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Abstract: The extracellular microenvironment is a highly dynamic network of biophysical and
biochemical elements, which surrounds cells and transmits molecular signals. Extracellular mi-
croenvironment controls are of crucial importance for the ability to direct cell behavior and tissue
regeneration. In this review, we focus on the different components of the extracellular microenviron-
ment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and
introduce engineering approaches for these components, which can be used to achieve a higher de-
gree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review
the technologies established to engineer native-mimicking artificial components of the extracellular
microenvironment for improved regenerative applications. This review presents a thorough analysis
of the current research in extracellular microenvironment engineering and monitoring, which will fa-
cilitate the development of innovative tissue engineering strategies by utilizing different components
of the extracellular microenvironment for regenerative medicine in the future.

Keywords: extracellular matrix; extracellular vesicles; growth factors; cell behaviors; tissue regeneration

1. Introduction

Tissue regeneration combines the concepts from material science, bioengineering prin-
ciples, and transplantations, with engineering designs to restore, maintain, and improve cell
functions for the regeneration of injured tissues [1,2]. Currently, different tissue engineering
approaches have been established, such as cell engineering and the biomaterial-based
cell delivery system [3–5]. Regardless of the treatment approach for injured tissues, the
presence of cellular components is inevitable. Native tissue accumulates reservoirs of
cells, which remain quiescent and retain their plasticity until they are needed in the body
for their therapeutic properties. The extracellular microenvironment controls the cells’
plasticity and quiescence and their subsequent functions, such as survival, proliferation
and section, which indicates that mimicry of the extracellular microenvironment marks the
most technically viable supply source [6,7]. However, the extracellular microenvironment
is a dynamic mixture of biophysical and biochemical cues, which poses challenges for
current tissue engineering designs [8]. Therefore, to develop the engineering approaches
necessary to improve cell functions for tissue regeneration, it is essential to understand the
fundamental components of the extracellular microenvironment.

Cells reside in a complex extracellular microenvironment, also defined as cell niche,
composed of the extracellular matrix (ECM), extracellular vesicles (EVs), and growth factors
(GFs), all of which play different key roles in determining the biological processes of cells
(Figure 1) [9–11]. Thus, dissecting the composition of the extracellular microenvironment
and understanding the diverse effects that each component has on cell activities is crucial
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when designing engineering strategies to mimic the dynamic extracellular microenviron-
ment. This deeper understanding can then provide insight into promising solutions for the
next generation of tissue engineering and translate into long-term success for future clinical
products [12]. In this review, we discuss the correlative actions of different components of
the extracellular microenvironment, as well as the approaches to engineer native-mimicking
components for tissue regeneration.
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2. Extracellular Matrix (ECM)
2.1. Native ECM

The ECM is composed of a complex three-dimensional (3D) interconnecting network
of a variety of proteins, such as collagen, fibronectin, laminin, elastin, and proteogly-
cans (Figure 2) [13,14]. Collagen is the main structural protein in natural ECM, which
can mimic the ECM physical characteristics [15]. Fibronectin is a high-molecular-weight
(~500–~600 kDa) ECM glycoprotein that binds to membrane-spanning receptor proteins
called integrins, which could opsonize the migration, proliferation, and contraction of
cells during the healing process. Fibronectin also binds to other ECM proteins, such as
collagen, fibrin, and heparan sulfate proteoglycans (e.g., syndecans) [16–18]. Laminins
are high-molecular-weight (~400 to ~900 kDa) proteins of the extracellular matrix. They
are a major component of the basal lamina (one of the layers of the basement membrane),
a protein network foundation for most cells and organs. The laminins are an important
and biologically active part of the basal lamina, influencing cell differentiation, migration,
and adhesion [19,20]. Proteoglycans are present during the development of the central
nervous system and contain membrane bound proteins that interact with different cellular
microenvironment molecules [21]. Lecticans, a type of chondroitin sulfate proteoglycans
(CSPG), is the most abundant CSPG secreted during the development of the central ner-
vous system [22,23]. Heparan sulfate proteoglycans are an important component of the
glomerular basement membrane that can interact with growth factors and secret proteins,
containing syndecan and glypican, to mediate these interactions [24]. This network of
proteins associates with each other to regulate different cellular processes, including dif-
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ferentiation, growth, and survival [25–27]. The combination of ECM, cells, and receptors
creates microenvironmental signaling pathways that will impact cell fate [28–30].
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Native ECM has a highly dynamic structure and constantly undergoes a remodeling
process where deposition, degradation, and modification occur [31,32]. These changes are
fundamental in the regulation of cell differentiation, angiogenesis, wound healing, and in
the formation of stem cell niches [32,33]. Conversely, deregulation of the ECM dynamic
environment can be potentially harmful, as it can cause abnormal behavior of the stem cell
abilities to differentiate and proliferate consequently, leading to a potentially tumorigenic
microenvironment and pathological diseases [34,35]. Therefore, careful attention to under-
standing ECM dynamics and control is critical in developing more efficient therapeutic
interventions for related cellular and tissue disorders.

