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In 2015, global plastic production reached 322 million
tonnes, with China accounting for 27.8% of world’s plas-
tic production, followed by the EU and USA contributing
18.5% each to world plastic production (Europe, 2016).
The packaging segment makes up 39.9% of the plastic
market. These mainly single-use, disposable products
greatly contribute to the convenience of modern life.
However, their low recycling rates means we are produc-
ing large volumes of waste and the plastic waste fraction
of municipal solid waste (MSW) is increasing. In the EU
and the USA, 31% and 53%, respectively, of MSW
including plastics are landfilled (EC, 2015; EPA, 2015).
While plastics pose many problems for terrestrial envi-

ronments, plastic waste is also a major pollutant in the
world’s Oceans, resulting in death of wildlife (Rochman
et al., 2013a,b; Wilcox et al., 2015). While the evidence
for the presence of plastic in virtually all marine niche is
overwhelming (Carson et al., 2011; Claessens et al.,
2011; Fr�ere et al., 2017; Kanhai et al., 2017), it is
unknown how much plastic exactly is in the oceans and
in what form (Cressey, 2016). Up to 12.7 million tonnes
of plastic waste, generated in 2010 by 192 costal coun-
tries, ended up in the ocean (Jambeck et al., 2015).
Data on microplastic concentrations and toxicity seem to
be open for debate (Cressey, 2016). However, there is
evidence that environmentally relevant concentrations of
microplastic negatively affect sea life (Sussarellu et al.,
2016). Over three billion people depend on marine and
coastal biodiversity (UN, 2015): oceans provide food,
medicines and other biobased products (EC, 2012). Fur-
thermore, oceans are buffering the impacts of global
warming by absorbing approximately 30% of the CO2 in

the atmosphere (UN, 2015). Therefore, careful manage-
ment of this essential global resource is of great impor-
tance for sustainability and it is recognized as one of the
goals of the 2030 Agenda for sustainable development
(UN, 2015).
An effective way to improve resource efficiency and

reduce the environmental impact of plastics is the pre-
vention of waste. The EU and EPA strategies for waste
management include prevention, reuse, recycling, other
recovery and disposal as the last resource (EC, 2013b;
EPA, 2014). However, it is realistic to assume that post-
consumer plastics will end up in unmanaged environ-
ments. To reduce or prevent the negative impacts of
post-consumer plastic waste, society could replace con-
ventional plastic materials with biodegradable counter-
parts. Biodegradable plastics can contribute to a more
sustainable society using renewable resources, con-
tribute to the reduction in CO2 emissions during produc-
tion and offer new end-of-life management options that
have a lower or no negative impact on the environment
(EC, 2013a; Bioplastics, 2016). Biodegradable polymers
are degradable in nature and include polylactic acid
(PLA), thermoplastic starch (TPS), polyhydroxyalkanoate
(PHA), polycaprolactone (PCL) and poly(butylene adi-
pate-co-terephthalate) (PBAT). While PLA, TPS and
PHA are also biobased, PCL and PBAT are fossil
based. Thus, the origin of the polymer does not neces-
sarily affect its end-of-life fate. Indeed, the biobased or
natural origins of a polymer do not mean it is biodegrad-
able. For example, technologies are emerging that can
make polyethylene (PE), polyethylene terephthalate
(PET) from biobased resources, but they are not
biodegradable and thus their origin will not address the
end-of-life pollution challenges.
PLA made up 5.1% of global bioplastic production in

2016, while PHA was represented by 1.6% of 4.16 mil-
lion tonnes of globally produced bioplastic (Bioplastics,
E., 2016). Even though PHAs have desirable properties
such as elasticity, hydrophobicity, low oxygen permeabil-
ity and biodegradability, they have not fully penetrated
the plastic market (total production estimated at single
figure thousands of tonne) due to uncompetitive pricing
compared to fossil based plastics.
PLA and PHA are of a microbial origin, biobased and

biodegradable and therefore address both the start and
end of the plastic life cycle. PHAs are entirely a product
of microbial metabolism, while PLA is produced through
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a combination of fermentation (to produce lactic acid)
and chemistry to convert the lactic acid or lactide to
PLA. PHAs are a family of intracellular polyesters that
include polymers with very different physical properties
(from highly crystalline and brittle to amorphous liquids),
which opens up opportunities for different applications
from packaging to medicine (Chen, 2009).
Researchers have attempted to address both the cost

of production and waste management using different
types of waste, including plastic waste, as a cheap feed-
stock for PHA production, for example polystyrene (Goff
et al., 2007), polyethylene terephthalate (PET) (Kenny
et al., 2012), waste glycerol (Cavalheiro et al., 2009),
animal-based waste streams (Titz et al., 2012), syngas
obtained by municipal solid waste (MSW) pyrolysis (Rev-
elles et al., 2016) as well as using low cost biomass
(Cerrone et al., 2015; Walsh et al., 2015).
Of particular interest to the emerging circular economy

