
fpsyg-11-542082 September 15, 2020 Time: 19:15 # 1

BRIEF RESEARCH REPORT
published: 17 September 2020

doi: 10.3389/fpsyg.2020.542082

Edited by:
Alessandro Giuliani,

National Institute of Health (ISS), Italy

Reviewed by:
Flavia Chiarotti,

National Institute of Health (ISS), Italy
Trang Le,

University of Pennsylvania,
United States

Brett McKinney,
The University of Tulsa, United States

*Correspondence:
Kimmo Sorjonen

kimmo.sorjonen@ki.se

Specialty section:
This article was submitted to

Quantitative Psychology
and Measurement,

a section of the journal
Frontiers in Psychology

Received: 11 March 2020
Accepted: 28 August 2020

Published: 17 September 2020

Citation:
Sorjonen K, Melin B and Ingre M
(2020) Accounting for Expected

Adjusted Effect.
Front. Psychol. 11:542082.

doi: 10.3389/fpsyg.2020.542082

Accounting for Expected Adjusted
Effect
Kimmo Sorjonen1* , Bo Melin1 and Michael Ingre1,2,3

1 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, 2 Department of Psychology, Faculty
of Social Sciences, Stockholm University, Stockholm, Sweden, 3 Institute for Globally Distributed Open Research
and Education (IGDORE), Stockholm, Sweden

The point that adjustment for confounders do not always guarantee protection against
spurious findings and type 1-errors has been made before. The present simulation study
indicates that for traditional regression methods, this risk is accentuated by a large
sample size, low reliability in the measurement of the confounder, and high reliability
in the measurement of the predictor and the outcome. However, this risk might be
attenuated by calculating the expected adjusted effect, or the required reliability in the
measurement of the possible confounder, with equations presented in the present paper.
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INTRODUCTION

To analyze the regression effect of a predictor on an outcome while adjusting for possible
confounders is very common in non-experimental research. However, there are some indications
that adjustment for confounders do not always guarantee protection against spurious findings. For
example, the point that it can be futile to control for underlying confounders that are measured
with low reliability has been made on numerous occasions (e.g., Stouffer, 1936; Kahneman, 1965;
Greenland, 1980; Phillips and Davey Smith, 1992; Brenner, 1993; Fewell et al., 2007; Brunner
and Austin, 2009; Shear and Zumbo, 2013; Lee and Burstyn, 2016; Westfall and Yarkoni, 2016;
Pei et al., 2019).

Kahneman (1965), for example, presents the equation below, which gives the partial correlation
between X and Y when adjusting for Z, taking the reliability in the measurement of Z (r2

ZZ) into
account. We see that even if X and Y would have strong correlations with the true value on Z
(RXZ and RYZ , respectively), if the reliability in the measurement of Z is low, the estimated partial
correlation will be close to the zero-order correlation (rXY ) and the adjustment does not have
anticipated effect.

rXY.Z =
rXY − r2

ZZRXZRYZ√
1− r2

ZZR
2
XZ

√
1− r2

ZZR
2
YZ

(1)

The objective of the present simulation study was to investigate and demonstrate how the effect
of a predictor on an outcome while adjusting for a confounder is affected by the reliability in the
measurement of the confounder, as well as the reliability in the measurement of the predictor and
the outcome variable, sample size, and size of the true independent association between predictor
and outcome. We will also evaluate a method for accounting for expected (spurious) adjusted effects
of the predictor on the outcome.
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METHOD

Using R 4.0.2 statistical software (R Core Team, 2020) and
the MASS package (Venables and Ripley, 2002), in a first set
of simulations, data was simulated and analyzed through the
following steps (Figure 1, script available at1): (1) 20, 100, 500, or
2500 virtual subjects were allocated a true Z value from a random
standard normal distribution; (2) The subjects were allocated true
X and true Y values from random standard normal distributions
with defined population correlations (0.1, 0.35, 0.6, or 0.85)
with the true Z distribution (same for both) and with a defined
adjusted effect of true X on true Y (drawn from a random uniform
distribution between 0 and 1); (3) The subjects were allocated
observed Z, X, and Y scores from random standard normal
distributions with defined population correlations (square root
of the defined reliability, which was set to 0.8 for all three
variables, and consequently the correlation was set to 0.894) with
their respective true scores; and (4) The effect of observed X on
observed Y while adjusting for observed Z was analyzed with
ordinary least squares linear regression. As all variables were
standardized, the effects correspond to standardized beta weights.
We ran 1000 simulations for each of the 16 combinations of
sample size and defined population correlation between true Z
and true X/Y, i.e., 16,000 simulations in total. In a second set of
simulations, the sample size was fixed at 500 and the population
correlation between true Z and true X/Y at 0.5 while we used 0.4,
0.6, 0.8, and 0.99 (the calculations did not converge if using the
integer 1) as values for the reliability in the measurement of Z
and the reliability in the measurement of X/Y (same for both).
Again, we ran 1000 simulations for each of the 16 combinations
of these reliabilities.

