

1.2. Principles of fractional operators

Since ordinary calculus is extended into fractional calculus. It al-
lows them to the system be better than ordinary calculus. Due to
two important reasons that are (𝑖) We can choose any order for the
fractional operators, rather than being limited to integer order. (𝑖𝑖)
Fractional operators are beneficial when the system has long-term
memory since they are dependent not just on local conditions but
also on the past. Different types of fractional operators have been
proposed in recent research. However, many scholars have employed
fractional operators like as Riemann-Liouville, Caputo, Caputo-Fabrizio
and Atangana-Baleanu, which have some important and useful opera-
tors in both differentiation and integration. Each fractional operator has
its own set of benefits and disadvantages. There are numerous benefits
and drawbacks to using the Riemann-Liouville fractional operator.
From a historical standpoint, the Riemann-Liouville fractional operator
is extremely important. The power law is used to calculate the RL
fractional derivative. Because of the memory property, it explains real-
world situations with a lot of additional information [11]. However, its
drawbacks are (𝑖) Fractional operator of the constant function is non-
zero in Riemann-Liouville. (𝑖𝑖) The initial condition does not depend on
non-fractional order derivatives only. These two shortcomings are over-
come by Caputo that is (𝑖) The fractional derivative of constant function
is zero. (𝑖𝑖) The initial condition depends on the non-fractional order
derivative only. The Caputo fractional derivative has a singular non-
local kernel. Before the year 2015, all of the earlier utilized fractional
derivatives demonstrate the singular type kernels.

Many scholars have recently become interested in some novel sorts
of fractional differentiate operators involve non-singular kernels. To
address some of the shortcomings of kernel singularity, Caputo and Fab-
rizio introduced the fractional operator, which are extension of famous
Caputo fractional-order operator to a high abstract associating a non-
singular type kernel [12]. However, because of the localized nature of
its kernel, the Caputo-Fabrizio derivative has several issues. Atangana
and Baleanu presented a fractional operator that associates the Mittag
Leffler function as a non-singular as well as a non-local kernel to solve
the problems of locality and singularity of kernels [13]. The fractional
operator gives an effective formulation for heredity and memory effects
shown in a big area of physical issues when using Mittag-Leffler func-
2

tion as the kernel. The use of fractional operators in the computational
modeling of communicable illnesses isn’t a novel concept [14–16].
Several computational models have been developed to better compre-
hend the disease’s dynamic transmission and optimal control [17].
The formulated models in a large number of these studies include
non-fractional order derivatives [18–21]. However, in most real-world
issues, non-fractional order operators fail to appropriately represent
memory and heredity effects. Other academics have extended some of
these mathematical models to include non-integer order derivatives.
There are several mathematical research on fractional-order Covid-19
models dynamical transmission in there [22]. Many scholars have been
interested in the outcomes of investigations on non-integer Covid-19
models [23]. The susceptible, exposed, asymptomatic, symptomatic as
well as removed compartments are all included in the fractional-order
Covid-19 mathematical model [24]. Additionally, they contend that the
behaviour of the system as determined by the stability study is not
significantly affected by the memory effects seen in non-integer opera-
tors. In the Caputo-Fabrizio in Caputo sense, the Covid-19 system with
state variable non-integer order derivative has been investigated [25].
To produce novel existence as well as unique conclusions, the fixed
point theory was used. Furthermore, significant results relating to the
system’s further extended Ulam-Hyers stability have been obtained.
Other recent research on non-integer dynamical transmission Models
of Covid-19 [26–29]. The effect of differentiation on the dynamical
transmission of the illness has been investigated using a numerical
scheme therein [30].

In this paper, we have generalized the traditional SEIR model, by
including a quarantine state variable and evaluating the effect of pre-
ventative interventions [31]. We also formulate a fractional biological
problem to mitigate the quantity of symptomatic infected populations
with low and high risk with psychological difficulties. Key parameters
for Covid-19, such as the disease-induced death rate as well as the
basic reproductive ratio, are computed in a relatively accurate method.
Both direct and indirect pieces of evidence are used to anticipate
and validate the extensively discussed ending time, inflection point
and total infected cases in big cities and other areas. In addition, the
outbreak’s start date has been estimated using inverse inference. Other
hotspots throughout the globe are still being investigated.

The paper organization is given as: preliminaries is given in Sec-
tion 2. The mathematical model formulation of the model is given in
Section 3. The existence and uniqueness solution of the model is pre-
sented in Section 4. The Stability analysis is investigated in Section 5.
Numerical analysis is presented in Section 6. The numerical simulation
and discussion are provided in Section 7. Concluding remarks are
summarized in Section 8.

2. Preliminaries

Here, we give some definitions and notations of fractional opera-
tors [11,13] that are utilized in this paper.

Definition 2.1. The two parametric Mittag-Leffler function 𝑚 is de-
noted by 𝐸𝑢,𝑢1 (𝑚) and is defined as:

𝐸𝑢,𝑢1 (𝑚) =
∞
∑

𝑘=0

𝑚𝑘

𝛤 (𝑢𝑘 + 𝑢1)
, 𝑢, 𝑢1 > 0, 𝑚 ∈ C. (2.1)

Remark 2.1. If 𝑢1 = 1, then Eq. (2.1) converted into one parametric
Mittag-Leffler function 𝐸𝑢,1(𝑚) = 𝐸𝑢(𝑚), and if 𝑢 = 𝑢1 = 1, then
𝐸1,1(𝑚) = 𝐸1(𝑚) = 𝑒𝑥, 𝑥 ∈ R+.

