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The Boolean network (BN) is a mathematical model used to represent various biological processes such as
gene regulatory networks. The state of a BN is determined from the previous state and eventually reaches
a stable state called an attractor. Due to its significance for elucidating the whole system, extensive stud-
ies have been conducted on analysis of attractors. However, the problem of detecting an attractor from a
given BN has been shown to be NP-hard, and for general BNs, the time complexity of most existing algo-
rithms is not guaranteed to be less than O 2n� �

. Therefore, the computational difficulty of attractor detec-
tion has been a big obstacle for analysis of BNs. This review highlights singleton/periodic attractor
detection algorithms that have guaranteed computational complexities less than O 2n� �

time for particu-
lar classes of BNs under synchronous update in which the maximum indegree is limited to a constant,
each Boolean function is AND or OR of literals, or each Boolean function is given as a nested canalyzing
function. We also briefly review practically efficient algorithms for the problem.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The Boolean network (BN) [1–3] is a mathematical model that is
used to represent various biological processes such as gene regula-
tory networks [4–6], neural networks [7], cell cycle control net-
works [8], and signal transduction networks [9–12]. For example,
when modeling a gene regulatory network, each node corresponds
to a gene and is assigned a Boolean value of 0 (FALSE) or 1 (TRUE),
which means the gene is inactive or active, respectively. The state
of each node is updated according to a Boolean function assigned
to it, i.e., the edges between nodes correspond to the regulation
relationships between the nodes. In addition, the state of the entire
system is called a global state, which eventually reaches one of two
types of stable states: singleton attractor (point attractor) or periodic
attractor (cyclic attractor) by repeating the update of the state. Once
the global state reaches a singleton attractor, it will always remain
in the same state, whereas a periodic attractor consists of multiple
global states that are cyclically visited. There is a close relationship
between attractors and biological processes. For example, in the
case of a gene regulatory network, an attractor is a stable state of
the entire system and is considered to be a stable state of a cell.
Therefore, one attractor is often regarded as one cell type
[3,13,14], and extensive studies have been conducted on attractor
detection, due to its significance for elucidating the system.
Although it might be pointed out that a BN is a fairly simplified
model and it deviates from the actual biological systems, it is
meaningful to start the analysis with a simple model in order to
decipher a complex system.

A BN of n nodes has 2n global states. Thus, if we want to detect
or enumerate the attractors of a given BN, we can simply update all
global states as initial states and find out which initial state
reaches which stable state. If n is sufficiently small, this approach
is not problematic. When n is large, however, a large amount of
computational resources is required. Therefore, algorithms for bio-
logical BNs have so far been limited to small networks in most
cases [15]. Furthermore, from a theoretical view point, detection
of a singleton attractor and enumeration of singleton attractors
have been shown to be NP-hard [16,17] and #P-hard [16], respec-
tively. In fact, there is no existing method that works in o 2n� �

time
(i.e., provably faster than in O 2n� �

time) for general BNs. Therefore,
algorithms that work efficiently for limited classes of BNs have
been proposed [18,19]. For instance, there are some algorithms
that detect a singleton attractor in polynomial time for very
restricted classes of BNs [20,21] and several o 2n� �

time algorithms
Fig. 1. Example of (a) Boolean network and (b) its state transition diagram.
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for reasonably wide classes of BNs [6]. On the other hand, no o 2n� �
time algorithm is known for detection of a periodic attractor of
period 3 or more for a reasonably wide class of BNs. This may be
because detection of an attractor with a long period has been sug-
gested to be PSPACE-hard [6], which is more difficult than prob-
lems belonging to class NP unless NP = PSPACE. This theoretical
observation also suggests a practical difficulty of detection of a
long periodic attractor because PSPACE-hard problems may not
be efficiently solved by using practical solvers for NP-hard prob-
lems (e.g., SAT-solver, ILP-solver).

In this paper, we review o 2n� �
time algorithms for singleton/pe-

riodic attractor detection for particular classes of BNs under syn-
chronous update in which the maximum indegree is limited to a
constant, each Boolean function is AND or OR of literals, or each
Boolean function is given as a nested canalyzing function. The rea-
sons why the time complexities of these special classes of BNs have
been well-discussed and we focus on them in this paper are (i)
each Boolean function can be represented and evaluated in con-
stant space and constant time by limiting the maximum indegree,
(ii) it is possible to develop o 2n� �

time algorithms by introducing
some constraints on types of Boolean functions even when there
is no constraint on the maximum indgree, (iii) biologically impor-
tant functions often have a nested canalyzing form [22–26], and
(iv) there are some other BN classes (e.g., monotonic BNs [27–29],
monomials BNs [30,31], semilattice BNs [32], BNs whose functions
consist of only XOR operations [33], BNs whose functions consist
of only AND and NOT operations [34]) but algorithms guaranteed
to work in o 2n� �

time for the classes have not been proposed as
far as we know. We also briefly review practical algorithms for
detection and enumeration of attractors for BNs.

