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Abstract

A key question in ecology is the relative impact of internal nonlinear dynamics and external

perturbations on the long-term trajectories of natural systems. Measles has been analyzed

extensively as a paradigm for consumer-resource dynamics due to the oscillatory nature of

the host-pathogen life cycle, the abundance of rich data to test theory, and public health rele-

vance. The dynamics of measles in London, in particular, has acted as a prototypical test

bed for such analysis using incidence data from the pre-vaccination era (1944–1967). How-

ever, during this timeframe there were few external large-scale perturbations, limiting an

assessment of the relative impact of internal and extra demographic perturbations to the

host population. Here, we extended the previous London analyses to include nearly a cen-

tury of data that also contains four major demographic changes: the First and Second World

Wars, the 1918 influenza pandemic, and the start of a measles mass vaccination program.

By combining mortality and incidence data using particle filtering methods, we show that a

simple stochastic epidemic model, with minimal historical specifications, can capture the

nearly 100 years of dynamics including changes caused by each of the major perturbations.

We show that the majority of dynamic changes are explainable by the internal nonlinear

dynamics of the system, tuned by demographic changes. In addition, the 1918 influenza

pandemic and World War II acted as extra perturbations to this basic epidemic oscillator.

Our analysis underlines that long-term ecological and epidemiological dynamics can follow

very simple rules, even in a non-stationary population subject to significant perturbations

and major secular changes.

Author summary

The impact of intrinsic versus external drivers of transmission on long-term dynamics is

an open question in complex systems studies. In particular, when and where dynamics
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become chaotic has crucial implications for control efforts. Here, we extended the well-

studied London measles data to include nearly a century of novel data (1897–1991) that

also contains five major demographic changes: the First and Second World Wars, the war-

time evacuation of London, the 1918 influenza pandemic, and the start of a measles mass

vaccination program. We found that a simple stochastic epidemic model, with minimal

historical specifications, can capture the nearly 100 years of dynamics including changes

caused by each of the major perturbations. We further illustrated that the majority of

dynamic changes are explainable by the internal nonlinear dynamics of the system, tuned

by demographic changes. Notably however, the 1918 influenza pandemic and evacuation

acted as external perturbations to this basic epidemic oscillator. Yet, in the wake of these

massive shifts, the overall system remained stable (Lyapunov exponent < 0), underlining

how long-term ecological and epidemiological dynamics can follow very simple rules,

even in a non-stationary population subject to significant perturbations and major secular

changes.

Introduction

Predicting transitions between dynamic attractors is a fundamental question in ecology [1]; in

particular, how external forcing impacts intrinsic oscillatory dynamics. Phase transitions in

nonlinear systems have been extensively studied theoretically [2]. However, examples of sys-

tems undergoing multiple shifts are rare due to the time scale of data typically recorded. One

exception is the dynamics of fully-immunizing childhood infectious diseases, which have pro-

vided an excellent testbed for confronting theory with data [3–5].

Measles, in particular, lends itself to analysis using simple host-pathogen epidemic models.

From the early work examining the role of the World War II evacuation [6,7], to more recent

work on the predictability of epidemics, low dimensional chaos, and understanding limit

cycles [5,8–10], historic measles notification records have helped illuminate the utility, and

intersection, of theory and data. In particular, data from the late 1800s and early 1900s from

Copenhagen and New York [11,12] and the 1940s-1960s from England and Wales [8,13,14]

have revealed recurrent epidemics whose frequency and amplitude change over long-time

scales. Although a wide diversity of dynamical regimes has been observed (e.g., regular annual

or biennial cycles [8] and chaos [10]), the underlying clockwork–susceptible depletion by

infection or vaccination and replenishment by births followed by cycles of human aggregation

resulting in seasonal fluctuations in transmission–is ubiquitous [15]. Although both intrinsic

(the natural pathogen life history and demography) and extrinsic (local changes to the contact

rate between susceptible and infected individuals) processes can drive changes in periodicity,

to date few studies have extensively investigated to what extent the dynamics are driven by the

internal clockwork versus large external perturbations, and the resulting impact on the fre-

quency and amplitude of epidemics in the long term. Aside from answering core questions in

ecology, predicting the epidemic patterns of measles will be important as transient dynamics

become more frequent with the continuing measles eradication effort [16].