Remark 2.2. The relationship between Gamma and Mittag-Leffler
function is given as:

𝐸𝑢,𝑢 (𝑚) = 𝑚𝐸𝑢,𝑢+𝑢 (𝑚) + 1 . (2.2)

1 1 𝛤 (𝑢1)
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Definition 2.2. The Sobolev space is denoted by 𝐻1(𝑎1, 𝑎2) and is given
as

𝐻1(𝑎1, 𝑎2) = {𝑞 ∈ 𝐿2 ∶ 𝑞′ ∈ 𝐿2(𝑎1, 𝑎1), 𝑎1 < 𝑎2}. (2.3)

Definition 2.3. Riemann–Liouville (RL) fractional derivative of the
function 𝑚 ∶ R+ → R+ is defined as

𝑅𝐿
𝑎 𝐷𝑢

𝑡𝑚(𝑡) =
𝑑𝑛

𝑑𝑡𝑛
1

𝛤 (𝑛 − 𝑢) ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑢−1𝑚(𝑠)𝑑𝑠, 𝑡 > 0, 𝑢 ∈ (𝑛 − 1, 𝑛). (2.4)

Definition 2.4. Caputo (C) fractional derivative of the function 𝑚 ∈ 𝐶𝑛

is defined as

𝐶
𝑎 𝐷

𝑢
𝑡𝑚(𝑡) =

1
𝛤 (𝑛 − 𝑢) ∫

𝑡

𝑎
(𝑡−𝑠)𝑛−𝑢−1𝑚(𝑛)(𝑠)𝑑𝑠, 𝑢 ∈ (𝑛−1, 𝑛]𝑓𝑜𝑟𝑛 ∈ Z+. (2.5)

Definition 2.5. Atangana–Baleanu–Riemann–Liouville (ABRL) and
Atangana–Baleanu–Caputo (ABC) fractional derivatives are defined as

𝐴𝐵𝑅𝐿
𝑎 𝐷𝑢

𝑡𝑀(𝑡) =
𝐴𝐵𝐶(𝑢)
1 − 𝑢

𝑑
𝑑𝑡 ∫

𝑡

𝑎
𝐸𝑢

(

− 𝑢
1 − 𝑢

(𝑡 − 𝑠)𝑢
)

𝑀(𝑠)𝑑𝑠, (2.6)

𝐴𝐵𝐶
𝑎 𝐷𝑢

𝑡𝑀(𝑡) =
𝐴𝐵𝐶(𝑢)
1 − 𝑢 ∫

𝑡

𝑎
𝐸𝑢

(

− 𝑢
1 − 𝑢

(𝑡 − 𝑠)𝑢
)

𝑀 ′(𝑠)𝑑𝑠, (2.7)

where 𝑡 > 0, 𝑢 ∈ (0, 1], 𝑀 ∈ 𝐻1(𝑎1, 𝑎2), and 𝐴𝐵𝐶(𝑢) is the normalized
function.

Remark 2.3. If 𝑢 = 0, 1, then from Eq. (2.7) we have 𝐴𝐵𝐶(0) =
𝐴𝐵𝐶(1) = 1.

Definition 2.6. Atangana–Baleanu–Caputo (ABC) fractional integral is
given as

𝐴𝐵𝐶
𝑎 𝐼𝑢𝑡 𝑀(𝑡) = 1 − 𝑢

𝐴𝐵𝐶(𝑢)
𝑀(𝑡) + 𝑢

𝐷1 ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑢−1𝑀(𝑠)𝑑𝑠, 𝑡 > 0, 𝐷1

= 𝐴𝐵𝐶(𝑢)𝛤 (𝑢). (2.8)

Remark 2.4. Let 0 < 𝑢 ≤ 1 & 𝑔 ∈ 𝐶
(

[0, 𝑇 ],R+
)

. Then the one-step
b.v.p. in ABC fractional operator: 𝐴𝐵𝐶

𝑎 𝐷𝑢
𝑡𝑀(𝑡) = 𝑔(𝑡), 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇 ] and

𝑀(0) = 𝑀0 possesses a unique solution given as below:

𝑀(𝑡) = 𝑀0 +
1 − 𝑢

𝐴𝐵𝐶(𝑢)
𝑓 (𝑡) + 𝑢

𝐷1 ∫

𝑡

𝑎
(𝑡 − 𝑠)𝑢−1𝑔(𝑠)𝑑𝑠. (2.9)

Definition 2.7. Laplace transformation of Eq. (2.7) is given as


{𝐴𝐵𝐶
0 𝐷𝑢

𝑡𝑀(𝑡)
}

(𝑠) =
𝐴𝐵𝐶(𝑢)

[

𝑠𝑢{𝑀(𝑡)}(𝑠) − 𝑠𝑢−1𝑀(0)
]

𝑢 + 𝑠𝑢(1 − 𝑢)
. (2.10)

3. Mathematical model formulation

To construct the system, we divide the Covid-19 grouped human
population into five classes such as susceptible 𝑆, exposed 𝐸, infectious
𝐼 , quarantined 𝑄 and recovered 𝑅. The complete human population is
given by 𝑍 = 𝑆 + 𝐸 + 𝐼 + 𝑄 + 𝑅. The mathematical model related to
the ordinary derivative is as follows:
𝑑𝑆
𝑑𝑡

=𝛱 − 𝛽𝑆𝐼 − 𝜇𝑆,

𝑑𝐸
𝑑𝑡

=𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐸,

𝑑𝐼
𝑑𝑡

=𝛾𝐸 − (𝛿 + 𝜇)𝐼 + (1 − 𝑝)𝜙𝑄,

𝑑𝑄
𝑑𝑡

=𝛿𝐼 − (𝑝𝜙 + 𝜇)𝑄,

𝑑𝑅
𝑑𝑡

=𝜙𝑄 − 𝜇𝑅. (3.1)

In the proposed model (3.1), 𝛱 is the new upcoming arrival, infec-
tion rate is consider to be 𝛽, 𝛾 is the latent time, 𝛿 is the quarantine
time, 𝑝 is the total number of Covid-19 patients, 𝜙 is the cure time and
3

Fig. 1. Dynamical transmission of Covid-19.

Table 1
Biological parameters with the explanation as well as numerical ranges.

Parameter Description Values range Sources

𝛱 Arrival rate of human population 1340 [32]
𝛽 Transmission rate of infection 1.0 [10]
𝜇 Humans natural death rate 0.172 [32]
𝛾 Latent time rate 0.5 [10]
𝛿 Quarantine rate 0.15 [32]
𝑝 Covid-19 fraction rate 0.3 Computed
𝜙 Cure time rate 0.2 Computed

𝜇 is the natural mortality rate. The dynamical transmission of Covid-
19 is depicted in Fig. 1 The Table 1 below provides the base lines. The
rate flows from the susceptible to exposed classes of hosts populations
depend on the dynamical transmission of 𝛽, 𝛾 is the rate flow from expo-
sure to infectious class, 𝛿 is the rate flow from infectious to quarantined
class and 𝜙 is the rate flow from quarantined to recovered class. In each
class, 𝜇 is the natural death rate that is going out respectively. The R-
L to Caputo operator is substituted by the fractional-order derivative.
The key advantage of employing the Caputo fractional derivative is
that the traditional initial conditions may be used without running into
any issues during the solvability test. The fundamental problem with
the aforementioned model is a dimension mismatch between the two
sides. This can be resolved by altering the matching derivatives of the
parameters with dependent on time. Thus, the dimension mismatch of
the above-proposed model (3.1) is resolved as follows:
𝐶
0 𝐷