2. Boolean network and attractors

A BN N V ; Fð Þ consists of a set of nodes V ¼ x1; x2; . . . ; xnf g and a
set of Boolean functions F ¼ f 1; f 2; . . . ; f nf g. Each xi takes a value of
0 (FALSE) or 1 (TRUE), and in the case of a gene regulatory network,
xi corresponds to the gene i, and 0 and 1 indicate that the gene is
inactive or active, respectively. In particular, when writing xi tð Þ, it
indicates the state of the gene i at time t, and the global state of
the entire system at time t is denoted by
x tð Þ ¼ x1 tð Þ; x2 tð Þ; . . . ; xn tð Þ½ �. A Boolean function f i xi1 ; xi2 ; . . . ; xik

� �
is

assigned to each xi and it indicates a rule that xi is controlled by
specific input nodes xi1 ; xi2 ; . . . ; xik . Here, let
IN xið Þ ¼ xi1 ; xi2 ; . . . ; xik

� �
be a set of input nodes for xi. The number

of input nodes is denoted by jIN xið Þj and is called indegree of xi. We
use K to denote the maximum indegree for a BN. The state of xi at
time t þ 1 is determined from the state of IN xið Þ at time t according
to the corresponding Boolean function
xi t þ 1ð Þ ¼ f i xi1 tð Þ; xi2 tð Þ; . . . ; xik tð Þ� �

. This may be simplified and
written as xi t þ 1ð Þ ¼ f i x1 tð Þ; x2 tð Þ; . . . ; xn tð Þð Þ if there is no confu-
sion. Furthermore, the global state at time t þ 1 can be written as
x t þ 1ð Þ ¼ f x tð Þð Þ. The network structure of BN is represented by

a directed graph G V ; Eð Þ, where E ¼ xij ; xi
� �

jxij 2 IN xið Þ
n o

. As an

example, Fig. 1(a) shows the following BN and the corresponding
graph:
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x1 t þ 1ð Þ ¼ x2 tð Þ;
x2 t þ 1ð Þ ¼ x1 tð Þ ^ x3 tð Þ;
x3 t þ 1ð Þ ¼ x1 tð Þ ^ x2 tð Þ;
where x ^ y and x denote conjunction (AND) of x and y, and negation
(NOT) of x, respectively. Since this BN has three nodes, the number
of global states is 23 in total. At each time step, the transition of each
global state is computed by x t þ 1ð Þ ¼ f x tð Þð Þ and a directed graph
representing such transition of the states is called a state transition
diagram (Fig. 1(b)). As we can see from this state transition diagram,
the global state at time t þ 1 is uniquely determined by the global
state at time t. For example, if x tð Þ ¼ 1;0;1½ �, the global state will
be 0; 0;1½ � at time t þ 1 and then 0; 0;0½ � at time t þ 2. However,
once it reaches 0;0;0½ �, it remains 0;0;0½ � no matter how many
updates are repeated. This state is called a singleton attractor or
point attractor. Meanwhile, the states 1;0; 0½ � and 0;1;1½ � repeat
the transition between these states and are called a periodic attrac-
tor or cyclic attractor. More generally, an attractor is represented by
a set of states a0;a1; . . . ;ap�1

� �
, where aiþ1 ¼ f aið Þ

i ¼ 0;1; . . . ;p� 2ð Þ and a0 ¼ f ap�1
� �

hold. If p ¼ 1, it corresponds
to a singleton attractor. If p > 1, it corresponds to a periodic attrac-
tor and p is called the period of the attractor (the more detailed
reviews on the attractor can be found in [35]). Since an attractor
can be regarded as a stable state of the entire system, detection
and enumeration of attractors are important analysis for detailed
understanding of the system. Therefore, extensive studies have
been done on the distribution and length of attractors. In particular,
the NK model of BN is often focused on, which consists of N nodes
and each node has K input nodes randomly selected and is assigned

a Boolean function randomly selected from all possible 22K func-
tions. In the analysis of this NK model, it is well known that the
expected number of singleton attractors is 1 for every K > 0 and
n P K [36,37]. As for the length and distribution of periodic attrac-
tors in the NK model, several theoretical studies have been done
[38,39].

There exist mainly two types of BNs, synchronous BNs whose
states of all nodes are updated all at once and asynchronous BNs
whose states of nodes are updated asynchronously such as random
order asynchronous, general asynchronous, and deterministic asyn-
chronous update models [11]. Asynchronous BNs are often
employed since the update strategy is reasonable to take into
account biological processes which occur in different time scales
[6,40]. However, each state of the state transition diagram of an
asynchronous BN may have more than one outgoing edges. There-
fore, an attractor in an asynchronous BN is often defined as a strong
connected component (SCC) without outgoing edges (referred to as
bottom SCC or terminal SCC), and the attractor detection is consid-
ered as the bottom SCC detection [41]. Such a complex structure
of attractor prevents us from applying SAT-based algorithm (de-
scribed in Section 3.1.1) efficiently since each SAT formula
becomes large [42]. Meanwhile, the fact that the synchronous
model and the general asynchronous model have the same set of
singleton attractors can be shown [6]. Although we deal with syn-
chronous BNs in this paper unless otherwise stated since extensive
studies on attractor detection have been done due to their simplic-
ity, some practical attractor detection algorithms for asynchronous
BNs are described in Section 5. In addition to synchronous and
asynchronous BNs, another semantics on BNs called most permis-
sive has been proposed and studied [43]. It was shown in [43]
under this semantics that singleton attractor detection (i.e., detec-
tion of a fixed-point) remains NP-complete but reachability and
attractor membership problems can be solved better than in
PSPACE (under reasonable assumptions on the complexity classes).
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3. Detection and enumeration of singleton attractors