Due to the temporal scale of data required, there have been few analyses examining the

direct impact of demographic changes on the underlying dynamics beyond a simple shift in

birth rates or the effect of vaccination on susceptible recruitment. A larger range of external

perturbations than those previously tested are possible, such as population fluctuations

impacting the force of infection and local variation in contact rates (as the result of public

health responses). One analysis [12] examined a long New York time series finding agreement
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between the observed non-resonant peaks and the predicted transient periods. However,

recent work has found differences in measles dynamics between the US and UK suggesting

that these results may not be universal across all settings [5], making London an excellent case

study for additional analysis. Although discrete time approximations of the mass-action epi-

demic model work well for incidence data [17,18], even these data are often limited in tempo-

ral span. In contrast, mortality data were systematically collected years before incidence data,

providing longer periods covering several major demographic perturbations [19]. Incorporat-

ing incidence and mortality data into one model has traditionally presented a steep statistical

challenge. However, recent advances in statistical particle filtering algorithms [20] now

resolves this problem.

Here, we use a newly-digitized time series of measles in London to explore how epidemic

dynamics respond to perturbations. We find remarkable stability in the measles epidemiologi-

cal clockwork over nearly 100 years, even in the face of significant demographic shifts and

external perturbations. Studying these perturbations in tandem will yield novel insight into

how nonlinear ecological systems respond to perturbations in the mid- and long- term, as well

as how predictable limit cycles can be maintained. This should, for example, allow the study of

whether perturbations result in multiple shifts between annual, biennial, or even exotic tran-

sients (e.g. [21,22]) via changes in both the recruitment of susceptible individuals as well as

contact rates. Despite the observed broad population-level changes in London, we find that the

dynamical transitions and transients are well-predicted using a simple stochastic compartmen-

tal model, as long as it accounts for two major external perturbations (1918 influenza and

WWII). A surprising result of our analysis is that a single seasonal transmission pattern (allow-

ing for deviations during the WWII evacuation of children) predicts the key bifurcations

related to demographic changes and accurate out-of-sample predictions. Finally, we show

through local Lyapunov exponent analysis that, despite numerous bifurcations and perturba-

tions, the attractor remains relatively stable and highly dissipative, thus accounting for the

remarkable predictability of a century of London measles dynamics.

Results

We used particle filtering to fit a seasonally- and demographically-forced SEIR model to com-

bine weekly measles mortality and incidence data reported in London from 1897–1991 (see

Fig 1). We quantified the periodicity of the observed dynamics using wavelet analysis. Biennial

dynamics predominate (65% of the weeks), although the time series bifurcated from biennial

to annual dynamics multiple times (excluding the post-vaccination transients). Although there

was a biennial signature around 1910, there is a clear bifurcation from annual to biennial epi-

demics in 1920. The dynamics remained biennial until returning to an annual attractor in the

early 1940s. In 1950, the well-studied post-WWII ‘Baby Boom’ bifurcation occurred, after

which dynamics remained firmly biennial until the transient post-vaccination era starting in

1968. Although both World Wars resulted in large shifts in births (Fig 1A), WWII likely had a

greater demographic impact due to the war-time evacuation (discussed below).