is the upcycling of plastic waste into biodegradable plas-
tic (Goff et al., 2007; Kenny et al., 2008, 2012; Wierckx
et al., 2015). While conventional recycling technologies
are available, there are several limitations, including cost
and relatively low quality of the recycled polymers.
Employing the microbial cell factory to convert plastic
waste into high value product provides an alternative to
conventional recycling. Due to extreme recalcitrance of
plastics to microbial degradation, this biotechnological
process currently employs pyrolysis to produce oils,
which are subsequently fed to bacteria (Goff et al., 2007;
Kenny et al., 2012). However, microbial hydrolases cap-
able of modifying or degrading plastics have emerged
recently as a potential technology for plastic biodepoly-
merization (Wei and Zimmermann, 2017) allowing for a
completely biological recycling of plastics. These
enzymes could be tailored using the synthetic biology
toolbox and then integrated into a microbial chassis to
design a custom microbial platform capable of converting
plastic into biodegradable counterparts in a single cell
(www.p4sb.eu).
The concept of a microbial platform relates also to the

concept of minimal cell (Nikel et al., 2014). Desirable fea-
tures of a minimized cell are efficient cell reproduction
with minimal genetic drift, efficient control of transcription
and translation, and predictable metabolic interactions.
The deletion of the flagellar machinery, four prophages,
two transposons and three components of DNA restric-
tion-modification systems in a PHA producer Pseu-
domonas putida KT2440 yielded a minimized cell which
achieved higher specific growth rates and higher bio-
mass, tolerated endogenous oxidative stress better,
acquired and replicated exogenous DNA, and survived
better in stationary phase (Mart�ınez-Garc�ıa et al., 2014).
In addition, the bacterial morphology could be engineered
to allow larger space for storage of PHA and convenient

downstream processing (Jiang and Chen, 2016). Even
though several targets have been identified for bacterial
morphology modification, this concept of morphology
engineering is still novel and requires development.
While PLA sales are growing year on year, the

production cost can be reduced further. The microbial
conversion of cheap substrates (Zhang and Vadlani,
2013; Muller et al., 2017) and waste (Panesar and Kaur,
2015; Pleissner et al., 2017) into lactic acid has been
investigated. In parallel with efforts to improve the chemi-
cal synthesis of PLA (Dusselier et al., 2015), enzymatic
polymerization of lactide is underway (Lassalle and Fer-
reira, 2008; Jeon et al., 2013). Furthermore, a synthetic
pathway containing propionate-CoA transferase from
Clostridium propionicum and Pseudomonas sp. MBEL 6-
19 PHA polymerase was introduced into Escherichia
coli, which allowed conversion of glucose into lactyl-CoA
and its polymerization into homopolymer PLA or into a
heteropolymer poly(3-hydroxybutyrate-co-lactate) (Yang
et al., 2010). However, the production of the homopoly-
mer was very poor giving only 0.5% of the cell dry
weight as PLA, but it is a promising first step.
Given the additional challenge to improve the thermal

and mechanical properties of new biobased and
biodegradable polymers, copolymers have been gener-
ated (Yang et al., 2013). For example, a novel lactic acid
containing terpolyester poly(lactate-co-3-hydroxybutyrate-
co-3-hydroxypropionate) was produced by a recombinant

Fig. 1. An overview of possibilities created by implementation of
biodegradable plastic. Biobased resources and/or waste are used
as a feeding stock for the production of plastic, which can be bio-
based, biodegradable or both. The products made from plastic can
be reused, recycled and in the case of biodegradable plastic, that is
polyhydroxyalkanoate (PHA), polylactic acid (PLA), thermoplastic
starch (TPS) biodegraded to provide new feed stocks for the micro-
bial and/or chemical conversion into plastic, therefore closing the
cycle. For applications that would inevitably lead to plastic products
reaching the environment, implementation of biodegradable plastic
could be used to reduce and prevent the accumulation of plastic
waste.
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E. coli (Ren et al., 2017). The engineered pathway con-
tains 3-hydroxypropionyl-CoA synthesis pathway from
glycerol, 3-hydroxybutyryl-CoA and lactyl-CoA (LA-CoA)
pathways from glucose and an engineered PHA poly-
merase from P. stutzeri (Ren et al., 2017). Metabolically
engineered E. coli is capable of converting renewable
and sustainable resources, glucose and glycerol into the
novel terpolyester. Furthermore, just by varying glucose-
to-glycerol ratio composition of monomers in the
terpolyester could be adjusted, which opens up the
possibility to tailor the polymer properties.
The creation of composites of biopolymers can gener-

ate new materials with improved properties due to syner-
gistic and additive benefits of the combination of
polymers (Zhang et al., 1996; Broz et al., 2003; Yu
et al., 2006). The compatibilization of polymers remains
a major challenge, but nanotechnology is being studied
to address this (Dufresne et al., 2013).
The advances in microbial biotechnology are creating

exciting possibilities to design novel pathways to known
biodegradable polymers, but also pathways to novel
biodegradable polymers, which address the start and
end of life of materials, for the benefit of consumers and
the environment. While EU and US EPA place preven-
tion at the top of waste management solutions, certain
applications, that is fishing, would inevitably lead to plas-
tic products reaching the ocean. Replacing conventional
plastic with biodegradable counterparts should therefore
be included into a wider concept of plastic waste man-
agement (Fig. 1).
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