One of the simplest methods for detecting or enumerating
attractors is to repeat the state transitions with all possible global
states as initial states for a given BN and to find out which state
each initial state finally reaches. This task can be done by con-
structing and analyzing the state transition diagram. However,
the state transition diagram for a BN with n nodes consists of 2n

nodes and 2n edges. Therefore, if n is large, it is impossible to con-
struct and analyze the state transition diagram. In fact, the single-
ton attractor detection problem has been shown to be an NP-hard
problem by using a reduction from 3-SAT (Boolean satisfiability
problem) [6,17]. Thus, various algorithms that work efficiently
for specific classes of BNs have been proposed. In this section, we
introduce singleton attractor detection/enumeration algorithms
for BNs with maximum indegree K, BNs in which each Boolean
function is AND or OR of literals, and BNs configured by nested can-
alyzing functions.
3.1. Singleton attractor detection for BNs with maximum indegree K

This section deals with BNs with maximum indegree K, where K
is any constant larger than 1. Since the number of states of K input
nodes is 2K and both 0 and 1 can be assigned as an output value for

each of such states, there exist 22K Boolean functions with K inputs.
That is, if K is a constant, each Boolean function is specified by a
constant space and can be evaluated in constant time.
3.1.1. Reduction to SAT
We have already mentioned that SAT is used to show the NP-

hardness of the attractor detection problem, but it can also be
applied to the singleton attractor detection itself [44–46]. More
specifically, the singleton attractor detection for BNs with maxi-
mum indegree K can be replaced by the K þ 1ð Þ-SAT of n variables.
SAT is a problem of determining whether there is a 0� 1 vector
(assignment) a that satisfies f að Þ ¼ 1 when a Boolean function f is
given by the following conjunctive normal form (CNF),

C xð Þ ¼
^
i

_
j

‘i;j;

where ‘i;j is the jth literal of the ith clause. Note that ‘ is called a lit-
eral if it is a Boolean variable or its negation, and OR of literals is
called a clause. Especially when each clause consists of at most k lit-
erals, it is called k-SAT. For example, for a BN with K ¼ 2, we con-
sider the following transformations for the two-variable Boolean
operations, ^ (conjunction, AND), _ (disjunction, OR), and � (exclu-
sive OR, XOR) (the cases of constant and unary functions are omit-
ted since they are trivial).

xi ¼ ‘j ^ ‘k () xi _ ‘j _ ‘k
� � ^ xi _ ‘j

� � ^ xi _ ‘k
� �

;

xi ¼ ‘j _ ‘k () xi _ ‘j
� � ^ xi _ ‘kð Þ ^ xi _ ‘j _ ‘k

� �
;

xi ¼ ‘j � ‘k () xi _ ‘j _ ‘k
� � ^ xi _ ‘j _ ‘k

� � ^ xi _ ‘j _ ‘k
� � ^ xi _ ‘j _ ‘k

� �Þ;

where, in a singleton attractor, xi t þ 1ð Þ ¼ xi tð Þ holds for all
i ¼ 1; . . . ; n, so t is omitted to express the Boolean variables. This
means that each Boolean function can be converted to a 3-SAT con-
sisting of at most four clauses. Furthermore, by applying this trans-
formation to all Boolean functions assigned to xi i ¼ 1; . . . :;nð Þ and
then combining them with ^, the singleton attractor detection
problem of a BN with n nodes and K ¼ 2 can be converted into a
3-SAT problem consisting of n variables and at most 4n clauses. In
general, the singleton attractor detection for a BN with n variables
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and the maximum indegree K can be converted in polynomial time
to K þ 1ð Þ-SAT with at most 2Kþ1 � n clauses and n variables.
Although readers may think it is strange to use reduction to
K þ 1ð Þ-SAT (not to K-SAT), it is reasonable because 2-SAT is solv-
able in polynomial time whereas singleton attractor detection for
K ¼ 2 is NP-hard [6]. To actually find a singleton attractor, we need
to apply an efficient SAT solver after converting to SAT by the above
method. Although SAT is an NP-hard problem, various practical sol-
vers were developed which can solve large-scale SAT instances [47].
Furthermore, various theoretically efficient algorithms have also
been developed. For example, an O 1:3303n� �

time algorithm is
known for 3-SAT [48], which implies that the singleton attractor
detection problem can be solved in O 1:3303n � poly nð Þ� �

time for
BNs with K ¼ 2, where poly nð Þ means some polynomial function
of n.