Overall dynamics

We find that, despite numerous bifurcations in the periodicity of epidemics, a single stochastic

SEIR model is able to explain the overall behavior of nearly 100 years of limit cycles. We for-

ward simulated the trajectory using the estimated parameters starting from a single set of ini-

tial conditions to produce a 4,877-week ahead prediction to test its ability to capture the

observed dynamics. Overall, the re-simulated fitted dynamics show remarkably strong agree-

ment with the data using a number of metrics (visual fit of the forward simulation: Fig 2 and

Long-term dynamics of measles in London
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power spectra: Fig 3). Using wavelet spectra, we quantified the time-varying periodicity of

each forward simulation. Starting in 1897, the SEIR model is firmly annual until 1910, where a

slight biennial signature starts to appear in the majority of simulations. The inferred system

returns to an annual attractor until 1920, where a strong bifurcation occurs (discussed below),

pushing the simulations predominately onto a biennial phase. The trajectory remains closely

matched against the data until the WWII evacuation (discussed below). Consistent with previ-

ous analyses, the model further predicts the bifurcations seen in the data in 1950 when the

baby boom abated. Finally, we see a strong internal dynamic change in 1968 at the start of vac-

cination. Although, the system overestimated the annual signature compared to the data in

this era, both three-year and above signals emerge and finally become dominant as measles is

driven to near extinction by immunization.

In order to test the impact of external perturbations on the basic recurrent dynamics, we

used the above simulation as a null model purely driven by demographic changes. Variations

in demographic rates capture all dynamical shifts except the ones observed in 1920 and 1940

(Fig 2 and S1 Fig). Importantly, demography alone cannot explain the sudden bifurcation

observed in 1920 after WWI and the 1918 influenza pandemic. Similarly, demographics alone

do not explain the shifts observed during the WWII evacuation.

External perturbations

To explain discrepancies in the overall forward-simulated trajectory, we incorporated two

external perturbations through changes in the contact rates. As hypothesized, our model

Fig 1. The demographic, vaccination, and measles data analyzed. A) The observed population dynamics shown on a

yearly scale. The major demographic fluctuations to births (red) and population counts (green) caused by WWII can

be seen starting in 1940. B) Measles dynamics for London 1897–1991, shown on a weekly time scale with mortality

(red) until 1940, and incidence (blue) through 1990. Note the case data are shown on a square root scale. Unscaled data

are shown (inverted) in Fig 2.

https://doi.org/10.1371/journal.pcbi.1007305.g001
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identified one of the major epidemiological effects of large-scale demographic perturbations to

be a change in transmission; we estimate that contact during the 1918 influenza pandemic

decreased by 38% (see S1 Fig, parameter estimates shown in S1 Table), a possible side effect of

the public health interventions of this time (e.g., partial school closing in response to the pan-

demic) [23]. Notably, this modulation in contact rate (and not susceptible recruitment alone),

is required for the model to predict the empirical bifurcation from annual to biennial around

1920.

The impacts of WWI did not result in demographic changes large enough to overpower the

1918 effect. The dynamical impacts of WWII, however, were far greater. During the WWII

period, the null model fit departs from the data both in outbreak magnitude and periodicity

(see Figs 2 and 3). However, unlike the 1918 pandemic, we were unable to identify parameters

for the reduction in contact due to WWII. Since this time period includes the wartime evacua-

tion of school-age children from cities, there were likely key differences in seasonality and mix-

ing patterns associated with the major movement of children in the early 1940s. When we fit

the model independently to the six-year war epoch of data and use the difference between

maximum and minimum seasonality (normalized by the mean) as a measure of amplitude, we

find that the WWII time period is the lowest amplitude epoch across the entire time series.

This provides evidence of a strong external impact, indicating a lower influence of term-time

forcing while retaining a similar mean basic reproductive ratio R0 of 33 (see Fig 4C). The range

Fig 2. The comparison of predicted against observed weekly measles dynamics for London 1897–1991. A) The

75% quantile fit (blue ribbon) from the forward-simulated fitted model against the inverted death data (red) from 1897

to 1940 while B) shows the fit against the case data from 1940 through 1990. Note that although different data sources

are used, the simulation shown here is a fully forward prediction starting in 1897. C) The inferred annual transmission

pattern, shown in solid black. The mean yearly transmission rate here is 29. Confidence intervals (95% calculated using

the chi-square approximation of the likelihood ratio test) on the inferred seasonality pattern are shown in shaded gray.

https://doi.org/10.1371/journal.pcbi.1007305.g002
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of each normalized local seasonal amplitude is shown in S3 Fig. Although the fit is not perfect,

this model improves on the global formulation in capturing the modulation of epidemiologi-

cally relevant contact rates during WWII.