2.2. Engineering ECM for Tissue Regeneration

ECM components have been widely applied in tissue engineering approaches, based
on the ability of the ECM to regulate and improve cell functions during tissue regenera-
tion [36]. ECM-derived hydrogel systems and porous scaffolds have been applied in the
field of stem cell transplantation, due to their 3D cross-linked networks, cytocompatibility,
injectability, and biocompatibility (Figure 2) [37–41]. Specifically, the ubiquitous type I
collagen has considerable potential as a cell delivery medium because of its self-assembly
capability under physiological conditions [42–44]. Fibronectin matrix has been developed
as a scaffold for procollagen proteinase binding and collagen processing [45]. Laminins
have been applied to functionalize different types of 3D biomimetic scaffolds for the re-
generation of tissues, such as nerve [46,47], skeletal muscle [48,49], and blood vessels [50].
It was shown that decorin, a small leucine-rich proteoglycan, was involved in regulating
the prevention of hypertrophic scars and collagen fibrillogenesis [51]. A proteoglycan
mimetic composed of conjugated dermatan sulfate (DS) backbone and collagen binding
peptide, SILY, was engineered to bind to collagen matrices protecting the matrix from rapid
proteolytic decomposition in wounds [52]. Collagen, the main structural ECM protein, is
generally applied to develop the structure of the scaffold, whereas fibronectin, laminin, and
proteoglycans mainly contribute to biologically functionalizing the scaffolds [53]. Although
collagen possesses the ECM-mimicking structure, its specific biological functions in tissue
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regenerative applications still require further optimization. Collagen-based tissue engi-
neering strategies are currently being studied in tissue engineering [53]. Many different
biological molecules have been developed to functionalize the collagen-based scaffolds
to improve their regenerative potentials. Integrin-ligand binding facilitates cell-ECM ad-
hesion, activates signal transduction pathways, and regulates cell functions. Our recent
study has focused on increasing the specific integrin binding sites of the collagen-based
scaffolds to advance the endothelial cell (EC)/endothelial progenitor cell (EPC) functions
and improve vascularization. We identified a ligand LXW7 that specifically binds to inte-
grin αvβ3 and found that the LXW7-modified collagen hydrogel significantly improved
EC spreading, proliferation, and survival in vitro and the engraftment of transplanted ECs
in vivo [54]. Our group also has immobilized the LXW7 onto the collagen-based small
intestinal submucosa (SIS) scaffolds and demonstrated that the LXW7 modified SIS scaffold
increased EPC retention and enhanced angiogenic functions, leading to improved healing at
the ischemic site [55]. In other studies, Malcor et al. have established an approach to modify
the collagen scaffolds with triple-helical peptides to support 3D EC culture [56]. Amaral
et al. have demonstrated that collagen-based scaffolds functionalized with platelet-rich
plasma could enhance skin wound healing [57]. Li et al. have successfully achieved the
use of collagen scaffolds functionalized with neutralizing proteins to facilitate spinal cord
regeneration [58]. Thus, the components of ECM could be endowed superior regenerative
potentials via various engineering strategies.