𝛼
𝑡 𝑆 =𝛱𝛼 − 𝛽𝛼𝑆𝐼 − 𝜇𝛼𝑆,

𝐶
0 𝐷

𝛼
𝑡 𝐸 =𝛽𝛼𝑆𝐼 − (𝛾𝛼 + 𝜇𝛼)𝐸,

𝐶
0 𝐷

𝛼
𝑡 𝐼 =𝛾𝛼𝐸 − (𝛿𝛼 + 𝜇𝛼)𝐼 + ((1 − 𝑝)𝜙)𝛼𝑄,

𝐶
0 𝐷

𝛼
𝑡 𝑄 =𝛿𝛼𝐼 − ((𝑝𝜙)𝛼 + 𝜇𝛼)𝑄,

𝐶
0 𝐷

𝛼
𝑡 𝑅 =𝜙𝛼𝑄 − 𝜇𝛼𝑅. (3.2)

The value of 𝛼 ∈ (0, 1). Furthermore, 𝐶0 𝐷
𝛼
𝑡 𝑟(𝑡), is the Caputo fractional

order derivative.
The value of 𝛼 or to use Caputo’s derivative is more significant

than the order. The fundamental disadvantage of fractionalization is
that when we use two or more compartmental models, a departing
mass flux is equivalent to an incoming for the subsequent quantity
of the class. As a result, the outgoing mass that transfer with certain
fractional-order derivative can’t appear in other class as an incoming
mass without breaking the law of mass balance. For instance, the
infected host populations in model (3.2)are in fractional time with the
dimension (𝑡𝑖𝑚𝑒)−𝛼 .

Therefore, a novel infected host with rate (𝑡𝑖𝑚𝑒)−𝛼 is produced by
the vulnerable human population with dimension (𝑡𝑖𝑚𝑒)−𝛼 , which is
in fractional 𝑡. As a result, the situation of mass balance results in
inconsistency for the Covid-19 model system (3.2). Therefore, fraction-
alizing the multi compartmental system is not conceivable by switching
the non-fractional to the fractional operators in the Covid-19 model’s
left-side quantities (3.2).

In addition, preventing the mismatch of dimensions is another
issue with fractionalizing a compartmental Covid-19 model. In this
instance, the writers converted each parameter’s rate to its matching
fractional order. Therefore, we have solid evidence that the dynamics
of a power-law type govern the spread of infection. Therefore, the
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random transmission process shouldn’t include fractional 𝑡 dynamics in
the recruitment of babies or the death process. To avoid the dimension
mismatch, the approach used in the model (3.2) does not resolve this
problem. This problem was dealt with appropriately.

The drawback of the fractionalized model (3.2) regarding mass
flux of compartment and fractionalization of the Covid-19 model to
avoid the dimension mismatch has been observed. Here, the researchers
changed rate of biological parameters pertaining to their fractional-
order derivative. The approach to fractionalize the proposed model
(3.1) is given as follows:

𝑑𝑆
𝑑𝑡

=𝛱𝜑11
(𝑡 − 𝜏)𝜑11−1

𝛤 (𝜑11)
− 𝛽𝜑12𝑅𝐿

0 𝐷1−𝜑12
𝑡 𝑆𝐼 − 𝜇𝜑13𝑅𝐿

0 𝐷1−𝜑13
𝑡 𝑆,

𝑑𝐸
𝑑𝑡

=𝛽𝜑12𝑅𝐿
0 𝐷1−𝜑12

𝑡 𝑆𝐼 − 𝛾𝜑22𝑅𝐿
0 𝐷1−𝜑22

𝑡 𝐸 − 𝜇𝜑23𝑅𝐿
0 𝐷1−𝜑23

𝑡 𝐸,

𝑑𝐼
𝑑𝑡

=𝛾𝜑22𝐸 − (𝛿𝜑32 + 𝜇𝜑33 )𝐼 + ((1 − 𝑝)𝜙)𝜑34𝑄,

𝑑𝑄
𝑑𝑡

=𝛿𝜑32𝐼 − ((𝑝𝜙)𝜑34 + 𝜇𝜑43 )𝑄,

𝑑𝑅
𝑑𝑡

=𝜙𝜑34𝑄 − 𝜇𝜑52𝑅. (3.3)

Thus, the mobility as well as mortality in hosts doesn’t show in the
omain of fractional calculus. Thus we take 𝜑11 = 𝜑13 = 𝜑22 = 𝜑23 =

𝜑32 = 𝜑33 = 𝜑34 = 𝜑43 = 𝜑52 = 1 and we will only follow a similar rule
or the host during the transmission process, that is why we will take
< 𝜑12 < 𝛼 < 1. By the use of these points to the system (3.3), we have
ovid-19 system with fractional calculus as follows:
𝑑𝑆
𝑑𝑡

=𝛱 − 𝛽𝛼𝑅𝐿0 𝐷1−𝛼
𝑡 𝑆𝐼 − 𝜇𝑆,

𝑑𝐸
𝑑𝑡

=𝛽𝛼𝑅𝐿0 𝐷1−𝛼
𝑡 𝑆𝐼 − 𝛾𝐸 − 𝜇𝐸,

𝑑𝐼
𝑑𝑡

=𝛾𝐸 − (𝛿 + 𝜇)𝐼 + ((1 − 𝑝)𝜙)𝑄,

𝑑𝑄
𝑑𝑡

=𝛿𝐼 − ((𝑝𝜙) + 𝜇)𝑄,

𝑑𝑅
𝑑𝑡

=𝜙𝑄 − 𝜇𝑅. (3.4)

It is evident from the model (3.4) that every equation’s fractional
perators take the RL form on the right-hand side. We are aware that
he fractional Riemann-Liouville derivative of a constant function is
on-zero. We might encounter difficulties in demonstrating the bound-
dness of the variables as a result of this flaw in the RL fractional
perator. The beginning value problem in the RL fractional operator
oes not just depend on integer-order derivatives, which is another
ell-known phenomenon. For the shortcoming of the RL operator, we

ook difficulties by demonstrating the boundedness of state variables.
he two big shortcoming of the RL derivatives are resolved by Caputo
ractional-order derivative. Therefore, the relation between the RL and
’s operator of the state variables is given as below:

𝐿𝐷1−𝛼
𝑡 𝐵𝑡 = 𝐶

0 𝐷
1−𝛼
𝑡 𝐵𝑡 +

𝐵(0)𝑡𝛼−1

𝛤 (𝛼)
. (3.5)

By the use of expression (3.5), the system (3.4) gives

𝑑𝑆
𝑑𝑡

=𝛱 − 𝛽𝛼𝑅𝐿0 𝐷1−𝛼
𝑡 𝑆𝐼 − 𝜇𝑆 −

𝛽𝛼𝑆(0)𝐼(0)𝑡𝛼−1

𝛤 (𝛼)
,

𝑑𝐸
𝑑𝑡

=𝛽𝛼𝑅𝐿0 𝐷1−𝛼
𝑡 𝑆𝐼 − 𝛾𝐸 − 𝜇𝐸 +

𝛽𝛼𝑆(0)𝐼(0)𝑡𝛼−1

𝛤 (𝛼)
,

𝑑𝐼
𝑑𝑡

=𝛾𝐸 − (𝛿 + 𝜇)𝐼 + ((1 − 𝑝)𝜙)𝑄,

𝑑𝑄
𝑑𝑡

=𝛿𝐼 − ((𝑝𝜙) + 𝜇)𝑄,

𝑑𝑅
𝑑𝑡

=𝜙𝑄 − 𝜇𝑅. (3.6)

The model (3.6) is ill-defined in this case because it features a
ype second finite-time singularity at time 𝑡 = 0. This singularity

happens at a 𝑡 = 0 by the application of a fractional Riemann-Liouville
derivative. However, in Caputo fractional derivative, this singularity at
a moment of zero does not take place. As a result, the definitions of the
4

Riemann-Liouville and Caputo fractional derivatives become similar as
the time approaches infinity and 𝛼 is between 0 and 1. As a result, both
definitions produce the same results when used to study the behavior
of values in an equilibrium zone throughout a dynamic process.

The work of the stability analysis of various dynamical systems was
proven by many researchers [33]. The prime aim of our work is to
identified the value near about equilibrium states of the system (3.6)
in the long term of behavior. Thus, we eliminate the decaying term
that depends on 𝑡 R.H.S. of the system (3.6). Thus, the time-dependent
differential equation with the C operators is given as follows:
𝐶
0 𝐷

𝛼
𝑡 𝑆 =𝛱 − 𝛽𝛼𝑅𝐿0 𝐷1−𝛼

𝑡 𝑆𝐼 − 𝜇𝑆,
𝐶
0 𝐷

𝛼
𝑡 𝐸 =𝛽𝛼𝑅𝐿0 𝐷1−𝛼

𝑡 𝑆𝐼 − 𝛾𝐸 − 𝜇𝐸,
𝐶
0 𝐷

𝛼
𝑡 𝐼 =𝛾𝐸 − (𝛿 + 𝜇)𝐼 + ((1 − 𝑝)𝜙)𝑄,

𝐶
0 𝐷

𝛼
𝑡 𝑄 =𝛿𝐼 − ((𝑝𝜙) + 𝜇)𝑄,

𝐶
0 𝐷

𝛼
𝑡 𝑅 =𝜙𝑄 − 𝜇𝑅. (3.7)

The Banach space 𝐵 of the continuous mappings defined on the
interval 𝐿 with the below form.

‖𝑆,𝐸, 𝐼,𝑄,𝑅‖ = ‖𝑆‖ + ‖𝐸‖ + ‖𝐼‖ + ‖𝑄‖ + ‖𝑅‖. (3.8)

In the Eq. (3.8) [34], we have

‖𝑆‖ =𝑠𝑢𝑝{𝑆(𝑡) ∶ 𝑡 𝑖𝑛 𝑀},

‖𝐸‖ =𝑠𝑢𝑝{𝐸(𝑡) ∶ 𝑡 𝑖𝑛 𝑀},

‖𝐼‖ =𝑠𝑢𝑝{𝐼(𝑡) ∶ 𝑡 𝑖𝑛 𝑀},

‖𝑄‖ =𝑠𝑢𝑝{𝑄(𝑡) ∶ 𝑡 𝑖𝑛 𝑀},

‖𝑅‖ =𝑠𝑢𝑝{𝑅(𝑡) ∶ 𝑡 𝑖𝑛 𝑀}.

Also, 𝐵 = 5 × 𝐹 (𝑀), and 𝐹 (𝑀) is the mappings in 𝑀 with the
supremum norm.

Therefore, system (3.7) at zero time doesn’t have any singularity.
The stability analysis by the use of expression |𝑎𝑟𝑔𝜆𝑖| > 𝜋

2𝑛
for 𝑖 =

1, 2, 3, ...., 𝑚(𝛼1 + 𝛼2 + ....+ 𝛼5) of the model (3.7) in the analysis portion.
The mathematical model related to the ABC fractional-order deriva-

ive is as follows:
𝐴𝐵𝐶
0 𝐷𝑢

𝑡 𝑆 =𝛱 − 𝛽𝑆𝐼 − 𝜇𝑆,
𝐴𝐵𝐶
0 𝐷𝑢

𝑡𝐸 =𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐸,
𝐴𝐵𝐶
0 𝐷𝑢

𝑡 𝐼 =𝛾𝐸 − (𝛿 + 𝜇)𝐼 + (1 − 𝑝)𝜙𝑄,
𝐵𝐶𝐷𝑢

𝑡𝑄 =𝛿𝐼 − (𝑝𝜙 + 𝜇)𝑄,
𝐴𝐵𝐶
0 𝐷𝑢

𝑡𝑅 =𝜙𝑄 − 𝜇𝑅. (3.9)

ith i.c’s

(0) = 𝑆0 > 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0,

(0) = 𝑄0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0.