3.1.2. Using feedback vertex set
The singleton attractor detection can also be done by using the

feedback vertex set (FVS) in graph theory [16]. The FVS is a subset
of nodes U#V in a directed graph G V ; Eð Þ such that removal of all
incoming edges to U eliminates all directed cycles (Fig. 2). In partic-
ular, the FVS with the smallest number of nodes is called the min-
imum FVS. If the state of each node v 2 U included in FVS is fixed,
the state of IN vð Þ is irrelevant to the update of v, so that, the state
of FVS is propagated to all nodes except FVS in at most n� 1 steps
in a graph Gwith n nodes. In other words, by fixing the state of FVS
of a directed graph G V ; Eð Þ corresponding to a given BN N V ; Fð Þ, the
BN reaches a stable state in at most n� 1 steps. However, it should
be noted that not all stable states correspond to singleton attrac-
tors. For example, if FVS = v1;v2; v3f g and
v1 t þ 1ð Þ ¼ v2 tð Þ ^ v3 tð Þ, BN reaches a specific stable state by fixing
v1;v2; v3½ � ¼ 0;1;1½ �, but this state is not a singleton attractor for a
given BN since v1 must be 1. Therefore, in order to enumerate sin-
gleton attractors, it is enough to assign all possible states to the
minimum FVS and to update the states until the BN reaches stable
states, and then to check their consistencies. Assuming that the size
of minimum FVS is jUj and each Boolean function of N V ; Fð Þ can be
evaluated in polynomial time, enumeration of all singleton attrac-

tors can be done in O 2jUj � poly nð Þ
� �

time since the number of pos-

sible states of FVS is 2jUj. It is known that the problem of finding
an FVS is NP-hard, but some practical algorithms have been pro-
posed [49–51], and they can be used for finding singleton attractors.
The FVS-based algorithm has been extended for enumeration of
periodic attractors in BNs [6] and for more general non-linear mod-
els of biological networks [52]. In addition, Mori andMochizuki also
reported the relationship between the expected number of single-
ton attractors and the feedback arc sets [53].

3.1.3. Recursive algorithms
Here, we introduce a simple recursive algorithm having a guar-

anteed average-case complexity for singleton attractor enumera-
tion [54]. This recursive algorithm considers a partial global state
x1; . . . ; xm½ � for m < n, and iteratively examines whether there is a
Fig. 2. Example of a BN for illustration of FVS. x1; x5f g is the minimum FVS.
x2; x4; x5f g is a FVS but is not the minimum one.
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contradiction between the partial global states and f i xð Þ assigned
to xi while incrementing m. If there is no contradiction between
all xi and f i xð Þ, output it as a singleton attractor, otherwise stop
examining the current assignment and proceed to the next assign-
ment. For example, consider the BN shown in Fig. 1(a) as an exam-
ple and give x ¼ �; �; �½ � as an initial state, where � represents a
state that has not yet been determined. Then, we examine the par-
tial global state of x ¼ 0; �; �½ �. At this time, x2 and x3 are undeter-
mined, thus f xð Þ is consistent. Therefore, we expand the subset
of nodes to be assigned and examine x ¼ 0;0; �½ �. Since there is
no contradiction in f xð Þ as well, we further expand the subset
and examine x ¼ 0;0;0½ �. Here, f xð Þ is consistent and the states of
all nodes are determined. Therefore, x ¼ 0;0;0½ � is reported as a
singleton attractor. In the next step, x ¼ 0;0;1½ � is examined. Since
f 3 xð Þ – x3, x is not a singleton attractor and nothing is output.
Then, we go back to the previous recursion level and examine
x ¼ 0;1; �½ �. In this case, although x3 is not yet determined,
f 1 xð Þ – x1 is already established, so that the examination of
0;1; �½ � is stopped and then x ¼ 1; �; �½ � is examined. By repeating
this procedure, it is possible to list all singleton attractors. Letting
s ¼ m

n , theoretical analysis shows that this algorithm works in

O maxs 2� sK
� �s� �n

� poly nð Þ
� �

time on the average, where the aver-

age is taken over all NK models, and 0 < s < 1. For example, the
resulting time complexity is O 1:35n� �

and O 1:67n� �
for K ¼ 2 and

K ¼ 10, respectively. Therefore, when K is small, it is sufficiently
faster than O 2n� �

. In this algorithm, the partial global states are
determined in a given order of x1; . . . ; xn. However, if the nodes
are sorted in advance in the descending order of their outdegrees,
the number of nodes whose states are determined at each recur-
sive step will increase, so that it is expected that the singleton
attractor can be detected with a smaller number of trials. Actually,
the algorithm based on this idea has been shown to work in
O 1:19n� �

time and O 1:57n� �
time for K ¼ 2 and K ¼ 10, respec-

tively. Furthermore, this algorithm can be extended for enumera-
tion of periodic attractors with a small fixed period p [54].
3.2. Singleton attractor detection for AND/OR BNs

This section considers AND/OR BNs, in which each Boolean
function is AND or OR of literals. For singleton attractor detection
for AND/OR BNs, there is an algorithm that works in O 1:792n� �
time, which is a combination of recursive calls and existing meth-
ods for solving SAT [55]. To explain the algorithm, first we assume
that the following BN function is assigned for xi.

xi ¼ x1 ^ x2 ^ . . . ^ xh:

In this case, the consistent 0� 1 assignments for x1; xi½ � are
0;0½ �; 1; 0½ �, and 1;1½ �, whereas 0;1½ � is inconsistent since xi must
be 0 if x1 is 0, so that the assignment for x1; xi½ � ¼ 0;1½ � does not need
to be considered anymore. Thus a singleton attractor may be
obtained by examining the other three assignments and repeating
the same procedure for the other nodes. Since only 3 among
22 ¼ 4 assignments are examined per two nodes, this might lead

to an O 3n=2 � poly nð Þ
� �

¼ O 1:733n � poly nð Þ� �
time algorithm. How-

ever, this procedure cannot be continued if there are no remaining
edges or only nodes with self-loops. Let U be the set of nodes whose
0� 1 assignments are already determined by this procedure. In
such case, the assignments of the set of remaining nodes W (i.e.,
W ¼ V n U) are determined by the following procedure.