2.3. Engineering Artificial ECM-Mimicking Scaffolds for Tissue Regeneration

One goal for advancing the field of tissue engineering is to develop an artificial net-
work, by mimicking the functional aspects of native ECM, including cell adhesion, control
over cell behaviors, and proteolytic degradation processes [59]. Advancements in artificial
ECM network development for modeling mutations or changes in protein regulation and
related developmental illnesses are known as the protein expression profile [60]. Artificial
ECM networks tend to become responsive towards cell-mediated signaling and prote-
olytic remodeling, a process involving enzymatic interactions that enable the cells to alter
their relationship with their microenvironment by cleaving off structural molecules of the
ECM [61]. Mediation of interactions with other molecules involves both the central protein
and the carbohydrate structures. The ECM consists of various topographical structures,
including nanocrystals, nanofibers, and nanopores, influencing biochemical signaling, and
cell functions [62]. Various strategies, such as electrospinning and 3D printing, have been
used to engineer artificial ECM structures mimicking scaffolds to fulfill tissue regeneration
related advancements (Figure 2) [63,64]. In addition, cell signaling occurs when adhesion
molecules, such as integrin ligands, and cell surface growth factor receptors are present in
combination with the ECM to create optimum environment [65]. Thus, various functional
molecules have been developed to functionalize the artificial ECM structure and mimic
scaffolds to further improve their regenerative potentials. Recently, we have identified a
ligand LLP2A that has the high binding-affinity for integrin α4β1 and used it to modify
the electrospun polyester scaffolds. It was demonstrated that the LLP2A modification
improved the adhesion and proliferation of mesenchymal stem cells (MSCs) on the elec-
trospun polyester scaffolds and also activated the integrin-mediated signals, such as focal
adhesion kinase (FAK) [66]. We have also identified another ligand, LXW7, which specifi-
cally targets integrin αvβ3. LXW7 was used to construct the electrospun vascular grafts
and it was demonstrated that the LXW7 modified electrospun vascular grafts improve
the adhesion and proliferation of EPCs/ECs and improved rapid endothelialization and
long-term patency in a rat carotid artery model [67,68]. Zheng et al. have established an
approach to modify the electrospun vascular grafts with RGD peptide and showed an
improved remodeling and integration capability in revascularization in a rabbit carotid
artery model [69]. Yu et al. have successfully achieved the use of electrospun vascular
grafts, functionalized with stromal cell-derived factor-1α and heparin to accelerate vascular
healing [70]. Yang et al. have successfully constructed the osteoinductive 3D-printed
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scaffold with bone morphogenetic protein 2 (BMP-2) and healed 5 cm segmental bone
defects in the ovine metatarsus [71]. Wang et al. have successfully constructed the cryo-
genic 3D printing of dual-delivery scaffolds with BMP-2 and vascular endothelial growth
factor (VEGF) for improving bone regeneration with enhanced vascularization [72]. It was
known that matrix-bound vesicles (MBVs) were identified as an integral and functional
component of ECM [73,74]. To further explore the functionalization of the scaffolds, we
recently developed an approach to immobilize the MSCs-derived extracellular vesicles
(EVs, MSC-EVs) onto the electrospun scaffolds to improve the angiogenic potentials of
the scaffolds [75]. An ideal artificial ECM could not only mimic the structure of the native
ECM, but also possesses the biological functions of native ECM.