Previous analyses have suggested that varying patterns of transmission (other than season-

ality) may influence the large dynamic shifts observed in these data. However, interestingly,

our results show that a constant mean transmission rate (R0 = 29) modulated by a fixed pattern

of seasonal variation mirroring the school-term predicts the majority of the data even as the

attractor is hit by large internal and external perturbations. This is in contrast to the previous

analysis of long-term data from New York city which concluded that a model with secular

changes in transmission patterns was required to explain the data [12]. However, different

dynamical regimes (limit cycles versus the edge of chaos) between the US and UK [5] may be a

contributing factor.

Lyapunov exponents

To further quantify the stability of the system across 1897 to 1991, we calculated both local and

global Lyapunov exponents [3]. From the fitted model, we calculated the dominant Lyapunov

exponent, and found no evidence of chaotic dynamics, despite multiple dynamical jumps

between the attractors (LE = -0.04, range: -0.28–0.11, Fig 5). This is again in contrast with pre-

vaccination US measles, where chaotic (LE > 0) dynamics dominated [5]. In terms of local

Fig 3. A comparison of predicted against observed measles dynamics for London 1897–1991 based on periodicity

inferred from wavelet analysis. A) The observed measles dynamics (death data: 1897–1940, case data: 1940–1991

shown on a square root scale) color coded by the dominant periodicity (in years). B) The density of attractor basins via

the simulated stochastic model fitted to the data, also color coded temporally by dominant periodicity. C) The global

power spectra of the data (red) against the simulated stochastic model calibrated against the data (blue). Periodicity for

all figures is in years (e.g. periodicity 1 in A) and B) refers to annual dynamics). Note, that each simulation shown here

is a forward simulation starting from 1897. This figure style is adapted from [12].

https://doi.org/10.1371/journal.pcbi.1007305.g003
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dynamics, the LLEs point to stability around two biannual attractors (1920–1935 and 1950–

1965, Fig 5). However, LLEs in this context may be more qualitative, as we are comparing

mean birth rates in an era (Fig 5A & 5C) against the time-varying, true birth rates (Fig 5B &

5D).

Discussion

A key question in nonlinear ecological dynamics is how a system responds to external changes.

Examining measles in London using a stochastic SEIR model, we were able to quantify the

impact of external perturbations on the internal clockwork across nearly a century of data. We

found strong agreement between the data and the fitted, forward-simulated model, indicating

that both temporal dynamics, such as epidemic shape and size, and bifurcations can be accu-

rately predicted. Assessing the stability of the London attractor using Lyapunov exponents, we

found remarkable stability (LE < 0) across the time series, with most of the phase plane being

highly dissipative (LLEs < 0), thereby accounting for the absence of long-term divergence

even in the presence of stochasticity. Additionally, we show that a temporally stable seasonal

transmission function is sufficient to reproduce the empirical dynamics despite any possible

socio-economic changes during the last century.

Fig 4. A comparison of predicted against observed measles dynamics for the subsetted WWII time period (1940

to 1946). A) The predicted dynamics using the fitted model against the whole time series with the same visual fit

information as Fig 2. B) The inferred seasonality across the whole-time series with mean R0 = 29. C) The predicted

dynamics fit to just the WWII time period with the inferred seasonality in D). D) The inferred seasonality in just the

WWII time period with average R0 = 33. Note the local WWII fit produces a lower amplitude seasonality pattern. In

both B) and D) 95% confidence intervals (calculated using the chi-square approximation of the likelihood ratio test) on

the inferred seasonality pattern are shown in shaded gray, while the inferred values are shown in solid black. Note that

the seasonality pattern in D) yields a stronger fit the data while maintaining a generally lower amplitude.

