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Abstract

Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-
protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional
modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds.
These algorithms do not make any difference between a biological network and any other networks. In the current research,
we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and
to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained
clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three
high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some
tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each
algorithm’s result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue
specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm
outperforms most of the others, and this improvement is more significant when tissue specific networks are used.
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Introduction

Graph clustering of PPI networks is one of the most common

techniques for inferring functional modules [1–5]. Although there

is no widely accepted formal definition of a functional module, it is

commonly conceived as a group of proteins that work together to

carry out a cellular process while binding to each other in different

times and places [6].Various graph clustering approaches have

been developed in order to discover sets of densely connected

vertices within a graph. Graph clustering approaches can be

categorized into several categories such as graph partitioning,

hierarchical clustering, partitional clustering, spectral clustering and modu-

larity optimization based clustering [7]. Most clustering algorithms with

the purpose of finding functional modules in bioinformatics, try to

find either highly dense sub graphs based on finding cliques or in a

greedy manner grow clusters starting from vertices with high

degrees as seeds. A clique is a complete graph in which all the

vertices are directly connected to each other. Since PPI networks

are typically sparse [8], clique based methods only can find small

number of clusters that only cover scant number of proteins and

omit lots of proteins in PPI network. For example in our analysis

CFinder [9] clusters only 596 proteins out of 2305 in Yeast PPI

network, 826 proteins out of 3726 in Human PPI network and 28

proteins out of 305 in C.elegans PPI network [10,11]. In this paper,

we present a new algorithm in order to find functional modules in

PPI networks utilizing the advantages of these both categories. The

algorithm consists of two main parts. The main goal of the first

part is to determine the best seeds by finding and removing the

special proteins that might belong to the several clusters and

consequently to find the best clusters. The main idea of the second

part is to take the profits of clique-based clustering algorithms. To

demonstrate the ability of the new algorithm to find the functional

modules, we set up our experiments using GO analyses on the

high throughput PPI networks such as Saccharomyces Cerevisiae, Homo

sapiens and C.elegans and also on tissue specific PPI networks. We use

GO Biological Process (BP) and GO Cellular Component (CC)

derived functional modules to evaluate the power of the new

algorithm and some other clustering algorithms in finding

functional modules in PPI networks. The GO analyses are based

on the framework introduced by Song and Singh [12]. We also

analyze the effect of using tissue specific networks on the quality of

different algorithms’ results.

Background and related work
There are lots of graph clustering algorithms proposed up to

now. Here, we briefly explain those methods whose focuses are on

finding functional modules in PPI networks. Some of the

algorithms such as CFinder [9] try to find clique like sub networks.

These algorithms can only cluster a small number of vertices in the

PPI networks because PPI networks are completely sparse [8]. In

2006, Adamcsek et al introduced CFinder [9] as a tool to find

highly inter connected area in graphs based on Clique Percolation

Method (CPM) [13]. CFinder finds all k-cliques that are defined as

complete sub-graphs with k vertices (k$3), and then it merges k-

cliques if they share exactly k-1 vertices. The other algorithms such

as SPICi [14] and clusterONE [15] optimistically suppose that the
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clusters in PPI networks are located around the vertices with high

degrees. These algorithms make clusters starting from these

vertices as seeds. Jiang et al.in 2010 presented SPICi, a runtime

and memory efficient clustering algorithm. The spice is a greedy,

runtime and memory efficient clustering algorithm that makes

cluster, starting from vertices with high degrees (hubs) as seeds and

grows them locally in order to optimize cluster’s density.