2.4. Advantages and Disadvantages of Current Engineering Approaches in ECM

The current engineered ECM scaffolds have advantages in providing the similar
features, mechanical properties and biological components of their original tissue or organ,
which facilitate their applications in the specific diseases. However, the native ECM
scaffolds have limited autologous tissue or organ sources, and the allogeneic or xenogeneic
native ECM scaffolds have the risk of host immune responses [76]. The engineered artificial
ECM-mimicking scaffolds overcome the limited tissue or organ sources and allow the
controllable shapes for targeted tissue regeneration. In addition, different engineering
approaches have been designed to enable the artificial ECM-mimicking scaffolds with the
similar mechanical and biological properties [77]. However, the native ECM is a complex
dynamic environment, much research remains to be done on the interactions between the
components of the native ECM to provide more support for improving the regenerative
capacities of the artificial ECM-mimicking scaffolds.

3. Extracellular Vesicles (EVs)
3.1. Native EVs

EVs are lipid bilayer-delimited vesicles that are naturally released from cells. EVs
range in diameter from around 20–30 nm to as large as 10 µm, although most EVs are
smaller than 200 nm. EVs can be divided according to size and synthesis route into exo-
somes, microvesicles, and apoptotic bodies (Figure 3) [78]. Exosomes range in size from
30–200 nm in diameter. Biogenesis is the process by which EVs are release from cells and
the process begins with pinching off endosomal invaginations into the multivesicular body
(MVB) [79]. MVBs act as trafficking vesicles for cell materials, where cargo, including
early endosomes, is sent to and released at the plasma membrane until eventually secreted
into the extracellular space [80]. Exosomes are involved in cell–cell and cell–ECM com-
munication and could also trigger an immune response by presenting antigens within
them [81]. Thus, exosomes are being used as therapy delivery tools, therapeutic targets,
and biomarkers [82]. Exosomes have been shown as GTP-activatable phospholipases and
lipid mediators in cell-to-cell interactions. In vaccine research, exosomes are being studied
for use as a powerful immune regulator when engineered with specific mRNAs [83]. For
use as biomarkers, exosomes are being studied in cancer biology because exosomes are
involved in the development of cancer through the horizontal transfer of genetic informa-
tion between cancer cells [84]. Microvesicles can be as small as the smallest EVs (30 nm
in diameter) or as large as 1000 nm, and play a key role in intercellular communication
and transportation of molecules such as mRNA, miRNA, and proteins between cells [85].
Microvesicles also have been implicated in numerous physiologic processes, including
anti-tumor effects, tumor immune suppression, metastasis, tumor-stroma interactions, an-
giogenesis, and tissue regeneration [86–88]. Apoptotic bodies were previously regarded as
garbage bags, and recently they have also been found to possess the capacity for delivering
cargoes to healthy recipient cells [89]. Based on their structure and mode of function, these
three types of EVs have potential in tissue engineering approaches.
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3.2. Engineering Native EVs for Tissue Regeneration