The standardized regression effect of a predictor X on an
outcome Y while adjusting for a potential confounder Z is given
by the equation (Cohen et al., 2003):

βXY.Z =
rXY − rXZrYZ

1− r2
XZ

(2)

1https://osf.io/gxvfm/

FIGURE 1 | Illustration of the present simulation, with various degrees of
confounding effects of true Z on true X/Y, various degrees of true adjusted
effects of true X on true Y, and various degrees of reliability in the
measurement of Z/X/Y. The main outcome is the effect of observed X on
observed Y while adjusting for observed Z.

As the correlations between observed Z, X, and Y in the
present simulation equals the product of their correlations with
true scores, and the associations between these true scores (see
Figure 1), it can be shown (see Appendix) that the expected
adjusted standardized effect, in the case without any true
independent association between X and Y, is given by:

E|βXY.Z| =
rXZrYZ(1− r2

ZZ)

r2
ZZ(1− r2

XZ)
(3)

In Eq. 3 we see that with a decrease in the reliability of the
measurement of Z (r2

ZZ), we will get an increase in the numerator
and a decrease in the denominator and, hence, a strengthening of
the expected adjusted effect. This expected adjusted effect can be
quite substantial even if the true adjusted effect of true X on true
Y while adjusting for true Z is zero.

The significance of an adjusted (or an un-adjusted) regression
effect is usually calculated by dividing the coefficient with its
standard error, which gives a T-value, and then finding the
corresponding p-value. The p-value stands for the estimated
probability to get a regression coefficient that deviates as much
(or more) from zero as the observed regression coefficient does,
if the true regression coefficient in the population actually is zero.
If this T-value is significant (commonly defined as p < 0.05) it is
usually concluded that the adjusted effect differs from zero (hence
the subscript below) and that there is an independent association
between X and Y when adjusting for Z:

T0 =
βXY.Z

SE(βXY.Z)
(4)

Besides this traditional zero-order significance test, in the
present simulation we also calculated the significance of the
difference between the observed and the expected adjusted effect
(AEAE), as calculated with Eq. 3. In this case a significant finding
would be taken to indicate that the independent association
between X and Y is stronger than can be expected due to purely
spurious reasons:

TAEAE =
βXY.Z − E|βXY.Z|

SE(βXY.Z)
(5)

Associations between the true adjusted effect (as defined in
the simulations) and the probability for a significant observed
adjusted effect as given by the zero-order significance test (Eq. 4)
as well as the test accounting for expected adjusted effect (Eqs. 3
and 5) were analyzed with logistic regression analyses. In these
analyses, the significance of the effect of observed X on observed
Y while adjusting for observed Z (with 0 for p ≥ 0.05 and 1
for p < 0.05) was the binary outcome while the size of the true
adjusted effect of true X on true Y while adjusting for true Z
was the continuous predictor. Based on the results from these
logistic analyses, the probability to get a significant (p < 0.05)
observed adjusted effect of observed X on observed Y while
adjusting for observed Z could be estimated for different degrees
of true adjusted effect of true X on true Y while adjusting for true
Z. These estimated probabilities could vary between 0 (meaning
that the observed adjusted effect was predicted to never become
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significant) and 1 (meaning that the observed adjusted effect was
predicted to always become significant). If the true adjusted effect
of true X on true Y while adjusting for true Z equals zero (as
defined by us in the simulation), this estimated probability stands
for the risk to conduct a type 1-error, i.e., to conclude that there
is an independent association between X and Y while adjusting
for Z when there actually is not. If, on the other hand, the true
adjusted effect is not zero (as defined by us in the simulation), this
estimated probability stands for power, i.e., the ability to reveal an
independent association between X and Y that actually exists.

