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Abstract: Combustible gases, such as CH4 and CO, directly or indirectly affect the human body.
Thus, leakage detection of combustible gases is essential for various industrial sites and daily life.
Many types of gas sensors are used to identify these combustible gases, but since gas sensors generally
have low selectivity among gases, coupling issues often arise which adversely affect gas detection
accuracy. To solve this problem, we built a decoupling algorithm with different gas sensors using a
machine learning algorithm. Commercially available semiconductor sensors were employed to detect
CH4 and CO, and then support vector machine (SVM) applied as a supervised learning algorithm
for gas classification. We also introduced a pairing plot scheme to more effectively classify gas type.
The proposed model classified CH4 and CO gases 100% correctly at all levels above the minimum
concentration the gas sensors could detect. Consequently, SVM with pairing plot is a memory efficient
and promising method for more accurate gas classification.

Keywords: semiconductor gas sensor; decoupling algorithm; gas classification; pairing plot; support
vector machine

1. Introduction

The need for the detection of various gases in industrial and public areas has been continuously
increasing as environment, health, and safety issues arise. Combustible gas detection is the most
important due to the risk of fire and explosion [1–4]. Various gas sensor types have been used to
detect combustible gases in the atmosphere including electrochemical, semiconductor, photoelectric,
and MEMS sensors [5,6]. Semiconductor gas sensors offer many advantages, including low cost,
small size, wide range of detectable gases, fast response time, and high sensitivity to combustible gases.
However, high and broad sensitivity leads to relatively low selectivity and, consequently, to coupling
problems where the sensor reacts to another gas in duplicate or cross-response. Sensor response can be
greatly degraded by coupling. Considerable research and development efforts have been focused on
physical parameters, such as materials, sensor structure, and sensor driving conditions, etc., to solve
this problem, but these approaches have not yet achieved a technical level of commercialization.
Therefore, a gas classification algorithm to compensate for the coupling problem may be a more viable
solution. Consequently, many studies have considered gas classification models incorporating various
machine learning methods [7–13].

In this study, we constructed a decoupling algorithm with two different SnO2 semiconductor gas
sensors based on support vector machine (SVM) to classify CH4 and CO as representative combustible
gases. We also introduced a new pairing plot scheme in the gas classification algorithm to obtain gas
detection signal behavior patterns that could be classified into two classes by SVM. An experimental
calibrating gas environment was set up and gas sensing experiments were conducted under specific
gas injection conditions. After data acquisition, first data selection (FDS) was applied to include only
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meaningful data in the classification model, and then behavior patterns for each gas were analyzed
using pairing plots. Gas sensor responses showed distinguishable patterns. Subsequently, second data
selection (SDS) was performed to reduce computational costs. Finally, we built a gas classification
model based on non-linear SVM and verified reliability for the final model using a confusion matrix.

2. Materials and Methods

We designed the experimental setup to provide a controllable gas environment, as shown in
Figure 1a. The setup included a gas chamber connected with gas cylinders, data acquisition equipment
(DAQ) for gas sensor control and measurement, digital multimeter (DMM) to verify electrical signals
in the circuit, source measure unit (SMU) for specific voltage supply to the circuit, mass flow controller
(MFC) for accurate CH4 and CO flow control, and a computer to control these components and run gas
classification algorithms.
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Figure 1. Experiment schematics for gas detection: (a) experiment equipment setup including data
acquisition equipment (DAQ), digital multimeter (DMM), source measure unit (SMU), and mass flow
controller (MFC) and (b) gas sensor array and circuit block diagram.

We employed commercially available MQ4 and MQ7 sensors [14,15] (Zhengzhou Winsen
Electronics Technology Corporation, Zhengzhou, China) to detect CH4 and CO, respectively, as shown
in Figure 1a. These are SnO2-based n-type semiconductor sensors [16–19] which operate based on
reactions with combustible gases around the SnO2 surface. When the sensor is heated up, oxygen is
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actively adsorbed on the surface, taking electrons from the SnO2 surface, forming an electron depletion
region beneath the surface. When CH4 and CO gases are present around SnO2 with sufficient energy,
they react with adsorbed oxygen atoms, subsequently releasing electrons to SnO2 and, hence, reducing
sensor resistance. Therefore, a load resistor is required in the data collection circuit, and voltage drops
across the load resistor increase as the sensor resistance reduces due to the gas interaction. Thus,
we collected load resistor voltages as gas detection signals. The load resistance was set 10 kΩ to obtain
high sensing resolution which can be determined by following equations:

Vr =
Vcc ×RL

Rs_min + RL
−

Vcc ×RL

Rs_max + RL
(1)

where Vr is the output signal range, VCC is the operating voltage, RL is the load resistance, Rs_max is the
maximum sensor resistance, and Rs_min is the minimum sensor resistance.

Vr =
Vcc(Rs_max −Rs_min)

Rs_max×Rs_min
RL

+ (Rs_max + Rs_min) + RL

(2)

Next, maximum Vr in Equation (2) can be obtained by calculating only the minimum value of
Rs_max×Rs_min

RL
+ RL because VCC, Rs_min, and Rs_max are constant.