� if jUj > an, examine all possible assignments on W,
� otherwise, compute consistent assignments on W using a SAT
algorithm.



Fig. 3. Example of graph G V ; Eð Þ and its tree decomposition T VT;ETð Þ; Btð Þt2VT

D E

with width two, where tA; . . . ; tF are bags.
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It is shown that by letting a ¼ 0:767 and utilizing an
O 1:234m � poly nð Þ� �

time algorithm for SAT with m clauses [56],
the resulting algorithm works in O 1:792n� �

time. By further omit-
ting unnecessary examinations of partial assignments, an
O 1:587n� �

time algorithm was developed [57]. It is to be noted that
these results might be slightly improved by using a recent
O 1:223m � poly nð Þ� �

time algorithm for SAT with m clauses [58].

3.3. Singleton attractor detection for nested canalyzing BNs

A Boolean function f v (assigned to a node v) is called nested can-
alyzing if it has the following form:

f v ¼ ‘1 _ � � � _ ‘k1�1 _ ‘k1 ^ � � � ^ ‘k2�1 ^ ‘k2 _ � � � _ ‘k3�1 _ � � �ð Þ� �� �
;

where ‘i 2 x1; x1; x2; x2; . . . ; xnf g and 1 6 k1 < k2 < � � �. A BN is called
an nc-BN if nested canalyzing functions are assigned to all nodes. It
should be noted that both AND and OR functions of literals are spe-
cial cases of nested canalyzing functions. Since biologically impor-
tant functions often have a nested canalyzing form [22–26], it is
meaningful to consider attractor detection algorithms for nc-BNs.

3.3.1. Recursive algorithm for singleton attractor detection for nc-BNs
Here, we briefly introduce the basic idea of a recursive algo-

rithm SattNC for singleton attractor detection for nc-BNs [19].
The first OR part of f v (i.e., ‘1 _ � � � _ ‘k1�1) is called the initial

clause. Suppose that u appears positively in the initial clause of
some f v where u– v . If 1 is assigned to u, then we have f v ¼ 1
and thus the state of v becomes 1 regardless of the state of other
input nodes to v. This means that assigning 1 to v determines the
states of two nodes (u and v). On the other hand, if 0 is assigned
to u, the state of v may not be determined. Conversely, suppose
that u appears negatively in f v (i.e., f v ¼ u _ f v 0). In this case,
u ¼ 0 determines the states of two nodes (u and v), whereas
u ¼ 1 determines the state of one node (u). This procedure may
be applied recursively. Let G qð Þ be the number of recursive calls
with q unassigned variables in such a recursive procedure. Then,
we may have
Fig. 4. p-multiplied network G2 ¼ V2; E2
� �

corresponding to G V ; Eð Þ given in Fig. 1
(a).
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G qð Þ 6 G q� 1ð Þ þ G q� 2ð Þ
from the above discussion. If we can repeat this procedure until the
states of all nodes are determined, G qð Þ will be O 1:619q� �

(the
Fibonnaci number). However, in many cases, this procedure cannot
be repeated so many times. Furthermore, assigning u ¼ 1 (resp.,
u ¼ 0) gives a constraint f u ¼ 1 (resp., f u ¼ 0). In order to cope with
these issues, we need to solve SAT for a set of nested canalyzing
functions, which is more general than the standard SAT for clauses
(i.e., a set of OR of literals). SattNC was obtained by combining the
above recursive procedure with a newly developed SAT algorithm
for nested canalyzing functions, and was shown to work in
O 1:871n� �

time [19].

3.3.2. Singleton attractor detection for nc-BNs with bounded treewidth
It is known that many NP-hard problems can be solved in poly-

nomial time using dynamic programming if an input graph has a
fixed treewidth, where the treewidth is an integer value measuring
how close a graph is to a tree [59,60]. To formally define the tree-
width, we consider the tree decomposition that transforms G V ; Eð Þ
to a pair T VT;ETð Þ; Btð Þt2VT

D E
, whereT VT;ETð Þ is a rooted tree,

Btð Þt2VT
is a family of subsets of nodes V ¼ v1; . . . ;vnf g, each Bt is

called a bag, each node v i 2 V must appear in at least one Bt , nodes
in each edge e 2 E must be included in at least one Bt , and Bt ’s con-
taining each node must be connected in T (see Fig. 3). Note that
the tree decomposition is not uniquely determined. The width of
the decomposition is defined by maxt2VT

jBtj � 1ð Þand the tree-
width of G is the smallest width among all tree decompositions
of G.