RESULTS

Effects of Degree of Confounding and
Sample Size
Figure 2 presents probabilities for a significant finding from
zero-order significance tests (Eq. 4) of the effect of X on Y

while adjusting for Z (thick red line) as well as when accounting
for the expected adjusted effect (the AEAE-test, Eqs. 3 and 5,
dark blue line) as functions of the true adjusted effect (defined
in the simulation), separately for four degrees of confounding
(i.e., correlation between true Z and true X/Y) and four sample
sizes. The following can be noted: (1) With a low degree of
confounding (column 1), the two methods give identical results;
(2) With a high degree of confounding (columns 4 and, to a lesser
degree, 3), the zero-order significance test exhibits a high risk for
type 1-error when the true adjusted effect = 0, and this risk is
accentuated by a large sample size; (3) The AEAE-test provides
good protection against type 1-errors irrespective of degree of
confounding and sample size (the probability for a significant
result when the true adjusted effect = 0 is always close to the
nominal 5%); and (4) This extra protection against type 1-errors
comes with some decrease in power when there is a high degree of
confounding and when the true adjusted effect is relatively weak
(there is a gap between the red and the blue line in the left part of

FIGURE 2 | Probabilities for a significant finding from zero-order significance tests (Eq. 4) of the effect of X on Y while adjusting for Z (thick red line) as well as when
accounting for the expected adjusted effect (AEAE-test, Eqs. 3 and 5, dark blue line) as functions of the true adjusted effect, separately for four degrees of
confounding (i.e., correlation between true Z and true X/Y, columns) and four sample sizes (rows). The dashed lines show p = 0.05. The thin vertical lines indicate
required degree of true adjusted effect for power = 0.80 for the zero-order significance test (red) and the AEAE-test (dark blue), respectively. The reliability in
measurement of X/Y/Z was fixed at 0.8 in these simulations.
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the panels in column 4). For example, whenN = 100 and degree of
confounding = 0.85, the estimated degree of true adjusted effect
required for power = 0.80 (risk for type 1-error if true adjusted
effect = 0) is 0.117 (0.519) and 0.639 (0.038) for the zero-order
significance test and the AEAE-test, respectively.

Effect of Reliability
Figure 3 presents probabilities for a significant finding from
zero-order significance tests (Eq. 4) of the effect of X on Y
while adjusting for Z (thick red line) as well as when accounting
for the expected adjusted effect (the AEAE-test, Eqs. 3 and 5,
dark blue line) as functions of the true adjusted effect (defined
in the simulation), separately for four degrees of reliability in
the measurement of the confounder Z and four degrees of
reliability in the measurement of predictor X and outcome Y.
The following can be noted: (1) With a near-perfect reliability

in the measurement of Z (column 4), the two methods give
identical results; (2) With a low reliability in the measurement
of Z (columns 1 and, to a lesser degree, 2), the zero-order
significance test exhibits a high risk for type 1-error when the true
adjusted effect = 0, and this risk is accentuated by a high reliability
in the measurement of X/Y; (3) The AEAE-test provides good
protection against type 1-errors irrespective of reliability in the
measurement of Z and reliability in the measurement of X/Y
(the probability for a significant result when the true adjusted
effect = 0 is always close to the nominal 5%); and (4) This extra
protection against type 1-errors comes with some decrease in
power when Z is measured with low reliability and when the
true adjusted effect is relatively weak (there is a gap between the
red and the blue line in the left part of the panels in column
1). For example, when the reliability in the measurement of
X/Y = 0.8 and the reliability in the measurement of Z = 0.4, the

FIGURE 3 | Probabilities for a significant finding from zero-order significance tests (Eq. 4) of the effect of X on Y while adjusting for Z (thick red line) as well as when
accounting for the expected adjusted effect (AEAE-test, Eqs. 3 and 5, dark blue line) as functions of the true adjusted effect, separately for four degrees of reliability
in the measurement of Z (columns) and four degrees of reliability in the measurement of X/Y (rows). The dashed lines show p = 0.05. The thin vertical lines indicate
required degree of true adjusted effect for power = 0.80 for the zero-order significance test (red) and the AEAE-test (dark blue), respectively. The sample size was
fixed at 500 and the degree of confounding at 0.5 in these simulations.
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estimated degree of true adjusted effect required for power = 0.80
(risk for type 1-error if true adjusted effect = 0) is 0.003 (0.782)
and 0.182 (0.027) for the zero-order significance test and the
AEAE-test, respectively.

DISCUSSION

The present simulation indicates that with some degree of true
confounding from a factor Z, a relatively strong, and often
significant, but spurious adjusted effect of a predictor X on an
outcome Y can be expected even if the true adjusted effect equals
zero. The risk for such spurious findings is accentuated by a large
sample size, low reliability in the measurement of Z, and high
reliability in the measurement of X and Y. Hence, if the effect
of X on Y remains significant when adjusting for Z, this can in
many situations not be interpreted as a strong indication of a true
independent association.