EVs derived from various types of cells have shown therapeutic potentials for dif-
ferent kinds of diseases, such as ischemia injury [90,91], wound healing [92,93], graft-
versus-host disease [94], Alzheimer’s disease [95], arthritis [96], bone defects [97,98], liver
disease [99], kidney injury [100], pancreatic islet transplantation [101], and pulmonary
hypertension [102]. However, the therapeutic potentials of EVs are mainly limited by
their short half-life of approximately few minutes and low local retention after transplanta-
tion [103–105]. Currently, various engineering strategies have been designed to improve the
therapeutic capacity of EVs (Figure 3). Some studies have focused on engineering EVs with
specific targeting molecules to improve the distribution of transplanted EVs in the specific
disease area and augment their therapeutic efficiency [106]. To improve the efficiency
with which EVs home precisely onto their target cells, one approach is to engineer the EV
surfaces with targeting peptides by overexpressing the peptides in the EV-donor cells via
transfection. Alvarez-Erviti et al. have successfully generated brain-targeting EVs from
dendritic cells, transfected with a plasmid encoding EV protein Lamb2b and brain-targeting
RVG peptide, and they showed that the engineered EVs could cross the blood–brain barrier
(BBB) and deliver RNA into the brain [107]. Although this genetic engineering approach can
enable stable conjugation of EVs with the peptides, it is timely, cost consuming and poses a
high risk of horizontal gene transfer. An alternative approach is to functionalize the EV
surface with targeting peptides post-isolation via chemical or affinity-based methods. Tian
et al. functionalized EV surfaces with Arg-Gly-Asp (RGD) peptide to improve EV targeting
and therapeutic efficiency in cerebral ischemia therapy [108]. Cui et al. have demon-
strated that rabies viral glycoprotein (RVG)-modified MSC-EVs rescue memory deficits
by regulating inflammatory responses in Alzheimer’s disease [109]. Another strategy for
improving the targeting efficacy of EVs is the fusion of EVs with liposomes or lipid-based
micelles, which means the lipid components of the EV membrane fuse seamlessly with the
synthetic lipid vesicles to obtain exogenous functional lipids or peptides. Sato et al. have
successfully fused the EVs isolated from Raw264.7 and CMS7 cancer cells with liposomes
by using the freeze-thaw method [110]. Evers et al. have constructed the hybrid cardiac
progenitor cell (CPC) derived-EVs by fusing with liposomes, and they showed these hybrid
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EVs improved uptake efficiency and delivery, wound healing, and phosphorylation of
Akt that play key roles in multiple cellular processes, such as cell apoptosis, cell prolifera-
tion, and cell migration, compared to liposomes alone [111]. Additionally, some studies
established biomaterial-based EV delivery systems for promoting EV local retention and
stability after transplantation to augment the therapeutic efficiency of EVs [112]. Li et al.
have immobilized the EVs derived from human adipose-derived stem cells (hASCs) on the
polydopamine-coating poly(lactic-co-glycolic acid) (PLGA/pDA) scaffolds by using mild
chemical conditions to augment the bone regenerative capacity of EVs [113]. Zhang et al.
have incorporated human placenta-derived MSC-derived EVs with chitosan hydrogel to
enhance the retention and stability of EVs and further enhance their therapeutic effects in
hindlimb ischemia treatment [114]. Thus, improving EV targeting via various approaches
has the potential to improve tissue regeneration by improving the targeting efficiency,
retention, and stability of EVs at the injury sites.

Cargo engineering is another approach to regulate and enhance EV functions in ther-
apeutic applications. Two main strategies have been designed to engineer the cargoes in
EVs. One strategy is preconditioning or genetically engineering the parent cells of the
EVs [115–117]. Xu et al. have shown that EVs generated from bone marrow MSCs treated
with lipopolysaccharides have a greater efficacy in attenuating inflammation and driving
macrophage polarization to a more anti-inflammatory M2 phenotype, and they markedly
reduced post-infarction inflammation and improved cardiomyocyte survival and recovery
in a murine acute myocardial infarction model [118]. Wu et al. have demonstrated that
EVs produced from human cardiac progenitor cells (CPCs) with hypoxic precondition-
ing included more lncRNA MALAT1 and enhanced EC viability, reduced cardiomyocyte
apoptosis, and improved vascularization, compared to normoxic CPC-derived EVs [119].
Gong et al. have produced EVs with high levels of stromal cell-derived factor 1α (SDF-1α)
from MSCs transfected with SDF-1α plasmids and showed these EVs inhibited ischemic
myocardial cell apoptosis and promoted cardiac endothelial microvascular regeneration
in mice with myocardial infarction [120]. The other cargo engineering strategy consists of
loading the exogenous cargoes into EVs via mechanical or chemical techniques, such as
saponin treatment, sonication, and electroporation to improve their therapeutic functions.
Fuhrmann et al. have demonstrated saponin could increase hydrophilic drug loading into
EVs by 11-fold compared to passive incubation [121]. Haney et al. showed sonication could
improve TPP1 loading efficiency in EVs derived from IC21 macrophages by roughly 30%
and enhance brain distribution in the batten disease model compared to saponin perme-
abilization [122]. Ma et al. have demonstrated that microRNA-132 could be loaded into
MSC-derived EVs via electroporation, and the EVs loaded with microRNA-132 promoted
angiogenesis in myocardial infarction [123]. Surface modification strategies could also be
applied in conjunction with cargo engineering strategies to achieve a targeted delivery of
specific molecules.