ClusterONE is a clustering algorithm that generates overlapping

clusters by growing clusters with high cohesiveness from selected

seed vertices. This algorithm is another seed-based clustering

algorithm that was presented by Nepusz et al. in 2012. MCODE is

a popular clustering algorithm to detect densely connected regions

in large PPI networks [1]. MCODE was introduced by Bader et al.

in 2003 and it entails three main steps, 1) vertex weighting:

MCODE weights all vertices based on their local network density,

2) complex prediction: starts from a vertex with the highest weight

as a seed and grows clusters by iteratively adding seed’s neighbors

whose weight is above a given threshold. When no more vertex

can be added to current cluster, MCODE repeatedly starts from the

next highest unseen weighted vertex in the network, and 3) post

processing to filter or add proteins in the resulting complexes. Step

Three is optional. Corban et al. in 2010 introduced NeMo as a new

clustering algorithm [16]. NeMo computes a log-odds score [17,18]

of shared neighbors for all pairs of vertices and then uses

hierarchical agglomerative clustering using either single-linkage or

complete-linkage clustering to make final clusters. In 2011,

Rhrissorrakrai et al. presented MINE [19] whose strategy is

similar to that of MCODE. In [19] Authors argued that MCODE

gives a good result on the Yeast PPI network, but it does not

produce a good clustering result on C. elegans PPI network. The

primary difference between MINE and MCODE is their weighting

functions. MINE also uses modularity optimization strategy. For

each vertex v, MINE assigns weight that is the product of v’s

clustering coefficient [20] and the number of edges (k) of the most

highly connected node in the local neighborhood of v. This

weighting function assigns higher weight to those vertices that are

connected to a vertex with high degree (hubs). Enright et al

introduced MCL in 2002 [21]. MCL is based on the idea that if a

random walker starts from a vertex and randomly chooses an edge

to continue its traveling; it is more probable that it stays within a

cluster than travels to another one. This happens simply because

there will be more edges within a cluster than edges between

clusters and then most likely an inside edge will be chosen. The

focus of these briefly described algorithms is on finding functional

modules in PPI networks. There are also some other graph

clustering algorithms. Fortunato et al. [22] argued that algorithms

based on optimizing modularity suffer from a resolution limit.

Modularity is a quantitative measure that was originally defined by

Newman and Girvan [23], to assess the quality of graph clustering

results. Based on this measure, a clustering algorithm gets high

modularity if it finds clusters with dense connections between the

each cluster’s inside and gets low modularity scpre with sparse

Figure 1. An overview of the proposed algorithm; the algorithm consists of two main parts.
doi:10.1371/journal.pone.0072366.g001
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connections. Resolution limit means small scale clusters or clusters

with high density may be merged into a single larger community.

To solve this problem Ruan el al. in 2008, introduced two new

algorithms QCUT and HQCUT [24]. QCUT is a heuristic

algorithm based on optimizing modularity. QCUT consist of two

steps. First it uses spectral graph partitioning to divide the input

graph and next attempts to merge or change the result of previous

step in order to optimize modularity. To solve the resolution limit

problem Ruan el al. suggested recursively applying QCUT on

subnetworks that are found with QCUT while ignoring all the inter

clusters edges. They called this procedure HQCUT. FAG_EC [25]

is a Hierarchical agglomerative algorithm that was introduced by Li

et al. in 2008. FAG_EC identifies modules based on edge weighting

function, (called) edge clustering coefficients. It sorts all edges based on

their edge clustering coefficients descending. Repeatedly choose an

edge with the highest weight and decides whether or not the two

edge’s endpoints are in the same cluster or not.

In the rest of this paper, we present a new algorithm called

C_element and the extended version of this algorithm (C_element_ex-

tended) to find functional modules in PPI networks. The main idea

of this algorithm is to improve the quality of obtained clusters

utilizing the benefits of both clique-based and seed-based

algorithms.

Materials and Methods

In this section, we first briefly explain some basic concepts and

primary definitions related to the proposed algorithm and then we

explain the algorithm in more details.

Preliminaries
A graph is a representation of a set of objects where some pair of

these objects is connected via a link. Therefore, a graph G (V, E)

consists of two sets V and E where V is the vertex set and E is the

edge set [26]. PPI networks can be modeled as a graph. Given a

PPI network, the goal of the proposed algorithm is to find

internally high connected sub graphs (clusters) in order to extract

functional modules in PPI networks. In this paper, networks are

considered as an un-weighted and undirected graph.