It is known that the singleton attractor detection problem can
be solved in O n2 wþ1ð Þ � poly nð Þ� �

if a given BN N V ; Fð Þ is composed
of nested canalyzing functions and the treewidth of G V ; Eð Þ is
bounded by w [61]. This algorithm applies dynamic programming
to T VT;ETð Þ and computes partial assignments from leaves to
the root in a bottom-up manner. Chang et al. have improved this
algorithm for the special cases of AND/OR BNs and nc-BNs [62].
There is also an algorithm that reduces singleton attractor detec-
tion for nc-BNs with bounded treewidth to a constraint satisfaction
problem for bounded treewidth [61,63].
4. Detection of periodic attractors

As mentioned in Section 1, detection of a periodic attractor
seems much harder than detection of a singleton attractor. Never-
theless, some o 2n� �

time algorithms have been developed for
detection of periodic attractors with a short period. This section
briefly introduces such algorithms.

4.1. Reduction to the singleton attractor detection

A simple strategy for detecting periodic attractors is to reduce it
to the singleton attractor detection problem. Here, we introduce a
simple reduction algorithm that constructs p-multiplied network
Np Vp; Fpð Þ from an input BN N V ; Fð Þ [61]. Np Vp; Fpð Þ is defined as
follows:

Vp ¼ x 1ð Þ
i ; x 2ð Þ

i ; � � � ; x pð Þ
i jxi 2 V

n o
;

Fp ¼ f 1ð Þ
i x pð Þ

i1
; � � � ; x pð Þ

iki

� �
;

n

f 2ð Þ
i x 1ð Þ

i1
; � � � ; x 1ð Þ

iki

� �
; � � � ;

f pð Þ
i x p�1ð Þ

i1
; � � � ; x p�1ð Þ

iki

� �
:

jf i xi1 ; . . . ; xiki

� �
2 Fandf i tð Þ ffi f ig;
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where each x tð Þ
i is regarded as a node and f tð Þ

i ffi f i means that f tð Þ
i is

the same Boolean function as f i except that input variables are dif-
ferent (see Fig. 4). A singleton attractor at Np Vp; Fpð Þ clearly corre-
sponds to an attractor of N V ; Fð Þ with period q that divides p.
However, in order to guarantee that the detected attractor has

exactly period p, for all q ¼ 2; . . . ;p, x 1ð Þ
i – x qð Þ

i must hold for some
xi 2 V . This means that the state of N V ; Fð Þ at time t ¼ 1 must be dif-
ferent from that of at time t ¼ 2; . . . ; p, so that N V ; Fð Þ does not take
the same global state at t ¼ q1 and t ¼ q2 1 6 q1 < q2 6 pð Þ. Here, let
/ tð Þ be a function from 2; . . . ; pf g to 1; . . . ;nf g and w tð Þ be a function
from 2; . . . ;pf g to 0;1f g. To check if there is a periodic attractor with
period p of N V ; Fð Þ, it is enough to check whether there exist an sin-
gleton attractor of Np Vp; Fpð Þ and functions / tð Þ and w tð Þ such that

x 1ð Þ
/ tð Þ ¼ w tð Þ and x tð Þ

/ tð Þ ¼ 1� w tð Þ holds for all t ¼ 2; . . . ;p. The possible

number of /s and ws are np�1 and 2p�1, respectively, which are in
polynomial of n for a constant p. Therefore, if singleton attractor
detection can be done in O 1þ dð Þn� �

time, p-periodic attractor
detection canbe done in O 1þ dð Þpn � poly nð Þ� �

time. However, even
if the O 1:587n� �

time algorithm for singleton attractor detection
for AND/OR BNs is applied, it does not yield an o 2n� �

time algorithm

because it would take O 1:5872n � poly nð Þ
� �

time (1:5872 � 2:519) to

detect a periodic attractor with period 2.

4.2. 2-periodic attractor detection for AND/OR BNs

This section describes a 2-periodic attractor detection algorithm

for AND/OR BNs using N2 V2; F2
� �

[61]. First, we transform an AND/

OR BN to an OR BN. Let xi be an AND node assigned the following
function:

xi t þ 1ð Þ ¼ ‘i1 ^ . . . ^ ‘ik :

This Boolean function can be transformed to an OR function by
replacing it to

xi t þ 1ð Þ ¼ ‘i1 _ . . . _ ‘ik

and negating all xi t þ 1ð Þ in the function f j for all xj 2 V . Therefore,

in this section, we can assume that N2 V2; F2
� �

is an OR BN.

The basic strategy of the 2-periodic attractor detection algo-
rithm is similar to that of the O 1:587n� �

time algorithm for an
AND/OR BN, that is, we recursively examine 0� 1 assignments
and finally apply an SAT algorithm. However, here we use the spe-

cial property on N2 V2; F2
� �

. The procedure of 2-periodic attractor

detection is to first construct N2 V2; F2
� �

and set all nodes to be

unassigned. Then, we recursively examine 0� 1 assignments for
unassigned nodes x such that U xð Þ P 3 until no such nodes exist
or the number of assigned nodes is more than H, where U xð Þ is
the number of unassigned neighboring nodes of x and H is a param-
eter. Here, let A be the set of assigned nodes, and let A1 ¼ A \ V2