https://doi.org/10.1371/journal.pcbi.1007305.g004
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Although sudden changes in periodicity may appear unpredictable, we show that knowl-

edge of internal and external events, such as changes in birth rates and sudden population

changes, is enough to produce accurate forecasts of periodicity and outbreak dynamics. By

explicitly incorporating the reduction in contact rates associated with the key demographic

perturbations in 20th century London, such as the 1918 pandemic and WWII evacuation, we

demonstrate how subtle changes in contact rates, rather than more obvious changes such as a

birth pulse, can lead to bifurcations and other changes in the dynamics of this nonlinear sys-

tem (see also [5]). Our estimated contact function, particularly the finer-scale analysis during

the WWII evacuation of school-age children, provides additional evidence for the role of

schools in driving measles dynamics across multiple temporal scales [5,17,24]. Additionally,

while estimated in a different framework, the contact pattern is similar to that previously esti-

mated with the discrete time TSIR model using a subset of the data studied here [17,18]. Com-

bining mortality and incidence data has additionally allowed us to extend the well-studied

London time series and further our ability to test ecological theory with data.

Our analysis both contrasts with and complements the work of Hempel and Earn [12], who

showed that understanding New York measles dynamics requires consideration of non-statio-

narities in the underlying nonlinear clockwork. Our London analysis, in contrast, suggests that

changes in the dynamics resulted from pulsed perturbations and secular changes in susceptible

recruitment rates. The identification of a single seasonality function around a constant R0 (with

the exception of WWII) for the entire time series, given the scale of the changes observed in pop-

ulation size and schooling dynamics, provides a compelling case for the utility of considering

Fig 5. A comparison of predicted against observed measles Lyapunov exponents for two biennial attractors. A)

Local Lyapunov exponents (LLEs) across the 1920–1935 biennial attractor predicted for mean birth rates. The filled

blue circles indicate positive values with red indicating negative values. The size of the circle corresponds to the

absolute value of the exponent. B) The observed LLEs across the 1920–1935 range using the true birth rates. C)

Predicted LLE for the 1950–1965 biennial attractor using mean birth rates. D) Observed LLEs for the 1950–1965 data

using the true birth rates.

https://doi.org/10.1371/journal.pcbi.1007305.g005
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simple mechanistic models when studying predictability of long-term nonlinear dynamics. A

crucial difference between the two settings may be as pointed out by [5]: the US measles

attractor appears to be more sensitive to small changes in seasonal forcing than that of the UK.

The discrepancy between the globally fitted forward simulation and the data during the

WWII era (Fig 4) is intriguing. The lower amplitude seasonal pattern observed when estimated

from the 1940–1946 period alone indicates that school-term forcing played less of a role during

this time. This change likely reflects the city-wide evacuation. Given the age-structured nature

of the exodus, it is perhaps not surprising that the well-mixed SEIR model could not predict

these anomalous dynamics when (largely) trained on the other 88 years of data. Furthermore,

the reliability and accuracy of demographic and incidence reporting during WWII is question-

able and may have biased our inference framework locally, or even resulted in a mismatched

attractor [25,26]. Given that measles cases became notifiable in 1940, initial reporting may

have been less accurate [27]. Additionally, due to the evacuation, the Registrar General pro-

vides an explanatory statement in their September 9th, 1939 weekly report stating that “owing

to the partial evacuation of populations from London . . .the weekly birth and death rates can-

not be calculated with accuracy . . .the estimated populations at the middle of 1939 given in

Table 1, no longer correspond even approximately with the deaths in that table”. Lastly, the

inability to find London-specific vaccine data, and therefore using the population scaled coun-

try-level data, may have influenced our ability to drive the model with accurate susceptibility

rates during the vaccine era. An additional complication in the vaccine data is the switch to the

MMR vaccine in 1988, where a number of children were vaccinated twice [28]. However, vary-

ing the vaccine efficacy from 90% to 99% from 1988 on produced very little qualitative differ-

ence, likely due to the already very low incidence by this point.