The proposed algorithm
The proposed algorithm consists of two main parts. The main

goal of the first part is to find the best seeds by finding and

removing the special proteins that might belong to the several

clusters and consequently to find the best clusters. We expect that

the result of this part outperforms the results of the seed-based

algorithms such as SPICi and clusterOne. The main idea of the

second part is to take also the profits of clique based clustering

algorithms as a complementary solution. In the rest of this section,

we explain each part in more detail. Figure 1 shows an overview of

the proposed algorithm.

The First part of the algorithm: C_element
In biology a protein segment is called an active site if it plays a key

role in the catalytic action of the enzyme function and substrates

bind and undergo a chemical reaction. Csermely proposed that

the concept of active sites can be extended to networks other than

protein structures [27]. He mentioned that the active sites of

networks (for example PPI networks ) at higher levels than proteins

are not only central elements with a specific set of properties and

with ability to monitor all the communications of the entire

Figure 2. Two red vertices A and A’ are creative elements and green vertices are hubs. The original network can be found in [27].
doi:10.1371/journal.pone.0072366.g002
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network, but they are also randomly scattered over the whole

network while connecting distant modules. Active sites have weak

connections to important vertices (often known as hubs) in the

network. Csermely proposed the term creative elements for the

vertices that are located in active sites. A sample network with two

creative elements is shown in Figure 2. This network is clipped from

Csermely’s original paper [27].

Our main idea is that by discovering and removing creative

elements (vertices) from the network, the modules in that network

would appear clearly.

Using Centrality measures is an idea to find Creative elements.

Centrality measures are functions that assign numerical value to each

vertex in the network in order to find more important vertices.

Based on these values, the vertices in the network can be ranked.

Based on these measures, the more influential vertices are those

get higher scores. In order to assay the power of Centrality measures

to find Creative elements we simply applied some of these measures

on the sample network represented in Figure 2 and also on

Zachary’s well-known ‘‘karate club’’ network [28]. The karate club

network is a standard benchmark in community detection

algorithms [7]. The karate club network is visualized in Figure 3.

Our main reason to choose this social network rather than any

other biological networks is its popularity and being well studied in

researches on graph clustering. Unfortunately, there is not any

standard biological network benchmark on graph clustering. The

karate club network consists of 34 vertices and 78 edges. The

vertices in that network are labeled from 1 to 34. Two main

clusters in karate club are shown in different colors in Figure 3.

Table 1 briefly shows the Centrality measures that we used to analyze

the both mentioned networks.

We applied all the measures in Table 1 on the both networks.

Table 2 briefly shows the obtained results. We simply show some

top-ranked vertices based on each measure.

After analyzing Table 2, we realized that all those retrieved

vertices have somehow important role in corresponding networks.

For example, the main hubs of both networks are given the highest

scores by measures Local leader, Strict leader and Degree centrality as

well. The results of each measure on mentioned networks are

available as supplementary data attached to this paper (File S1

and File S2) or following link: http://lbb.ut.ac.ir/Download/

LBBsoft/C-elemnts-Clustering/.

Although, these measures marked some vertices in the network

as important vertices that might have a key role in the network,

none of them could fulfill our goal to find the creative elements

vertices (r1 and r2). In order to find these creative elements we propose

equation (1).

Creativity við Þ~

P
vj neighborsvi

degreevj

degreevi

ð1Þ

Where vi belongs to a set of vertices whose neighbor set contains at

least one hub. Here hubs refer to vertices with high degree. We

consider 20% top vertices based on their degrees as hub. If a

vertex vi has several hubs in its neighborhood and its degree is low,

it will get a high Creativity score. The higher score each vertex

gets, the more creative it is. Equation (1) can be considered as a

new Centrality measure.