.1. Positively invariant region

To demonstrate the system (3.9) epidemiologically well-posed, we
ave proved the following theorem.

heorem 3.1. The set 𝛺 =
{

(𝑆,𝐸, 𝐼,𝑄,𝑅) ∈ R6
+ ∶ 𝑍 ≤ 𝛱∕𝜇

}

is positive
on-variant for system (3.9).

roof. The sum of the all equations of model (3.9) gives
𝐵𝐶𝐷𝑢

𝑡𝑍 = 𝛱 − 𝜇(𝑆 + 𝐸 + 𝐼 +𝑄 + 𝑅) ≤ 𝛱 − 𝜇𝑍. (3.10)

The solution of Eq. (3.10) is

≤
[

𝐴𝐵𝐶(𝑢)
𝐴𝐵𝐶(𝑢) + (1 − 𝑢)𝜇

𝑍(0) +
(1 − 𝑢)𝛱

𝐴𝐵𝐶(𝑢) + (1 − 𝑢)𝜇

]

𝐸𝑢,1(−𝑑𝑡𝑢)

+ 𝑢𝛱 𝐸𝑢,𝑢+1(−𝑑𝑡𝑢), (3.11)

𝐴𝐵𝐶(𝑢) + (1 − 𝑢)𝜇
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where 𝑑 = 𝑢𝜇
𝐴𝐵𝐶(𝑢)+(1−𝑢)𝜇 .

The Eq. (3.10) simplifies as

≤ 𝛱
𝜇

+
𝐴𝐵𝐶(𝑢)

𝐴𝐵𝐶(𝑢) + (1 − 𝑢)𝜇

[

𝑍(0) − 𝛱
𝜇

]

𝐸𝑢(−𝑑𝑡𝑢).

Hence, 𝑍 ≤ 𝛱
𝜇 as 𝑡 → ∞. Therefore, all solutions of system (3.9)

ith a positive i.c. in 𝛺 will stay in 𝛺. Hence, the theorem is proved.

.2. Equilibrium points

The equilibria are equating the L.H.S. of the system (3.9) equals zero
fter that, solving the new system of algebraic equations.

.2.1. Disease free equilibrium points
The Disease free equilibrium (DFE) is represented by 𝐸𝑓 and is

given as

𝐸𝑓 =
(

𝑆𝑓 , 𝐸𝑓 , 𝐼𝑓 , 𝑄𝑓 , 𝑅𝑓 ) =
(

𝛱
𝜇
, 0, 0, 0, 0

)

.

3.2.2. Disease endemic equilibrium points
The Disease endemic equilibrium(DEE) is denoted by 𝐸𝑒 and is

given as

𝐸𝑒 =
(

𝑆𝑒, 𝐸𝑒, 𝐼𝑒, 𝑄𝑒, 𝑅𝑒),

with

𝑆𝑒 =
(𝛾 + 𝜇)(𝛿 + 𝜇)

𝛽𝛾
, 𝐸𝑒 =

(𝛿 + 𝜇)
𝛾𝛽

[

𝛱𝛽𝛾
(𝛾 + 𝜇)(𝛿 + 𝜇)

− 𝜇
]

,

𝐼𝑒 = 1
𝛽

[

𝛱𝛽𝛾
(𝛾 + 𝜇)(𝛿 + 𝜇)

− 𝜇
]

, 𝑄𝑒 = 𝛿
(𝜙 + 𝜇)𝛽

[

𝛱𝛽𝛾
(𝛾 + 𝜇)(𝛿 + 𝜇)

− 𝜇
]

,

𝑅𝑒 =
𝜙𝛿

(𝜙 + 𝜇)𝛽𝜇

[

𝛱𝛽𝛾
(𝛾 + 𝜇)(𝛿 + 𝜇)

− 𝜇
]

.

.3. Basic reproductive number

The Basic reproductive number (0) for the system (3.9) is deter-
mined by using the next-generation technique [34,35]. Suppose we
have two state of infection 𝐹 (without infection state) and 𝑉 (with
infection state). We have

𝐹 =
[

0 𝛽𝑆
0 0

]

, 𝑉 =
[

𝛾 + 𝜇 0
−𝛾 𝛿 + 𝜇

]

.

This implies

𝐹𝑉 −1 = 1
(𝛾 + 𝜇)(𝛿 + 𝜇)

[

−𝛽𝑆𝛾 𝛽𝑆(𝛾 + 𝜇)
0 0

]

.

Therefore, we have

0 =

√

𝛱𝛽𝛾
𝜇(𝛾 + 𝜇)(𝛿 + 𝜇)

.

We evaluate the basic reproduction number 0 and it is seen that
the diseases are epidemic if the threshold 0 > 1 and the diseases is
non-epidemic if 0 < 1. If 0 = 1, then the state of bifurcation occurs.

4. Existence and uniqueness of model

We use the fixed point technique to propose certain conditions along
with the existence as well as uniqueness to the solution of system (3.9)
are obtained. For the sake of simplicity the R.H.S. of system (3.9) set:

1(𝑡, 𝑆, 𝐸, 𝐼,𝑄,𝑅) =𝛱 − 𝛽𝑆𝐼 − 𝜇𝑆,

2(𝑡, 𝑆, 𝐸, 𝐼,𝑄,𝑅) =𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐸,

3(𝑡, 𝑆, 𝐸, 𝐼,𝑄,𝑅) =𝛾𝐸 − (𝛿 + 𝜇)𝐼 + (1 − 𝑝)𝜙𝑄,

4(𝑡, 𝑆, 𝐸, 𝐼,𝑄,𝑅) =𝛿𝐼 − (𝑝𝜙 + 𝜇)𝑄,

5(𝑡, 𝑆, 𝐸, 𝐼,𝑄,𝑅) =𝜙𝑄 − 𝜇𝑅. (4.1)
5

and reformulate the system (3.9) as
{

𝐴𝐵𝐶
0 𝐷𝑢

𝑡 (𝑡) =  (𝑡,(𝑡)), 𝑡 ∈  = [0, 𝑇 ], 𝑢 ∈ (0, 1],
(0) = 0 ≥ 0,

(4.2)

where,

(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆(𝑡)
𝐸(𝑡)
𝐼(𝑡)
𝑄(𝑡)
𝑅(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,(0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆(0)
𝐸(0)
𝐼(0)
𝑄(0)
𝑅(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (𝑡,(𝑡)) =
[

𝑖(𝑡, 𝑆, 𝐸, 𝐼,𝑄,𝑅)
]

, 𝑖 = 1 𝑡𝑜 5.