Despite these limitations, we have nearly doubled the London measles analysis to include

multiple transitions that have not previously been considered in tandem. Using a simple fitted

model combined with an estimated CFR, we have shown how robust the nonlinear dynamics

produced by the SEIR family of models can be despite multiple perturbations to the system

that impact nearly every compartment of the model. Further work on predictability should

continue to seek long time series in systems that experience critical dynamic shifts to further

test the utility of applying ecological consumer-resource theory in the context of infectious dis-

ease dynamics. Finally, given the recent resurgence of measles due to vaccine hesitancy, our

study lends itself to the public health importance of understanding the nonlinear dynamics of

endemic transmission.

Materials and methods

Data

We analyzed weekly measles incidence and measles mortality reports in London from 1897 to

1991. In addition to the previously analyzed and published incidence data from 1944–1964 [5],

and mortality data from 1904–1915 and 1922–1932 [4], we extended both the incidence (now

1940–1991) and mortality (1897–1940) time series to produce a continuous sequence of moni-

toring data for the entire period comprising 4,877 weekly data points across the 94 years. Offi-

cial mortality and incidence notifications (measles cases became notifiable in 1940) were

digitized from the Registrar General’s Weekly Reports [25]; annual birth rates and population

estimates were obtained from the Registrar General’s Annual Reports [29], while estimates of

life expectancy were obtained from the Office of National Statistics [30]. We used country-

level averaged vaccination rates in scaling susceptible recruitment rates.

Due to administrative boundary changes, the population of Inner London changed from

4,449,040 in 1897 to 2,345,500 in 1991. During this time annual birth numbers varied greatly

Long-term dynamics of measles in London
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from 131,000 to 39,000, corresponding to crude birthrates of 30 to 12 (see Fig 1). These data

span multiple historic events which acted as external perturbations, including World War One

(WWI—1914–1918), World War Two (WWII—1939–1945), the 1918 influenza pandemic,

and the broad-age vaccination pulse in 1968 (44,600 vaccine doses administered in 1968) dur-

ing the roll-out of mass vaccination. The 1918 Influenza Pandemic (June 29th, 1918 to May

10th, 1919 in London) [31] resulted in 228,000 deaths in Britain, but more importantly for epi-

demic dynamics, resulted in both the closure of primary schools as well as other foci of high

contact such as theaters [32,33]. Contact rates may have also been impacted during WWII as

Operation Pied Piper (September 1st, 1939 to September 2nd, 1945) led to the evacuation of

over a million civilians, primarily children, from London [6,34].

Methods

Between 1940 and 1947, both measles mortality and case data were available. However, due to

the small number of measles deaths in this period (less than 200 notified deaths versus over

100,000 reported cases), we used the case data from 1940 onward to capture the endemic pre-

vaccination dynamics. Given that we were only interested in estimating a single set of initial

conditions in 1897, we used iterated filtering methods in which parameters of interest take

random walks with a fixed standard deviation to maximize the likelihood [24,35–37]. A discus-

sion of the method and implementation can be found in S1 Text and in the following refer-

ences [20,38]. To fully explore the large parameter space, we produced 1,000 different samples,

each with 50 iterations and 2,000 particles. Once parameters were estimated, we stochastically

calculated the likelihood ten times per estimate.

For the entire time series, we used a simple well-mixed Susceptible-Exposed-Infected-

Recovered (SEIR) model with seasonal forcing in transmission (see S1 Text). Similar to [35],

we used a stochastic framework with both demographic (epidemic birth-death) stochasticity

and white noise environmental stochasticity in the force of infection. To examine whether a

year-invariant pattern of transmission, R0, could capture the dynamic eras across time, we

modeled the seasonally forced transmission rate using a spline with six degrees-of-freedom.

The shape of seasonality is generally thought of as driven by changing contact patterns during

opening and closing of schools. We estimated a single seasonal forcing function except for dur-

ing the 1918 pandemic (discussed below), where transmission is modulated at a constant rate.