We applied equation (1) on the network in Figure 2 in order to

check its ability to find Creative elements. Figure 4 (A) is visualized the

results. The three vertices with the highest Centrality scores are

Figure 3. Zachary’s karate club network; two main clusters indicates by different colors.
doi:10.1371/journal.pone.0072366.g003
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colored in green. As it can be realized clearly, two creative elements

mentioned in Figure 2 are among these three green vertices. We

also applied equation (1) on karate club. Green vertices in Figure 4

(B) are more creative vertices based on equation (1). We realized

that many of these vertices such as 3, 14, 20, 31 and 9 are located

on the border between two main clusters; that means these vertices

have connections to other vertices in two main clusters. This fact is

used in the first part of the new algorithm in order to find a good

seed set and consequently to find good clusters in PPI networks.

The pseudo code of the first part of the algorithm is presented in

Figure 5.

N At the beginning of the algorithm, there is a queue of big

clusters (big_clusters_queue) waiting to analyze and also there is

an empty set of founded clusters (cluster_set). Initially, all the

vertices in the network in hand make the cluster at the top level

of hierarchy. This means algorithm starts with big_clusters_queue

with one member, the whole input network.

N One of the sub-networks in big_clusters_queue is chosen and is

removed from the queue. Creative elements in this sub-network

will be found and will be removed in order to separate existed

clusters in that sub-network. These vertices are supposed to be

located on the borders between clusters. After removing the

Creative elements and all the Interactions between these elements

and any other vertices in the sub-network, the remaining

vertices and interactions in the sub-network might make an

unconnected network. In this step all the unconnected

components of the leftover sub-network is obtained. These

components are a collection of some singleton vertices or

groups of connected vertices that are made C_elements

beginning seeds. Then the algorithm expands these seeds to

make the clusters using the Expand function. There is not an

assumption about the number of clusters that must be found in

each step. -After removing the Creative elements, if the leftover

sub-network remains connected, it is not clusterable and it is

one of the clusters at the lower level of the hierarchy. This

means this sub-network do not have any sub-clusters. In this

situation C_element adds this sub-network to cluster_set and

continues processing another subnetwork in the big_clusters_

queue.

N The Expand function assigns the removed creative elements to

one of the obtained seeds in a greedy manner. This seed is one

that maximizes the equation (2).

a vi,Sj

� �
~

numberofedgesbetween vi ^ Sj

degree vi

ð2Þ

Where vi is one of the creative elements and Sj is a founded

seed of the previous step. For each removed creative element

vi , the Expand function search for the seed Sj with maximum

value of a vi,Sj

� �
among all the obtained seeds that are found

in the previous step. Based on this equation, a vertex assign to

a growing cluster in which its most neighbors located. All the

resulting clusters are added to big_clusters_queue for further

analyses.

Table 1. The Centrality Measures that used to find Creative elements.

Measure Equation/Definition Reference

Degree centrality Cdeg ree (vi)~ deg ree vi Koschützk et al. [29]

Leverage centrality
L( vi )~

1

ki

X
Ni

ki{kj

kizkj

Joyce et al. [30]

Local leader
Local{Leader við Þ~

1,dj§diForallvj

0,O:W

�
Blondel et al. [31]

Strict leader
Strict{Leader við Þ~

1 ,djwdiForallvj

0 , O:W

�
Blondel et al. [31]

Closeness
CCloseness við Þ~

1Pn
j~1

disij

Sabidussi[32]

Eccentricity
CEccentricity við Þ~

1

max dist vi ; vj

� �
: vj[V

� � Hage et al. [33]

Radiality

CRadiality við Þ~

P
j=i

DGz1{distij

n{1

Valente el al. [34]

Shortest-path betweenness CShortest{pathBetweenness við Þ~
X
i=vi

X
j=vi

dij við Þ Freeman [35]

PageRank
PageRank við Þ~ 1{dð Þzd:

X
vj[Bvi

PageRank vj

� �
Nvj

Page et al. [36]

Eigenvector le við Þ~
X

j

Aije vj

� �
Bonacich[37]

Power CPower a,bð Þ við Þ~
X

vj

Aij azb:CPower vj

� �� �
Bonacich[37]

Cluatering coefficient
C við Þ~

Ei

ki �( ki {1)=2

Watts et al. [20]

K-step markov
I(tDR)~

1
1
DRD

P
r[R

mrt

White et al. [38]

doi:10.1371/journal.pone.0072366.t001
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N This process continues until there is not any other subnetwork

in the big_clusters_queue. In that case the final clusters are in

cluster_set.