One way to decrease the risk for spurious findings and type
1-errors would be to use multiple indicators of the variables of
interest and structural equation modeling (Westfall and Yarkoni,
2016). However, if multiple indicators are not available, one
could calculate the size of the expected adjusted effect with the
presented Eq. 3 and see if the found effect differs significantly
from this expected effect (Eq. 5) rather than being content with
a significant deviation from zero. This would require an estimate
of the reliability in the measurement of the potential confounder
Z, something that could be based on calculations of homogeneity,
test-retest correlations etc. Replacing the expected effect in Eq. 3,
i.e., the left-hand side, with the lower limit (closest to zero) of
the confidence interval of the observed adjusted effect (βLL), one
could also calculate the degree of reliability in the measurement
of Z that is required for the observed adjusted effect to be
significantly stronger than the expected adjusted effect:

required r2
ZZ =

rXZrYZ
βLL(1− r2

XZ)+ rXZrYZ
(6)

If the calculated required reliability given by Eq. 6 is
unrealistically high one should be reluctant to conclude that there
is an independent association between true X and true Y.

As an example, based on the adjusted effects presented in
Table 1, Uchmanowicz and Gobbens (2015) concluded that both
frailty and depression have independent associations, adjusting
for each other, with physical and mental aspects of health-related
quality of life among elderly patients with heart failure. In Table 1
we also present expected adjusted effects, as calculated with Eq. 3,
for three possible degrees of reliability in the measurement of
the confounder Z, namely 0.7, 0.8, and 0.9. Of course, if one
has access to the data, the degree of reliability can be calculated
through calculations of homogeneity (e.g., Cronbach’s alpha or
McDonald’s omega) or possibly through calculations of test-retest
correlations. We see in Table 1 that in many cases the expected
adjusted effect is stronger than the lower limit of the confidence
interval of the observed effect (βLL). In these cases, one should
be reluctant to claim any non-spurious independent association
between X and Y while adjusting for Z. If using Eq. 6, we see that
the required reliability in the measurement of the other variable

TABLE 1 | Example of findings from Uchmanowicz and Gobbens (2015) that
would require a fairly high reliability in the measurement of the possible confounder
(Z) in order for the adjusted effect of X on Y to be significantly stronger than the
expected effect.

Y PQoL PQoL MQoL MQoL

X Frailty Depression Frailty Depression

Z Depression Frailty Depression Frailty

rXZ 0.66 0.66 0.66 0.66

rYZ −0.61 −0.66 −0.74 −0.68

βXY .Z −0.39 −0.33 −0.35 −0.49

SEβ 0.10 0.10 0.09 0.09

βLL −0.19 −0.13 −0.17 −0.31

E| βXY .Z |, r2ZZ = 0.7 −0.31ns
−0.33ns

−0.37ns
−0.34ns

E| βXY .Z |, r2ZZ = 0.8 −0.18 −0.19ns
−0.22ns

−0.20

E| βXY .Z |, r2ZZ = 0.9 −0.08 −0.09 −0.10 −0.09

req. r2ZZ 0.79 0.85 0.83 0.72

βXY .Z , observed effect of X on Y adjusted for Z; SEβ , standard error of the observed
adjusted effect; βLL, lower limit of the 95% CI of the observed adjusted effect; E|
βXY .Z |, expected adjusted effect as given by Eq. 3; req. r2ZZ , required reliability in
the measurement of Z for the observed adjusted effect to be significantly stronger
than the expected effect; PQoL, physical quality of life; MQoL, mental quality of
life; ns the observed adjusted effect does not differ significantly from the expected
adjusted effect.

needs to be fairly high (0.72–0.85) for the observed adjusted
effect to be significantly stronger than the expected adjusted effect
(under the null hypothesis of no true independent association).
It may very well be the case that Uchmanowicz and Gobbens’
measures had this required degree of reliability, but the degree
of significance would be lower than if comparing, unrealistically,
with an expected effect of zero.

Somebody might be alarmed by the indicated decrease in
power when there is a high degree of true confounding, or
a low reliability in the measurement of the confounder, in
combination with a relatively weak true adjusted effect for the test
accounting for expected adjusted effect (AEAE-test) compared
to a traditional zero-order significance test, and think that this
speaks against using the former method. Some kind of middle
road might be to calculate both the zero-order and the AEAE-
significance. If both of them are significant or non-significant
the conclusion should be obvious (although important, we do
not include issues of prior probabilities, p-hacking etc. into the
present discussion). If the zero-order test is significant while the
AEAE is not, on the other hand (the opposite should not happen),
one should tread carefully, as this discrepancy could be indicative
of a high degree of true confounding or a low reliability in the
measurement of the confounder.