1

and A2 ¼ A \ V2
2 (w.l.o.g., jA1j P jA2j), where V2

1 and V2
2 are the sets

of nodes V2 corresponding to t ¼ 1 and t ¼ 2, respectively. If
jAj > H, we examine all possible assignments for V1 n A1, otherwise
recursively examine assignments for paths and cycles (because all
nodes with U xð Þ P 3 have already been assigned), and then finally
solve SAT. The resulting algorithm has been shown to work in
O 1:985n� �

time by letting H ¼ 0:3196n [61]. It is known that detec-
tion of 2-periodic attractor can be done in linear time for a positive
OR BN in which all Boolean functions are OR functions and all vari-
ables appear positively [21,61]. However, periodic attractor detec-
tion remains NP-hard for a positive BN in which each function is an
AND or OR function [64].
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4.3. Periodic attractor detection for nc-BNs with bounded treewidth

The algorithm presented in Section 3.3.2 can be extended for
detection of a p-periodic attractor for an nc-BN with bounded tree-
width, using the p-multiplied network Np Vp; Fpð Þ [61]. The
extended algorithm is based on the following proposition: if the
graph G V ; Eð Þ associated with N V ; Fð Þ has the treewidth w, the
graph Gp Vp; Fpð Þ associated with Np Vp; Fpð Þ has a tree decomposi-
tion with the width less than p wþ 1ð Þ, and for each x 2 V ,
x 1ð Þ; . . . ; x pð Þ are included in the same Bt [61]. Then, we can apply
a dynamic programming procedure to the tree decomposition of
Gp Vp; Fpð Þ associated with Np Vp; Fpð Þ, where some modifications
are needed to detect an attractor with exactly period p. The result-
ing algorithm works in O n2p wþ1ð Þ � poly nð Þ� �

time [61]. Furthermore,
the algorithm works in O g d; p;wð Þ � poly nð Þð Þ time if the maximum
indegree is bounded by a constant d where g is a non-polynomial
function depending on d; p;w but not depending on n. It gives a
fixed-parameter algorithm when p;w, and d are parameters (i.e.,
the exponential factor of the time complexity depends only on
some parameters for the algorithm) [59,60].

5. Practical algorithms

In the previous sections, we have introduced singleton/periodic
attractor detection and enumeration algorithms that are guaran-
teed to work in less than O 2n� �

time. However, these algorithms
are limited to particular subclasses of BNs and no such an algo-
rithm has been known for general BNs. On the other hand, there
are many algorithms that do not have such a theoretical guarantee
but work efficiently in practice.

5.1. SAT and logic-based approaches

One major practical approach is to use SAT and related logic-
based methods. As mentioned in Section 3.1.1, attractor detection
problems can be reduced to SAT. Furthermore, many practically
efficient SAT solvers have been developed [44,45]. Therefore, it is
reasonable to develop practically efficient attractor detection/enu-
meration methods for BNs and related models using such SAT sol-
vers. For example, Dubrova and Teslenko used a SAT solver to
search for a path of length p on the state transition diagram and
detected an attractor by checking if it contains a loop [45], and
de Jong and Page transformed the problem of searching for a stable
state of a network described by the pairwise-linear differentiation
equation model into SAT [44]. For other logic-based approaches,
Devloo et al. developed an algorithm applying constraint program-
ming to the singleton attractor detection and enumeration [65].
Inoue provided an algorithm that directly encodes a BN into a logic
program and computes a singleton attractor based on that logic
program [66], and Abdallah et al. proposed an algorithm based
on answer set programming (ASP) that enumerates all attractors
without creating an entire state transition diagram [67]. In addi-
tion to SAT, Binary decision diagrams (BDDs) have also been utilized
to solve large scale logic-based problems in various fields. There-
fore, it is reasonable to apply BDDs in place of SAT solvers. Indeed,
some methods have been developed based on BDDs that can detect
attractors for large networks [68–70]. Integer linear programming
(ILP) is another useful method to efficiently solve Boolean con-
straints and thus has been applied to attractor detection and
related problems on BNs [71–73].

5.2. Network reduction-based approaches

Another major practical approach is to use network reduction.
For example, suppose that v has an input node u and u has only
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one input nodew. Then, for both detection and enumeration of sin-
gleton attractors, we can remove u by letting w as an input to v.
Although this example is a very simple one, various reduction
methods were developed where logic-based or other methods
were used to solve reduced instances at the final stage. For exam-
ple, Veliz-Cuba et al. proposed various reduction rules including
the above mentioned one, elimination of redundant edges, replace-
ment of functions, and simplification of Boolean functions [74].
Veliz-Cuba et al. developed a singleton attractor enumeration algo-
rithm that transforms input networks to AND-NOT networks, then
applies network reduction, and finally applies an algebraic method
(compute the Gröbner basis to perform a generalized version of
Gaussian elimination) [75]. He et al. developed a reduction method
based on removal of unstable partial states and identification of
constant nodes [76]. Saadatpour et al. provided rigorous proofs of
conservation of attractors in synchronous and asynchronous BNs
for various reduction methods [77]. Beneš et al. proposed another
network reduction method called interleaved transition guided
reduction (ITGR) for detecting of bottom SCCs of asynchronous
BNs [78]. They succeeded in handling large Boolean networks of
real data (up to 350 variables) as well as of synthetic data (up to
1100 variables) based on the reduction technique. Gao et al. char-
acterized periodic attractors of a conjunctive BN (i.e., each Boolean
function is AND of literals) whose underlying directed graph is
strongly connected by establishing bijection between the set of
periodic attractors and the set of binary necklaces (i.e., character
strings over the binary set 0;1f g, where their all rotations are dealt
with as equivalent) of a certain length [79]. Chen et al. extended
this study to BNs over weakly connected directed graph by apply-
ing network reduction [80]. It is to be noted that network reduction
methods were utilized also in some other methods mentioned in
this section.
5.3. Network decomposition-based approaches