The second part of the algorithm
In the second part of the algorithm the advantages of clique

based clustering algorithms are utilized. The pseudocode of the

second part of the algorithm is presented in Figure 6. In the second

part, the algorithm finds all maximal cliques with size$3 in the

original input PPI network. A clique is called a maximal clique if it

is not part of a bigger clique [6].The algorithm merges each

C_element’s already obtained cluster with n vertices and a maximal

clique into one new cluster if they have n-1vertices in common. If a

cluster ( Cj ) and a maximal clique are merged, they make a new

larger cluster. Then Cj is replaced by that larger cluster. By using

this post-processing step, some small C_element’s output clusters

that have low quality are merged with a maximal clique and the

overall quality of the obtained clusters is outperformed. Using this

post-processing step, the number of C_element’s final clusters might

Table 2. The top-ranked vertices in two networks based on different centrality measures.

Measure
The top-ranked vertices in the network from
Figure 2 (A) The top-ranked vertices in karate club

Degree centrality b1, b3, b4 34, 1, 33, 3, 2, 32, 4, 14, 24, 9

Leverage centrality b2, b3, 9 7, 30, 33, 32, 3, 1, 28, 6

Local leader b1, b2, b3, b4 34, 1

Strict leader b1, b2, b3, b4 34, 1

Closeness b1, b3, r1 1, 3, 34, 32, 33, 14, 9, 20

Eccentricity b1, b3, r1 1, 2, 3, 4, 9, 14, 20, 39

Radiality b1, b3, r1 1, 3, 34, 32, 9, 14, 33, 20

Shortest-path betweenness b1, b3, r1 1, 34, 33, 3, 32, 9, 2, 14

PageRank b1, b3, b4 34, 1, 3, 33, 2, 9, 14, 4

Eigenvector b1, r1, 5 34, 1, 3, 33, 2, 9, 14, 4

Power b1, b4, b2 34, 1, 25, 26, 17, 33, 2, 12

Clustering coefficient 15, 16, 22, 23 19, 17, 18, 15, 16, 13, 21, 22, 23, 27, 8

K-step markov b1, r1, 14 1, 34, 33, 3, 2, 32, 4, 14, 9

doi:10.1371/journal.pone.0072366.t002

Figure 4. Green vertices are the most creative elements realized by equation (1) in a network which is illustrated Figure 2 (A) and in
Zachary’s karate club network (B).
doi:10.1371/journal.pone.0072366.g004
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decrease. We refer to the resulting final clusters at the end of this

part as C_element_extended.

Our new algorithm, C_element, belongs to Hierarchical Divisive

algorithm category. Hierarchical clustering approach can be classified in

two categories: 1) Agglomerative algorithms: this is a bottom-up

approach; at the first step starts with singleton clusters which

each vertex makes a cluster with only one vertex belong to and

iteratively clusters at the higher level of hierarchy are merged if

their similarity is high enough; 2) Divisive algorithms: this is a top-down

approach; at the first step all vertices belong to one big cluster, and

recursively clusters at the higher level of hierarchy are split and

make the next level. One of the advantages of Hierarchical clustering

approach is that it does not require a preliminary knowledge of the

number and size of the clusters [7].

Datasets
We applied the new algorithm to high throughput PPI networks

from Sacchromyces cerevisiae (Yeast), Homo sapiens (Human) and C.elegans

(Worm) that are obtained by Patil and Nakamura [10,11]. They

categorized the interactions into three categories: High confidence

small-scale binary interactions, High confidence interactions based

on reliability score and Low confidence interactions based on

reliability score. All these interactions are available online on the

project’s website [39]. In this paper, we use high confidence small-

scale binary interactions for each mentioned species as their

corresponding PPI networks.