3.3. Engineering Artificial Evs for Tissue Regeneration

Although EVs have been shown to have exceptional therapeutic potentials in tissue
regeneration, there is still a limitation due to the finite knowledge of their signaling path-
ways and complex heterogenic of molecular and physical structure. Additionally, many
challenges, including, mass-production, complex isolation and purification, stability, and
quality control of native EVs have been limiting to EV clinical translation [124]. Therefore,
different types of artificial EVs, such as nanovesicles and EV mimics, have been designed
by top-down and bottom-up strategies, which are powerful alternatives to natural EVs for
tissue regeneration (Figure 3). The top-down strategy is designed to disassemble big parent
cells to form smaller nanovesicles. Because nanovesicles are derived from patent cells, they
possess natural nucleic acids, proteins and lipids, which mimic the biological complexity of
native EVs with low immunogenicity [125]. The top-down strategy can be achieved via
different methods, such as the extrusion-based method, filtration-based method, microflu-
idic device-based method, nitrogen cavitation-based method, sonication-based method,
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and cell bleb-based method. Kim et al. developed nanovesicles by extruding adipose
stem cells (ASCs) through filters with gradient apertures and showed the nanovesicles
possess similar beneficial effects in animals with emphysema, compared to the ASCs [126].
Kim et al. also developed MSCs-derived nanovesicles that achieved great therapeutic
potential in spinal cord injury treatment [127]. Gao et al. generated neutrophil-derived
nanovesicles by using the nitrogen cavitation method and demonstrated that the nanovesi-
cles could mitigate acute lung inflammation [128]. However, nanovesicles may have less
heterogeneity, and their construction is also a time-consuming process [129,130]. Thus,
fully synthetic EV-mimics are being constructed using the bottom-up strategy of functional
and controlled lipids, proteins, and RNA to overcome the limitations of native EVs and
nanovesicles. The bottom-up strategy is a manufacturing approach that begins with small
molecules forming large and complex structures through a stepwise assembling process.
The bottom-up strategy possesses high-encapsulation efficiency of the membrane, integral
proteins, and biomolecules, as well as size homogeneity in the construction of EV mimics.
Moreover, the biophysical and biochemical composition of EV mimics can also be precisely
quantitatively controlled, allowing researchers to create EV mimics that are uniformly and
compositionally pure, thus providing a metric for future dosing of clinical products and
studying the biophysical mechanisms of native EVs. Staufer et al. developed a bottom-up
EV mimic with all the molecular and proteomic composition of EVs from human fibrocytes
and showed the EV mimic significantly augmented wound healing, compared to the nega-
tive control and showed no significant difference in the positive control of native EV treated
wounds [131]. Martinez-Lostao et al. generated liposomes conjugated with APO2L/TRAIL
and demonstrated these EV mimics showed considerable therapeutic effects on arthritis
in rabbits [132]. Vazquez-Rios et al. developed a liposome-based EV mimic that simu-
lates structure and functions of native EV by loading therapeutic oligonucleotides and
tailoring with integrin α6β4 for targeted drug delivery to lung adenocarcinoma cells [133].
Engineering artificial EVs have been shown to have exceptional therapeutic potentials in
tissue regeneration; therefore, different types of artificial EV mimic creation, have been
designed by top-down and bottom-up strategies as powerful alternatives to natural EVs
for tissue regeneration.