Rs_max ×Rs_min

RL
+ RL ≥ 2

√
Rs_max ×Rs_min

RL
×RL (3)

RL =
√

Rs_max ×Rs_min (4)

As shown in Equations (3) and (4), by using arithmetic–geometric mean inequality, the minimum value
of Rs_max×Rs_min

RL
+ RL is calculated and RL is decided.

Moreover, the operating temperature also affects the sensors’ performance [20–22]. Practically, the
best temperatures for CH4 and CO to be adsorbed on the SnO2 surface are very different, presenting
less cross-selectivity with respect to other gases. However, even if sensors operate at the best
operating temperature for each gas, the cross-selectivity issue still cannot be fully ignored. This study
employed the selectivity differences among the two types of sensor for decoupling. Thus, the operating
temperature of each sensor should be constant by fixing an operating voltage of 5 V (Vcc) and the
heating coil resistance of each gas sensor. Figure 1b shows that the sensor circuit comprised three
cross-arranged MQ4 and MQ7 sensors for effective gas detection.

In this study, we conducted the gas detection experiments for a single gas environment. More
specifically, a situation was assumed to identify whether it was CH4 or CO when multiple semiconductor
gas sensors were employed. Gas injection experiments commenced with aging time to heat and, hence,
stabilize the sensors. After sufficient aging time, gas was injected at specific rates (standard cubic
centimeter per minute (sccm)) for 20 s. Injection then stopped and a 5 min reaction time was allowed to
ensure the gas sensors fully reacted. The same cycle was repeated with increasing gas levels until the
target gas concentration was attained. The experiments were carried out under ambient atmosphere,
i.e., air for both CH4 and CO gas detections since the metal oxide semiconductor sensors are not
operational without oxygen. Moreover, N2 gas was only employed to purge and remove CH4 and CO
gases remaining in the gas lines. After conducting each gas experiment, we evacuated CH4 or CO gas
inside the chamber to initialize the experimental environment. Table 1 shows gas injection conditions
for CH4 and CO gas detection experiments.

The experimental setup was carried out for each gas concentration within a range that could be
fatal to humans by assuming CH4 or CO gas was leaked at actual industrial sites or public places.
Thus, the target gas concentrations were different, because the human hazardous concentration of CH4

gas is higher than the CO gas according to the dangerous concentration criteria of the Korea Gas Safety
Corporation and Korea Environment Corporation.
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Table 1. CH4 and CO gas injection conditions for gas detection experiments.

Parameter Unit CH4 CO

Gas injection rate sccm 30 6
Gas injection time sec 20 20

Reaction time min 5 5
Gas injection concentration ppm 100 20

Total number of gas injections - 20 20
Target gas concentration ppm 2000 400

We designed the SVM for classifying CH4 and CO gases using MATLAB®. In general, SVM
is a machine learning method classifying two or more data classes [23–27]. This study built a
classification model with non-linear SVM to classify curved behavioral patterns. In the SVM algorithm,
kernel function helps modeling for non-linear hyperplane with reduced computational costs. Thus,
we employed a Gaussian RBF kernel function, which is one of the generally used and high-performance
functions, which can be expressed as;

k(Xi, Yi) = exp
(
−γ‖Xi −Yi‖

2
)

(5)

where Xi and Yi are data set vectors corresponding to CH4 and CO gas, respectively; and γ is a
parameter controlling the deviation of the Gaussian function [28,29]. After gas classification modeling,
we verified the classification model’s reliability using a confusion matrix with test data sets extracted
from a distinct gas detection experiment [30–32]. A confusion matrix is a visualization method for
classification of model performance and reliability. The model’s reliability verification using the
confusion matrix proceeded with new data sets that did not belong to the training data. The confusion
matrix visualizes the matches between the predicted class and the true class. We also used several
dummy data sets to double check classification model reliability.

3. Results

As shown in Figure 2, the overall procedure of the gas classification consisted of gas sensing
experiments, gas classification modeling, and two-step verifications. Moreover, gas classification
modeling involves four steps: first data selection (FDS), pairing plot scheme, second data selection
(SDS), and SVM.
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3.1. Raw Data for Gas Sensing

Figure 3 shows output voltages for the load resistor resulting from MQ4 and MQ7 sensor
reactions with respect to gas concentration. These output voltages were logged every 2 s by DAQ.
Therefore, we could confirm the responses of each gas sensor by observing the voltage changes from
the load resistor.
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Figure 3. Measured representative sensor output voltages for gas detection experiments: (a) CH4 and
(b) CO gas.

Although the MQ4 sensor was specific for detecting CH4 gas, it also reacted to CO gas with a
similar issue arising for the MQ7 sensor. Thus, both sensors exhibit low selectivity and, hence, coupling
problems for gas signals. Therefore, it was not possible to clearly identify CH4 or CO gas levels from
either sensor alone. Even using both gas sensors, it was difficult to classify gas type from output
voltages alone. Therefore, we proposed SVM with a pairing plot method.