We also included an additional parameter, the cohort effect, to capture the possibility that

more children may effectively enter the susceptible class at the start of the school year (i.e. an

annual susceptible recruitment pulse [39]). To account for potential under-reporting, 50% of

measles cases were reported, in line with previous analyses [35] and full-reporting for measles

mortality. For both the mortality and incidence notifications, we allowed for error in the

reporting via dispersion parameters, per [35].

To test the model’s ability to capture multiple transients across the time series, we specified

three main elaborations to the standard SEIR model. First, we explicitly incorporated the

reduction in contact due to the 1918 pandemic when schools and theaters were closed as a

public health measure. If a reduction in contact is inferred, the pattern of seasonality does not

change, simply the magnitude during the pandemic year decreases. Second, we estimated a

case fatality rate (CFR) [40] from 1897 to 1940 to make a bridge from mortality to incidence

data. To preserve local variability in the measles fatality rate, the CFR was inferred using a

Gaussian Process regression between cumulative deaths and cumulative births. Although the

estimated CFR impacts the magnitude of predicted epidemics, it does not impact the periodic-

ity and was thus used as a covariate (similar to the population data) in the analysis. Finally, we

subtracted vaccines from the susceptible compartment assuming 90% efficacy [28] during the
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1968 roll-out, since the vaccine was initially used primarily as a catch-up campaign (i.e. immu-

nization of a broad age range) during this period [41,42]. Once parameters are estimated, we

can forward simulate the fitted model to compare against the data.

To explore the interaction between stochastic and nonlinear dynamics in recurrent epidem-

ics, we evaluated both the global and local Lyapunov exponents (LEs and LLEs, respectively).

While LEs give a measure of overall sensitivity to initial conditions and overall dissipativeness

(i.e. the ability of a system to return to a steady state) across the measles attractor, the LLEs

show where along the attractor noise and/or perturbation are likely to lead to divergent epi-

demic trajectories (LLE > 0), and where the nonlinear clock-work will contract epidemics

onto similar trajectories (LLE < 0) [9]. To facilitate ease of calculation of the LE and LLEs, we

used the discrete-time time series SIR (TSIR) approximation of the SEIR model with time-

steps scaled to be biweekly. Predicted LLEs were obtained from calculating the deterministic

skeleton of the fitted TSIR model. The R package tsiR [18] has been updated with functionality

to calculate both local and global Lyapunov exponents.

Additionally, we performed a wavelet spectra analysis to quantify measles periodicity

throughout the time series [13,43]. This descriptive analysis yields insight into whether the

observed dynamics (as well as the fitted model forward simulations) are annual, biennial, or

three-plus year cycles at each time step. Measuring the periodicity over time for multiple sto-

chastic simulations from the fitted model allows for a probabilistic comparison between the

observed and predicted dynamics.

All analysis was performed using the R programming language [44] with the ggplot2 [45],

cowplot [46], tsiR [18,47], Rwave [48], and pomp [38,49] packages.
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and the value with 95% confidence intervals when applicable.
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S1 Fig. Profile log likelihood calculation of the reduction in contact due to the 1918 pan-

demic year. The maximum likelihood estimate is 38% reduction.

(TIF)
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(TIF)

S3 Fig. The inferred local normalized seasonality ranges for six-year windows throughout
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ity.
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17. Finkenstädt BF, Grenfell BT. Time series modelling of childhood diseases: a dynamical systems approach.

J R Stat Soc Ser C (Applied Stat. 2000; 49: 187–205. https://doi.org/10.1111/1467-9876.00187

18. Becker AD, Grenfell BT. tsiR: An R package for time-series Susceptible-Infected-Recovered models of

epidemics. Nishiura H, editor. PLoS One. 2017; 12: e0185528. https://doi.org/10.1371/journal.pone.

0185528 PMID: 28957408

19. Mantilla-Beniers NB, Bjørnstad ON, Grenfell BT, Rohani P. Decreasing stochasticity through enhanced

seasonality in measles epidemics. J R Soc Interface. 2010; 7: 727–39. https://doi.org/10.1098/rsif.

2009.0317 PMID: 19828508
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