(4.3)

By Eq. (2.9), the value of the fractional-order one-step boundary
alue problem (4.2) in the non-linear Volterra integral form is given as
ollows:

(𝑡) = (0) + 1 − 𝑢
𝐴𝐵𝐶(𝑢)

 (𝑡,(𝑡)) + 𝑢
𝐷1 ∫

𝑡

0
(𝑡 − 𝑠)𝑢−1 (𝑠,(𝑠))𝑑𝑠. (4.4)

Thus, for the case of investigation of solution existence, the system
3.9) along with the i.v.p. is equivalent to the system (4.2). Now, we
efine the Banach space  = 𝐶(,R5

+) w.r.t. sup. norm

(𝑡)‖ = sup
𝑡∈

{|| ∶  ∈ }

here, sup𝑡∈ |(𝑡)| = sup𝑡∈
[

|𝑆|+|𝐸|+|𝐼|+|𝑄|+|𝑅|
]

and 𝑆,𝐸, 𝐼,𝑄,𝑅 ∈
(,R5

+). So, by defining the mapping  ∶  →  as
[

(𝑡)
]

= 1
[

(𝑡)
]

+ 2
[

(𝑡)
]

(4.5)

here,

1
[

(𝑡)
]

= (0) + 1 − 𝑢
𝐴𝐵𝐶(𝑢)

 (𝑡,(𝑡)), (4.6)

2
[

(𝑡)
]

= 𝑢
𝐷1 ∫

𝑡

0
(𝑡 − 𝑠)𝑢−1 (𝑣,(𝑠))𝑑𝑠. (4.7)

he Eq. (4.4) reduced into the fixed point problem:

(𝑡) = 
[

(𝑡)
]

. (4.8)

Next, we have the below Lipschitz condition and non-linear function
∶  × R5

+ → R5
+ appeared in Eq. (4.4).

heorem 4.1. The model (3.9) in the form of Eq. (4.2). Then under the
ondition there exist 𝑀 s.t. for 𝑡 ∈ ,∗,∗∗ ∈  we have

 (𝑡,∗(𝑡)) −  (𝑡,∗∗(𝑡))‖ ≤ 𝑀 ‖∗(𝑡) − ∗∗(𝑡)‖,

olds with
1 − 𝑢

𝐴𝐵𝐶(𝑢)
+ 𝑇 𝑢

𝐷1

]

𝑀 < 1, (4.9)

the Eq. (4.2) is equivalent to system (3.9) admits a unique solution to .

Proof. For considering 𝑡 ∈ , let ∗ as well as ∗∗ be two solutions of
Eq. (4.2) in  . Then

‖

‖

‖

‖


[

∗(𝑡)
]

−
[

∗∗(𝑡)
]‖

‖

‖

‖

≤
|

|

|

|

1 − 𝑢
𝐴𝐵𝐶(𝑢)

sup
𝑡∈

𝑁
|

|

|

|

+
|

|

|

|

𝑢
𝐷1

sup
𝑡∈ ∫

𝑡

0
(𝑡 − 𝑠)𝑢−1𝑁𝑑𝑠

|

|

|

|

,

≤ 1 − 𝑢
𝐴𝐵𝐶(𝑢)

‖∗(𝑡) − ∗∗(𝑡)‖ + 𝑇 𝑢

𝐷1
‖∗(𝑡) − ∗∗(𝑡)‖,

=
[

1 − 𝑢
𝐴𝐵𝐶(𝑢)

+ 𝑇 𝑢

𝐷1

]

𝑀 ‖∗(𝑡) − ∗∗(𝑡)‖. (4.10)

where, 𝑁 = 
(

𝑡,∗(𝑡)
)

− 
(

𝑡,∗∗(𝑡)
)

.
Therefore,  is a contraction map for (4.9). Thus, the Eq. (4.4) has

a unique integral. Hence, the dynamical system (3.9) gives a unique

integral.
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5. Ulam–Hyers stability

Here, we set up the Ulam–Hyers stability to analyse the model
behaviour for dynamical system (3.9).

Definition 5.1. The proposed system (3.9) examined in the system
(4.2) is known as Ulam–Hyers stable if there exists a positive value 𝐶

ith the below conditions:
or each positive number 𝑙 and every value ∗ ∈  satisfying the
xpression
𝐴𝐵𝐶

0
𝐷𝑢

𝑡 
∗(𝑡) −  (𝑡,∗(𝑡))‖‖

‖

≤ 𝑙, 𝑡 ∈ , (5.1)

then, ∃ a unique value  ∈  of system of Eq. (4.2) with expression
(0) = ∗(0) such that

‖∗(𝑡) − (𝑡)‖ ≤ 𝐶 𝑙, ∀ 𝑡 ∈ , (5.2)

with,

∗(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆∗(𝑡)
𝐸∗(𝑡)
𝐼∗(𝑡)
𝑄∗(𝑡)
𝑅∗(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,∗(0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆∗(0)
𝐸∗(0)
𝐼∗(0)
𝑄∗(0)
𝑅∗(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (𝑡,∗(𝑡)) =
[

𝑖(𝑡, 𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗),
]

=1 t05.

= 𝑚𝑎𝑥

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑙1
𝑙2
𝑙3
𝑙4
𝑙5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑎𝑛𝑑 𝐶 = 𝑚𝑎𝑥

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐶1
𝐶2
𝐶3
𝐶4
𝐶5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

We refer to the number is 𝐶 Ulam–Hyers stability constant.

emma 5.1. The solution ∗
𝜁 (𝑡) for perturbed problem

𝐴𝐵𝐶
0 𝐷𝑢

𝑡 
∗(𝑡) = (𝑡,∗(𝑡)) + 𝜁 (𝑡), ∀ 𝑡 ∈ 

∗(0) = ∗
0 ,

(5.3)

satisfies the expression

|∗
𝜁 (𝑡) − ∗(𝑡)| ≤ 𝑙, (5.4)

where, ∗
𝜁 is the value of Eq. (5.4), ∗ satisfies Eq. (5.1) and  =

[

1−𝑢
𝐴𝐵𝐶(𝑢)+

𝑇 𝑢

𝐷1

]

.

Theorem 5.2. Consider the Lemma 5.1 and Eq. (5.3) and also further
exxtended Ulam–Hyers stable in  if (1 −𝑀 ) > 0. Then, the dynamical
system (3.9) is Ulam–Hyers as well as further extended Ulam–Hyers stable
in  .