Sacchromyces cerevisiae PPI network consists of 2324 proteins

connected via 4376 interactions, Homo sapiens PPI network

consists of 3989 proteins connected via 7465 interactions and

C.elegans PPI network consists of 379 proteins connected via 385

interactions.

We also applied our algorithm to tissue specific human PPI

networks [40]. These tissue specific networks consist of 60 PPI

networks for 60 specific tissues in the human body. In this paper

we show the results of applying different algorithms on B cells, Bone

marrow CD34 and Monocytes PPI networks. The B cells PPI network

consists of 942 proteins connected via 2026 interactions, Bone

marrow CD34 PPI network consists of 1669 proteins connected via

4552 interactions and Monocytes PPI network consists of 1549

proteins connected via 4025 interactions.

GO analysis
In order to evaluate the power of our clustering algorithm in

finding functional modules in PPI networks, we utilize the

framework which is described by Song and Singh [12]. This

framework quantifies how well computationally derived clusters in

physical interactomes correspond to functional modules derived

via the Gene Ontology (GO) [41]. Each GO term generates a

functional module that means all the proteins that are annotated

with a same GO term correspond to same functional modules.

Song and Singh [12] utilized the following three formulas to

quantify the overlap between computationally derived clusters and

GO derived functional modules:

1) Jaccard measure:

For each computationally derived cluster Cj jaccard similarity

coefficient is defined as the maximum value Jacij over all the

functional modules Gi that are extracted by considering different

GO terms A. Jacij between cluster Cj and moduleGi is defined as

the size of the intersection over the size of the union. Equation (3)

shows this measure.

Jacij ~
D Gi \Cj D
D Gi |Cj D

ð3Þ

2) Precision–Recall measure:

Figure 5. The pseudocode of the first part of the proposed
algorithm.
doi:10.1371/journal.pone.0072366.g005

Figure 6. The pseudo code of the second part of the proposed
algorithm.
doi:10.1371/journal.pone.0072366.g006
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For each cluster Cj , its Precision–Recall (PR) value with a GO

derived functional module Gi is computed using equation (4). The

final PR measure for Cj , is the maximum PR value over all Gis.

PRij ~
D Gi \Cj D

D Cj D
:
D Gi \Cj D

D Gi D
ð4Þ

3) Semantic density measure:

This measure measures the average semantic similarity between

each pair of annotated proteins within a cluster and can be

calculated using equation (5).

sDensity S,Að Þ~

S WA p1,p2ð Þ
P1,P2ð Þ[S

S 1ð Þ
P1,P2[Sð Þ

ð5Þ

Figure 7. The results of Jaccard measure analyses on the results of different algorithms on different network datasets when GO CC
derived functional modules were considered.
doi:10.1371/journal.pone.0072366.g007

Figure 8. Jaccard measure analyses results on the different network datasets and different algorithms when GO BP derived
functional modules were considered.
doi:10.1371/journal.pone.0072366.g008
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Where S is a cluster, p1 and p2 are two proteins belong to S, A is

a set of all GO derived functional modules and WA ( p1 , p2 ) is a

weight function that assigns a weight to a pair of proteins p1 and
p2 in the range of 0–1. WA ( p1 , p2 ) is calculated using equation

(6).

WA ( p1 , p2 )~

2:max
a[A P1ð Þ\A P2ð ÞS að Þ

max
a[A P1ð Þ S að Þz max

a[A P2ð Þ S að Þ ð6Þ

Where s(a)~{ log (f (a)) shows how specific the annotation a is

and f (a) is the fraction of the total number of proteins in the

considered network that have annotation a.

Each of these three measures varies from 0 to 1. The higher

values for each clustering result mean the better agreement of the

clusters on GO derived functional modules. Further information on

GO analyses can be found on [12].