3.4. Advantages and Disadvantages of Current Engineering Approaches in EVs

The engineering approaches for pre-isolation modification of natural EVs have the
potential for improving the targeting, tracking, or pharmaceutical activities of EVs, but
they are confined to the proteins and peptides expressed on the EV surface [134]. The
post-isolation surface engineering approaches can be applied to immobilize any type of
molecules or ligands onto the EV surface and also maintain the most biophysical properties
of EVs; however, the crucial challenge is the removal of unincorporated materials [135].
Therefore, the suitable purification methods need to be developed, which will not only
ensure the purity of the modified EVs, but also maintain the integrity and activity of the
modified EVs. In addition, among the cargo loading techniques, transfection is advanta-
geous over electroporation, with a higher loading efficiency and molecular stability, but is
risked by toxicity and safety concerns which might also cause changes in the EV cargo and
bioactivity by the transfection reagents [136]. When engineering artificial EVs through the
top-down approaches, the microfluidic system has an advantage in its simplicity and ad-
vanced fabrication, especially in detecting, purifying, and engineering nanosized materials.
However, the top-down approaches exhibit a limit in heterogeneity and the purification pro-
cess is time-consuming [124]. Contrarily, the bottom-up engineering approaches are rather
straightforward and allow for adjustment of individual EV compositions and creation of
rare EV compositions [131].
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4. Growth Factors (GFs)
4.1. Native GFs

GFs are secreted from cells and interact directly with the ECM (Figure 4). Coordinating
the interactions between GFs, cells, and the ECM is crucial to define a localized cellular
microenvironment that optimizes cell and tissue growth [137]. GFs typically act as signaling
molecules between cells. Specific GFs are particularly capable of inducing and improving
cell growth, proliferation, renewal, adhesion, migration, and differentiation [138]. For ex-
ample, epidermal growth factor (EGF) enhances osteogenic differentiation, while fibroblast
growth factor (FGF) and vascular endothelial growth factor (VEGF) stimulate blood vessel
differentiation [139]. Although growth factors show promising advantages and applica-
tions, they exhibit limitations from their short half-life. They can also be enzymatically
deactivated and have low retention in the extracellular microenvironment [140].
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4.2. Engineering GFs for Tissue Regeneration

To maximize the function and efficiency of GFs for use in tissue regeneration, devel-
oping methods of control over their concentration and retention is crucial. One approach
to improve the local retention of GFs after transplantation is endowing the molecule with
binding potential by conjugating the molecule to target a specific cell or tissue, which
could assist the GFs to remain in the targeted area and improve the local concentration
of GFs (Figure 4). Zhang et al. have developed a collagen-targeting VEGF and showed
it improved cardiac performance after myocardial infarction [141]. Sun et al. constructed
a collagen-binding SDF-1α and showed it enhanced cardiac function after myocardial
infarction by recruiting endogenous stem cells [142]. Another approach to improve the
stability and local concentration of GFs is by constructing a GF control/release system
using biomaterials (Figure 4). Immobilizing GFs on biomaterials through either a covalent
or noncovalent approach is one way to achieve control of these GFs [138]. The release of the
GFs is realized by breaking the bonds, utilizing hydrolysis, or enzymatic reactions. Chiu
et al. have immobilized VEGF and angiopoietin-1 (Ang1) on porous collagen scaffolds
by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) chemistry.
They showed that the immobilized GFs resulted in higher cell proliferation and lactate
metabolism than soluble GFs used at comparable concentrations [143]. Ikegami et al.
immobilized bFGF on the heparin-conjugated collagen scaffold and showed the immobi-
lized bFGF had twice higher stability than the bFGF solution [144]. Moreover, the direct
interaction between ECM and GFs offers protection from degradation of the GFs [145].
ECM regulates the retention and presentation of GFs through electrostatic interactions.
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Electronegative components within the ECM, such as glycosaminoglycans etc.), possess a
high binding affinity for the amine groups with positive charge on GFs [146]. Therefore,
strategies have been designed to generate biomaterials with increased electronegative
charge to mimic the high affinity of GFs to the ECM. Facca et al. demonstrated the pre-
sentation of bone morphogenetic protein 2 (BMP-2). Transforming growth factor beta 1
(TGF-β1) from polyelectrolyte (PE)-coated scaffold with a high negative electrostatic charge
induced osteogenic differentiation of embryonic stem cells after subcutaneous implanta-
tion in mouse [147]. Shah et al. showed that BMP-2- and VEGF-loaded polyelectrolyte
multilayer (PEM) films promoted bone regeneration upon subcutaneous implantation in
rat [148].