Proof. Let ∗ ∈  obeys the Eq. (5.1) and ∗ be the unique value of
he system (4.2) with the basic expression (0) = ∗(0) if and only if
0 = ∗

0 . Then from Remark 2.4 follows that

(𝑡) = ∗ + 1 − 𝑢
𝐴𝐵𝐶(𝑢)

 (𝑡,∗(𝑡)) + 𝑢
𝐷1 ∫

𝑡

0
(𝑡 − 𝑠)𝑢−1 (𝑠,(𝑠))𝑑𝑠. (5.5)

By Eq. (4.9) and Lemma 5.1, we have

‖∗(𝑡) − (𝑡)‖ ≤ sup
𝑡∈

|∗(𝑡) − ∗
𝜁 (𝑡)| + sup

𝑡∈
|∗

𝜁 (𝑡) − (𝑡)|,

≤2𝑙 +
[

1 − 𝑢
𝐴𝐵𝐶(𝑢)

+ 𝑇 𝑢

𝐷1

]

𝑀 ‖∗(𝑡) − (𝑡)‖. (5.6)

Therefore, we have

‖∗(𝑡) − (𝑡)‖ ≤ 2 𝑙. (5.7)
6

1 −𝑀
For, 𝐶 = 2
1−𝑀

with 1 −𝑀 > 0, the Eq. (5.7) gives

‖∗(𝑡) − (𝑡)‖ ≤ 𝐶 𝑙. (5.8)

Thus, the solution to the fractional initial value problem (4.2) is
lam–Hyers stable. Further, by taking,  (𝑙) = 𝐶 𝑙 along with  (0) =

0 we have

‖∗(𝑡) − (𝑡)‖ ≤ 𝑊 (𝑙), (5.9)

here, 𝑊 ∶  → 5
+ with 𝑊 (0) = 0. Therefore, the fractional initial

value problem (4.2) is also the further extended Ulam–Hyers stable.
Hence, the system (3.9) is both Ulam–Hyers as well as their further
extended form.

6. Numerical analysis

Schemes in the Adams-Moulton family are implicit two-step meth-
ods that use the derivative evaluated at 𝑡𝑖−1 plus prior points but only
se the solution. The one-step Adams-Moulton method is the back-
ard Euler scheme and the two-step method is the trapezoidal rule.
ut here in this section, we employed the two-step Adams-Bashforth-
oulton scheme for the proposed model (3.9) with Atangana-Baleanu

ractional derivative in Caputo sense gives the below Volterra integral
ype equation

(𝑡) − 𝑆(0) = 1 − 𝑢
𝐴𝐵𝐶(𝑢)

1(𝑡, 𝑆(𝑡)) +
𝑢
𝐷1 ∫

𝑡

0
(𝑡 − 𝑠)𝑢−11(𝑠, 𝑆(𝑠))𝑑𝑠. (6.1)

t time 𝑡 = 𝑡𝑖 and 𝑡 = 𝑡𝑖+1, 𝑖 ∈ Z+, we have

(𝑡𝑖) − 𝑆(0) = 1 − 𝑢
𝐴𝐵𝐶(𝑢)

1(𝑡𝑖−1, 𝑆(𝑡𝑖−1)) +
𝑢
𝐷1 ∫

𝑡𝑖

0
(𝑡𝑖 − 𝑡)𝑢−11(𝑡, 𝑆(𝑡))𝑑𝑡,

nd

(𝑡𝑖+1) − 𝑆(0) = 1 − 𝑢
𝐴𝐵𝐶(𝑢)

1(𝑡𝑖, 𝑆(𝑡𝑖)) +
𝑢
𝐷1 ∫

𝑡𝑖+1

0
(𝑡𝑖+1 − 𝑡)𝑢−11(𝑡, 𝑆(𝑡))𝑑𝑡.

lso,

(𝑡𝑖+1)−𝑆(0) = 1 − 𝑢
𝐴𝐵𝐶(𝑢)

[

1(𝑡𝑖, 𝑆(𝑡𝑖))−1(𝑡𝑖−1, 𝑆(𝑡𝑖−1))
]

+ 𝑢
𝐷1

(𝑋𝑢,1−𝑋𝑢,2)

(6.2)

where 𝑋𝑢,1 = ∫ 𝑡𝑖+1
0 (𝑡𝑖+1− 𝑡)𝑢−11(𝑡, 𝑆)𝑑𝑡 and 𝑋𝑢,2 = ∫ 𝑡𝑖

0 (𝑡𝑖− 𝑡)𝑢−11(𝑡, 𝑆)𝑑𝑡.
For the interval [𝑡, 𝑡𝑘+1], the two step Lagrange polynomial is shown

n the form

1(𝑡, 𝑆(𝑡)) =
𝑡 − 𝑡𝑖−1

ℎ
1(𝑡𝑖, 𝑆(𝑡𝑖)) −

𝑡 − 𝑡𝑖
ℎ

1(𝑡𝑖−1, 𝑆(𝑡𝑖−1)), (6.3)

his means that

𝑢,1 =
1(𝑡𝑖, 𝑆(𝑡𝑖))

ℎ

[2ℎ𝑡𝑢𝑖+1
𝑢

−
𝑡𝑢+1𝑖+1
𝑢 + 1

]

−
1(𝑡𝑖−1, 𝑆(𝑡𝑖−1))

ℎ

[ℎ𝑡𝑢𝑖+1
𝑢

−
𝑡𝑢+1𝑖+1
𝑢 + 1

]

,

𝐼𝑢,2 =
1(𝑡𝑖, 𝑆(𝑡𝑖))

ℎ

[ℎ𝑡𝑢𝑖
𝑢

−
𝑡𝑢+1𝑖
𝑢 + 1

]

−
1(𝑡𝑖−1, 𝑆(𝑡𝑖−1))

ℎ
𝑡𝑢+1𝑖
𝑢 + 1

. (6.4)

By using Eq. (6.4) into (6.2) we get

𝑆(𝑡𝑖+1) = 𝑆(𝑡𝑖) + 1(𝑡𝑖, 𝑆(𝑡𝑖))1(𝑢) − 1(𝑡𝑖−1, 𝑆(𝑡𝑖−1))2(𝑢), (6.5)

s the approximate value for 𝑆 class of Eq. (4.3) with ABC fractional
erivative in which

𝑗 (𝑢) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 𝑢
𝐴𝐵𝐶(𝑢)

+ 𝑢
ℎ𝐷1

(2ℎ𝑡𝑢𝑖+1
𝑢

−
𝑡𝑢+1𝑖+1
𝑢 + 1

−
ℎ𝑡𝑢𝑖
𝑢

+
𝑡𝑢+1𝑖
𝑢 + 1

)

𝑖𝑓 𝑗 = 1,

1 − 𝑢
𝐴𝐵𝐶(𝑢)

+ 𝑢
ℎ𝐷1

(ℎ𝑡𝑢𝑖+1
𝑢

−
𝑡𝑢+1𝑖+1
𝑢 + 1

+
𝑡𝑢+1𝑖
𝑢 + 1

)

𝑖𝑓 𝑗 = 2.