Results and Discussion

Go analysis
We used the GO biological process (BP) and cellular component

(CC) terms to extract the functional modules. Molecular function

Figure 9. The results of Precision–Recall measure analyses on the results of different algorithms on different network datasets
when GO CC derived functional modules were considered.
doi:10.1371/journal.pone.0072366.g009

Figure 10. The Precision–Recall measure analyses results on the results of different algorithms on the six different network
datasets when GO CC derived functional modules were considered.
doi:10.1371/journal.pone.0072366.g010
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GO terms (MF) were not used because proteins annotated with the

same GO MF terms do not necessarily interact with each other as a

functional unit [12].We considered the GO BP and GO CC

ontologies separately. For each cluster, we separately calculated

the three measures introduced in the previous section for both

ontologies. For Genes in singleton clusters, we assigned Jaccard, PR

and semantic similarity values of 0. Finally, each cluster was weighted

by its size, and the final values for each of the six measures (three

BP and three CC), was computed using the weighted average over

all clusters in the computational clustering result. We compared

our algorithm with 5 other popular clustering algorithms. Some

clustering algorithms like MCODE [1] finds small number of very

good clusters and omits from consideration lots of vertices. For

example in our analyses, in Yeast PPI network, all number of

vertices was 2305 and MCODE only clustered 244 proteins out of

2324 proteins and left 2061 proteins without assigning them to any

clusters. Also in our experiments quality of some clustering

algorithms such as FAG-EC [25], QCUT and HQCUT [24] was

related to the input network. For example in our analyses QCUT

and HQCUT found good resulting clusters on Homo sapiens, but

they could not find any clusters on C.elegans and Yeast PPI

networks. Therefore, in our analyses we focused on clusterONE

Figure 11. The results of semantic density measure analyses on the results of different algorithms on the six network datasets
when GO CC derived functional modules were considered.
doi:10.1371/journal.pone.0072366.g011

Figure 12. Semantic density measure analyses results on the six different networks and different algorithm considering GO BP
derived functional modules.
doi:10.1371/journal.pone.0072366.g012
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(2012) [15], SPICi (2010) [14], NEMO (2010) [16]; CFinder (2006)

[9] and MINE (2011) [19] that showed stable behavior on different

networks. Implementations of each of these algorithms are

available either on Cytoscape website [42] or on each related

project’s website.

Jaccard measure analyses
Figure 7 and Figure 8 show the results of Jaccard measure

analyses on the results of different algorithms when GO CC derived

functional modules and GO BP derived functional modules were

considered as the reference set of known modules respectively.

As it can be inferred from the corresponding diagrams in

Figure 7 when GO CC derived functional modules were considered

and based on Jaccard measure analyses, the first part of the

proposed algorithm (C_element) outperformed other algorithms in

all three high throughput PPI networks and found that the GO CC

derived functional modules were better than the other algorithms.

Especially the result of the new algorithm on C.elegans PPI network

was considerable. C_elemnt also acted well on tissue specific

networks. Bone marrow was the only network on which clusterOne

got higher Jaccard scores than C_element. Generally, the clusterONE

clustering algorithm also found good clusters and surpassed the

other four algorithms in most cases. The only case in which the

SPICi clustering algorithm got better results than ClusterONE was

on C.elegans PPI network, and in all the other cases our algorithm

and ClusterONE seemed to have foundbetter GO CC derived

functional modules than the other algorithms. After merging the

clustering results of C_element with maximal cliques, the quality of

the clusters was surprisingly improved and C_element_extended all the

other algorithms.

Precision–Recall analyses
Figure 9 and Figure 10 show Precision–Recall measure analyses

results on the results of different algorithms when GO CC derived

functional modules and GO BP derived functional modules were

considered as the reference set of known modules respectively.