4.3. Engineering Artificial GF Mimics for Tissue Regeneration

The engineering of artificial GFs is focused on mimetic peptides, which are made to
mimic bioactive regions of native GF structures and can then mimic function (Figure 4). GFs
can degrade when transplanted in vivo due to proteolytic activity. Rapid diffusion away
from the target delivery source will lead to the administration of large concentrations [149].
Mimetic peptides can be more advantageous in regenerative medicine because they are
more stable than the whole GF, due to their linear structure that allows for covalently boned
linkers modifications without losing activity. Mimetic peptides can be engineered to be
localized in a target location for a modulator release. For example, it was shown that trans-
forming growth factor-beta (TGF-beta) regulates embryogenesis, growth, differentiation,
and wound healing on a cellular level [150]. Bioactive peptides were developed to mimic
the effects of TGF-beta, cytomudulin-1, and cytomodulin-2. These were synthesized to
simulate the binding domain of TGF-beta and then validated in vitro on human foreskin
fibroblasts. The results of this study showed that both CM-1 and CM-2 accelerated affected
wound healing and cell migration, compared to the control of no peptide. It also showed
the induction of collagen I production, demonstrating CM-1 and CM-2 biological activity
similar to TGF-beta. FGF-2 is a cytokine that induces healing processes in cartilage and
bone regeneration. Heparin-binding regions of FGF-2 have been shown as a potential for
osteogenic regeneration; specifically, F105 and F129 binding domains peptides were shown
to be stable and immobilized onto tissue culture plates and were shown to have increased
binding affinity to heparin compared to a control of nonbinding peptides [151]. These
mimetic peptides can be utilized as tools for surface modification of tissue engineering
scaffolds to promote tissue regeneration.

4.4. Advantages and Disadvantages of Current Engineering Approaches in GFs

The approaches for engineering the natural GFs, such as conjugating the targeting
molecules and establishing the control release system, could enhance the regenerative
efficiency of the natural GFs by improving their retention at the target area, and could
also retain the bioactivities of the natural GFs during incorporation [152]. However, the
natural GFs still exhibit immunogenicity and limited stability in vivo. GF mimics possess
the advantages in terms of longer half-life, lower immunogenicity, and crossing the blood–
brain barrier, and they also can be administered orally [153]. However, different peptides
have different functional limitations, so it is important to find the appropriate molecules or
peptides to use in order to maximize the functionality.

5. Conclusions

The extracellular microenvironment is defined as the dynamical environment sur-
rounding cells. Controlling the extracellular microenvironment remains an important goal
to direct cell behavior and promote tissue regeneration. Currently, various strategies have
been designed to optimize the native components of extracellular microenvironment and
construct the artificial components of microenvironment via mimicking the structure of
the native components and interactions between the cells and microenvironment. During
the process of engineering, the extracellular microenvironment and new tissue engineering
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products came into being [154], including a tissue-engineered tracheal, elastic cartilage,
etc., providing a great contribution to tissue regeneration and clinical applications. Further
exploration of the biological process that occurs in the natural extracellular microenvi-
ronment is promising for establishing innovative and effective engineering approaches to
promote tissue regeneration. The bottom-up design of modular biomimetic products holds
the promise to produce multifunctional and multicellular structures, real time biosensing
that could enable the analysis to be carried out at point-of-care (POC), as well as bioactive
agent delivery systems to recapitulate the intricate extracellular microenvironment and
improve the construction of future artificial tissues.
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