(6.6)

In a similar manner, we can achieve the above-mentioned numerical
scheme for the leftover five state of the system (3.9) as

𝐸(𝑡 ) =𝐸(𝑡 ) +  (𝑡 , 𝐸(𝑡 )) (𝑢) −  (𝑡 , 𝐸(𝑡 )) (𝑢),
𝑖+1 𝑖 2 𝑖 𝑖 1 2 𝑖−1 𝑖−1 2
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Fig. 2. Evolution of 𝑢 on 𝑆.

𝐼(𝑡𝑖+1) =𝐼(𝑡𝑖) + 3(𝑡𝑖, 𝐼(𝑡𝑖))1(𝑢) − 3(𝑡𝑖−1, 𝐼(𝑡𝑖−1))2(𝑢),

𝑄(𝑡𝑖+1) =𝑄(𝑡𝑖) + 4(𝑡𝑖, 𝑄(𝑡𝑖))1(𝑢) − 4(𝑡𝑖−1, 𝑄(𝑡𝑖−1))2(𝑢),

𝑅(𝑡𝑖+1) =𝑅(𝑡𝑖) + 5(𝑡𝑖, 𝑅(𝑡𝑖))1(𝑢) − 5(𝑡𝑖−1, 𝑅(𝑡𝑖−1))2(𝑢).

7. Numerical simulation and discussion

The numerical simulation is presented with the help of compu-
tational software. Fig. 2 show the effect of ‘𝑢 = 0.50, 0.60, 0.70’ on
susceptible human 𝑆 over 𝑡. In Fig. 2, it is seen that the population of
susceptible humans mitigates initially as we increase ‘𝑢’ but it attains
parallel to time value at 𝑡 = 0 − 30. Fig. 3 show the effect of ‘𝑢 =
0.50, 0.60, 0.70’ on exposed human 𝐸 over time 𝑡. Fig. 3 shows that
the population of 𝐸 significantly increases as we increase ‘𝑢’ it also
decreases with time after 𝑡 = 50. Afterwards, Fig. 4 demonstrates
the effects of 𝑢 = 0.50, 0.60, 0.70 on 𝐼 . So, as we increase the value
of 𝑢, the graph of 𝐼 also increases. In Fig. 5, we seen the effect of
𝑢 = 0.50, 0.60, 0.70 on 𝑄 class. It is seen that ‘𝑢’ has negative effects
on 𝑄. Fig. 6 exhibits the effects of 𝑢 = 0.50, 0.60, 0.70 on 𝑅. Since, as
we increase the value of 𝑢, the graph of 𝐼 also increases. In Fig. 7, we
seen the effect of 𝑢 = 0.50, 0.60, 0.70 on 𝐷 class. It is seen that ‘𝑢’ has
positive effects on 𝐷. Hence, Figs. 2 to 7 demonstrates the trajectory
of the 𝑆, 𝐸, 𝐼 , 𝑄, 𝑅 and 𝐷 for three different values of 𝑢. It can be
observed that the significant value of order 𝑢 has an impact on the
dynamic transmission of the illness. For instance, when the fractional
index parameter decreases from 0.7 − 0.5, the peak of the illness is
lowered but the illness stays longer in the system with a decreased
value of order 𝑢.

8. Conclusion

In this research paper, we proposed and analyzed a computational
model to assess the impact of quarantine on the transmission dynamics
of Covid-19 disease. The Atangana-Baleanu Covid-19 mathematical
model is performed and the system is qualitatively and quantitatively
analyzed. We have explored the impact of quarantine on the infected
population. Our simulation results demonstrate that quarantine of the
infected population is more effective in controlling and breaking the
Covid-19 spread chain. This model incorporates properly the intrinsic
effects of hidden infectious as well as exposed classes on the total
affected population. The new quarantined class, together with the
recovery and death variables have been introduced into the classical
SEIR epidemic model. Further, we estimate a lot of key biological
parameters for the Covid-19 model, like the quarantine latent as well
7

Fig. 3. Evolution of 𝑢 on 𝐸.

Fig. 4. Evolution of 𝑢 on 𝐼 .

Fig. 5. Evolution of 𝑢 on 𝑄.
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Fig. 6. Evolution of 𝑢 on 𝑅.

Fig. 7. Evolution of 𝑢 on 𝐷.

as 0 in a relatively reliable way to estimate the possible inflection
point. However, the lack of knowledge on the first infected case has
inverse inference for understanding the spread of the Covid-19 model
and preventing similar kinds of virus in the upcoming days.

Concluded remark

We evaluate the basic reproduction number 0 and established a
Ulam-Hyers stability analysis. It is seen that DFE is locally asymptot-
ically stable when 0 < 1 as well as unstable if 0 > 1. Figures
demonstrate the impact of fractional order 𝛼. Atangana-Baleanu-Caputo
is discovered to have even better results in terms of stability analysis
than the other fractional operators in the numerical simulation.

Highlights

A computational model of the Covid-19 pandemic is proposed and
studied. The Covid-19 model has a big biological parameter such as the
Covid-19 fraction rate. The fractional operator 𝛼 demonstrates the ef-
fect in which we discuss a special case when making basic reproductive
ratio  < 1 is no longer a sufficient condition for the eradicate of the
8

0

illness, however, this condition is necessary. Our proposed model gives
computation of various key biological parameters like reproduction
number, quarantine rate and Covid-19 fraction rate which are really
useful information for medical practitioners to understand the predic-
tion and control of transmission dynamics of the disease. Moroever, the
model and simulation are very helpful experimental tool for testing and
estimating the biological parameters values used in the propsed model.
We used the two-step ABM predictor-corrector approach to roughly
identify the Covid-19 pandemic’s origin.

Future direction

For future work, it would be interesting to come out with an
extension of our proposed SEIQR by adding suitable state variables, that
take an important role to control the Covid-19 spread. Hence, with the
development of new kinds of vaccines to mitigate the Covid-19 effects,
it will be important to study the impact of the vaccine campaign on the
optimal behavior of our proposed model.

Data availability

The datasets and code are provided: https://github.com/
RamSingh12345678/Matlab-program-for-a-fractional-Model.git.
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