Our Precision–Recall measure analyses verified the obtained

results by Jaccard measure. As it can be realized clearly from the

corresponding diagrams, the success of our algorithms (both

C_element and C_element_extended) to find GO derived functional

modules in C.elegans PPI network and also on B cells PPI network

was undeniable in comparison to other algorithms. In Yeast and

Human PPI networks by considering GO BP derived functional

modules there was a close competition between the first part of the

proposed algorithm and clusterONE; that means on some input

networks such as Bone Marrow CD34 clusterONE outperformed

C_elementand on some input network datasets such as C.eleganse, B

Cells and Monocytes C_element outperformed clusterONE. In all cases

C_element_extended outperformed other algorithms. In summary,

Precision–Recall measure analysis on B cells, Bone marrow CD34 and

Monocytes tissue specific PPI networks confirmed previous Jaccard

analyses. MINE and SPICi showed good results in finding BP

derived functional modules and outperformed clusterONE and C-

element, but not C_element_extended.

Semantic density analyses
In the last part of our GO analyses, we compared different

algorithm based on semantic density measure. Figure 11 and

Figure 12 show the resulting diagrams based on this measure.

This analysis confirmed our previous two analyses. In C.eleganse

PPI network C_element’s and its extended version’s results were

appreciable, and on two other networks (Yeast and Human) C_element

found GO CC derived functional modules better than clusterONE and

by considering GO BP generated functional modules clusterONE

outperformed C_element. In all cases C_element_extended outperformed

other algorithms. Based on our semantic density analyses,

C_element_extended also surpassed other algorithms in finding both

GO BP and GO CC derived functional modules on B cells, Bone

marrow CD34 and Monocytes tissue specific PPI networks.

Analyze the effect of using tissue specific networks
The bars illustrated in Figure 7 through Figure 12 also can be

used to compare the ability of different algorithms on the tissue

specific network datasets to find GO CC derived functional

modules and GO BP derived functional modules respectively.

Our main goal to use the tissue specific networks was to improve

clustering results on Homo sapiens PPI network. As it can be

inferred from the corresponding bars in 7 through Figure 12,

almost all algorithms had a low quality clustering results on Homo

sapiens PPI network. Using the tissue specific networks, generally

all the results of the different algorithms got improved. For

example the improvement for MINE final results was significant.

As it can be inferred from corresponding diagrams in Figure 7

through Figure 12, MINE had low quality results on Homo sapiens,

but the algorithm’s results on the other three tissue specific

networks were much better. The improvements on the results of

NeMo and SPICi clustering algorithms are also considerable. We

can conclude tissue specific networks of human are more accurate

and more reliable than the Homo sapiens PPI network. The

proposed algorithm seemed to have a stable behavior on all six

networks. The algorithm found good GO CC and GO BP derived

functional modules in all cases and did not poorly act on any

input network.

Conclusions

In this paper, we focused on finding the high quality functional

modules in PPI networks. To fulfill this goal, we have proposed a

new clustering algorithm. The new algorithm consists of two

main parts. In order to evaluate these two parts, we set up our

experiments on the clustering results of each part separately. The

GO analysis results indicated that the quality of the obtained

clusters at the end of the first part of the algorithm (C_element) was

always much better than SPICi and also there was a close

competition between the results of the first part of the algorithm

and those of clusterONE. Based on these analyses we concluded

that the obtained seeds were much better than choosing the hubs

of the network as the seeds. The first part of the algorithm

performed better than all the other algorithms when finding GO

CC derived functional modules were considered. The analyses on

the final clusters at the end of the second part of the new

algorithm (C_element_extended) showed that the quality of the

obtained clusters was significantly better than the quality of the

results of the other algorithms on the input datasets. Our analyses

also indicated that, generally all the algorithms could find better

clusters using tissue specific networks. For example, some

algorithms such as MINE, NeMo and SPICi that poorly acted on

Yeast, C.elegans and Homo sapiens PPI networks found considerably

better clusters on the tissue specific networks. Generally the new

algorithms had a stable behavior on all the input network datasets

and did not poorly act on any of them. Therefore, we can

conclude that this better performance is not only the result of

using tissue specific networks but also the new algorithm plays a

part in this performance.
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Supporting Information

File S1 Contains the sample network from Csermely’s
original paper and the results of each measure on this
network as separate TXT files.
(RAR)

File S2 Contains ‘‘karate club’’ network and the
results of each measure on this network as separate
TXT files.
(RAR)
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