Some critique can be directed at the presented method for
accounting for expected adjusted effect (the AEAE-test, Eqs. 3
and 5). For example, as the method was deduced from and then
tested with the same algorithm for data generation (Figure 1), it
might not be a big surprise that it seemed to perform quite well.
We cannot be sure that the AEAE-test would perform equally
well, i.e., with the same degree of protection against type 1-errors
and power, had the data been generated in some other fashion,
for example with several confounders that influence each other
as well as the predictor and the outcome in an intricate network.
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However, neither can we be sure, actually we doubt it, that the
traditional zero-order significance test of adjusted effects would
perform any better in such situations.

Nonetheless, as the presented method (AEAE) is limited to a
situation with one predictor and one possible confounder, while
researchers often have to deal with several possible confounders,
its practical usability is quite restricted. One could still, in a
piecewise fashion, calculate the expected adjusted effect (Eq. 3)
and the significance when accounting for this (Eq. 5), or
the required reliability (Eq. 6), for each possible confounder
separately, but it would of course be preferable if all of the
confounders could be accounted for simultaneously. Maybe we,
or somebody else, will be able to figure out such a method in the
future. We would also like to add that just because the presented
AEAE-method has limited practical usability, this does not mean
that it is safe to continue using the zero-order significance test as
usual. As the present study demonstrates, this method has a high
risk of producing type 1-errors in certain situations.

CONCLUSION

The present simulation indicates that with some degree of true
confounding, there is a risk for adjustment for confounding
through a traditional zero-order significance test to fail, resulting
in type-1 errors. The risk is accentuated by a large sample
size, low reliability in the measurement of the confounder, and

high reliability in the measurement of the predictor and the
outcome. We present an equation that can be used to calculate
the size of the expected adjusted effect in a situation with no
true independent association between the predictor and the
outcome. To conclude that an adjusted effect is significant,
this expected effect should not be included in the confidence
interval of the observed adjusted effect. To the best of our
knowledge this equation is novel, although Kahneman (1965)
presents something similar for partial correlations (see Eq. 1 in
the introduction). One difference is that our equation, contrary
to Kahneman’s, does not include correlations involving true
(unobserved) values on variables.
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APPENDIX

See Figure 1 in the Method section. Assume that the true adjusted effect of X on Y equals zero; that rTrXTrZ = correlation between true
X and true Z; rTrYTrZ = correlation between true Y and true Z; rXX = correlation between true X and observed X; rYY = correlation
between true Y and observed Y; rZZ = correlation between true Z and observed Z. The expected correlations between observed X, Y,
and Z equals the following products:

rXY = rTrXTrZ × rTrYTrZ × rXX × rYY e1 (the product of the four paths between observed X and Y)

rXZ = rTrXTrZ × rXX × rZZ e2 (the product of the three paths between observed X and Z)

rYZ = rTrYTrZ × rYY × rZZ e3 (the product of the three paths between observed Y and Z)

We can multiply the numerator and the denominator in the right part of Eq. 2 (see the Method section) by r2
ZZ :

βXY.Z =
r2
ZZ×(rXY−rXZ×rYZ)

r2
ZZ×(1−r

2
XZ)

=
r2
ZZ×rXY−r

2
ZZ×rXZ×rYZ

r2
ZZ×(1−r

2
XZ)

e4

We can replace terms in the left part of the numerator in e4 with e1:

r2
ZZ × rXY = r2

ZZ × rTrXTrZ × rTrYTrZ × rXX × rYY e5

From expressions e2 and e3 above we know that:

rTrXTrZ = rXZ
rXX×rZZ

e6

rTrYTrZ = rYZ
rYY×rZZ

e7

We can replace terms in e5 with e6 and e7 and simplify:

r2
ZZ × rXY =

r2
ZZ×rXZ×rYZ×rXX×rYY
rXX×rZZ×rYY×rZZ

= rXZ × rYZ e8

We can replace the left part of the numerator in e4 with e8 and simplify:

βXY.Z =
rXZ×rYZ−r2

ZZ×rXZ×rYZ
r2
ZZ×(1−r

2
XZ)

=
rXZ×rYZ×(1−r2

ZZ)

r2
ZZ×(1−r

2
XZ)

e9

e9 is identical to Eq. 3 (see the Method section) and gives the expected effect of observed X on observed Y when adjusting for
observed Z in a situation with no independent association between true X and true Y.
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