3.2. Pairing Plot Scheme for Support Vector Machine

There were concentration ranges where the sensing signals were indistinguishable (Figure 3,
blue marked area) due to the gas sensors’ physical limitations. Thus, we needed to select meaningful
data before pairing the data, i.e., FDS. It was necessary to avoid confusion about the initial response of
the sensors due to the noise voltages under ambient atmosphere. To extract meaningful data used
for machine learning, the SnO2 gas sensor signals should be distinguishable from the initial detection
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value (Vinitial) at which sensors start detecting gases. The noise voltage difference (Vnoise.diff) is the
difference between maximum and minimum noise voltage values before gas injection. Vinitial should be
at least two times larger than Vnoise.diff. Based on these criteria, we specified indistinguishable sensing
value ranges as shown in Figure 3 (blue marked area). We set the FDS criteria based on the Vinitial for
each gas sensor, defined by ambient atmosphere voltage (Vambient) and Vnoise.diff. In short, the Vinitial
was determined by the minimum detectable voltage (Vdet) in the following equations:

Vdet ≥ Vambient +
(
Vnoise.di f f × 2

)
(6)

Vdet.min = Vinitial (7)

where Vambient is average output voltage in ambient atmosphere, and Vnoise.diff is the difference between
maximum and minimum noise voltage in ambient atmosphere.

Only output voltages above Vinitial were selected for the pairing plot. The selected data were
plotted in the form of (MQ4, MQ7) considering all possible pairing cases in each gas detection
experiment. For example, since there were three MQ4 and three MQ7 sensors, nine pairing (MQ4,
MQ7) cases were extracted from each experiment. Figure 4a shows the pairing plots for the FDS
applied gas detection experiment. The CH4 and CO gas had distinguishable behavior patterns that
enabled them to be clearly classified.
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Figure 4. Pairing plots for the CH4 and CO gas detection data sets: (a) all possible pairing cases with
first data selection for one experiment data (inset: second data selection detail) and (b) second data
selection for all experiment data sets.
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In SVM training, determining hyperplane was performed using only boundary data for each
class. Thus, for the data sets selected from FDS, additional data selection was performed using
the concentration in each injection cycle. This provided significant memory and computational
efficiency for the learning process. Figure 4a inset shows that the number of data in the particular
gas concentration can be reduced to two data points through SDS by pairing the maximum MQ4
value with the corresponding MQ7 value and the maximum MQ7 value with the corresponding MQ4
value, i.e., (MQ4_max, MQ7) and (MQ4, MQ7_max), respectively, providing the pairing plot with the
minimum number of essential data (Figure 4b). We subsequently applied non-linear SVM with these
paired data sets.

3.3. Gas Classification Model Using Non-Linear Support Vector Machine

Selected data sets were randomly divided into training and testing data sets at a 4:1 ratio. Feature
selection for the data sets was decided by the output voltage, since all data sets only included the
output voltage in this study. The K-Fold cross validation was used to avoid the overfitting problem for
the training data sets [33–35]. The most important SVM step is to find the hyperparameters defining
the optimal hyperplane. We used the Gaussian RBF kernel method for the non-linear SVM to define
the hyperplane and, hence, establish the classification model. Subsequent verification with the testing
data sets confirmed 100% classification accuracy. Figure 5 shows the visualization of elements for the
defined hyperplane, support vectors, and all data sets.
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Figure 5. CH4 and CO gas classification using non-linear SVM with pairing plots; • = training and
× = testing data sets.

To verify classification model reliability, we extracted paired data sets for a new CH4 and CO
gas detection experiment. The number of data sets for CH4 and CO were 102 and 126, respectively.
Figure 6a shows the gas classification confusion matrix for the new paired data sets, confirming
100% classification accuracy for each gas. Moreover, we intentionally created 10 paired data sets
with incorrect values for each gas to double check the model’s reliability. As shown in Figure 6b,
the confusion matrix results for classification by adding these dummy data sets were visualized.
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Consequently, the reliability of the non-linear SVM gas classification model was verified again by fully
classifying all 20 incorrect paired data sets.Sensors 2019, 19, x FOR PEER REVIEW 8 of 10 
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4. Conclusions

Although combustible gas detection in industrial and public areas is essential, it is difficult to
accurately identify gases due to the inferior semiconductor gas sensor performance. In particular,
selectivity issues cause significant coupling problems among sensing signals, making accurate gas
identification difficult. Thus, it is necessary to introduce an algorithmic approach to compensate for
this issue. In this work, we proposed a classification algorithm based on support vector machine by
introducing a pairing plot technique. Furthermore, we achieved the memory efficient gas classification
model using the data selection method. Model reliability was verified by classifying CH4 and CO
gases 100% accuracy through additional tests with confusion matrix. Thus, the proposed method
classified CH4 and CO gases simultaneously with 100% accuracy even in the presence of gas sensor
selectivity issues. The proposed approach is not specific to semiconductor gas sensors and could also
be applied to most or all other sensor types which have sensing signal coupling problems. Therefore,
modeling with non-linear support vector machine and pairing plot technique could be an effective
way to identify gases.
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