Divide-and-conquer is one of the major general techniques to
efficiently solve various combinatorial problems in computer
science. Therefore, it is reasonable to apply divide-and-conquer
to the attractor detection/enumeration problems on BNs. Indeed,
various methods have been developed for the problem by decom-
posing the original network into subnetworks and then recon-
structing global attractors by integrating local attractors for the
subnetworks, where the techniques introduced in Sections 5.1
and 5.2 are also utilized in many of them. As a pioneering work
in this direction, Irons proposed an algorithm that combines partial
state and predecessors [81]. Mizera et al. developed another algo-
rithm by using decomposition of the original BN into strongly-
connected components (SCCs) [41], where an SCC is a well-known
concept in graph theory and is a maximal subnetwork in which
all node pairs are connected by directed paths. Su et al. signifi-
cantly improved this algorithm by further partitioning SCCs [82].
Zañudo and Albert introduced the concept of a stable motif, which
is an SCC that stabilizes in attractors and made use of stable motifs
to efficiently find attractors in the whole BN [83]. Klarner et al.
introduced a similar concept, trap space, and combined it with
ILP [72] and model checking [84]. Choo and Cho developed a
method based on hierarchically partitioning with focusing on
attractors corresponding to a particular phenotype of interest
instead of considering all attractors [85]. Tamaki developed an
algorithm combining path-decomposition and partial states [86].
It should be noted that the tree decomposition-based methods men-
tioned in Sections 3.3.2 and 4.3 can also be regarded as network
decomposition-based ones.
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5.4. FVS-based approaches

The FVS-based singleton attractor detections for synchronous
BNs are described in Section 3.1.2. Meanwhile, practical FVS-
based approaches for asynchronous random Boolean networks
(ARBNs) have also been proposed [42,87]. Skodawessely and
Klemm focused on a reduced dynamics to make it easier to find
attractors of ARBNs [87]. A reduced dynamics is obtained by retain-
ing a Boolean state of a node in FVS and then removing state tran-
sitions from the state transition diagram. Finally, the attractors of
an ARBN can be found from the sets of fixed points of the reduced
dynamics. Although this approach seems to be widely applicable, it
is often difficult to handle large networks (n P 30) since it requires
large memory space to store all the state vectors of an attractor
during the traverse of the original state transition diagram. Van
Giang et al. were inspired by the concept of reduced dynamics
and presented the relations between FVSs and dynamics of BNs
with formal proofs [42]. Furthermore, they proposed another
FVS-based method for detecting attractors in ARBNs based on the
relations. Its main idea is to systematically remove edges from
the transition diagram and then filter out the set of fixed points
of them to get a candidate set of states which one-to-one corre-
sponds to the set of attractors of the given ARBN. The computa-
tional experiments using real biological networks and random N-
K networks showed that the method succeeded in handling large
networks whose sizes are up to 101 without any network
reductions.

5.5. Other approaches

It is well-known that starting from an arbitrary state and
repeating update of states, the trajectory will finally fall into a sin-
gleton or periodic attractor. Therefore, starting from many initial
states, we may be able to get directed attractors or some statistics
on attractor distributions. Although such sampling-based studies
have been conducted on small-size BNs, it is difficult to apply such
methods to analysis of large-scale BNs.

Another major approach is to use semi-tensor product (STP) [5],
which is an extension of matrix product. In this approach, many
problems on BNs are defined as matrix-based problems. Since
matrices play central roles in control theory, various concepts
and methodologies in control theory have been applied to BNs
and thus many studies have been done using STP [88]. For exam-
ple, a state transition diagram can be represented as a binary
matrix A of size 2n 	 2n in which Aij ¼ 1if and only if there exists
a transition from state i to state j [5]. Then, singleton attractors cor-
respond to elements of A such that Aii ¼ 1. Therefore, once A is con-
structed, detection and enumeration of singleton attractors
become trivial [5]. Although most of existing STP-based methods
need to handle 2n 	 2n or larger size matrices and thus can only
handle small-size BNs, some efforts have been done to address this
complexity issue [89,90].

6. Conclusion

In this article, we briefly reviewed algorithms for singleton/pe-
riodic attractor detection/enumeration with focusing on syn-
chronous BNs. Enumeration of all singleton and periodic
attractors can trivially be done by constructing and analyzing a
state transition diagram. However, such an approach needs
O 2n � poly nð Þ� �

or more computation time because there exist 2n

possible states. Since 2n is often too large, it is important to develop
theoretically and/or practically efficient algorithms. However, it is
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not an easy task because it is known that detection of a singleton
attractor is NP-hard, enumeration of a singleton attractor is #P-
hard, and detection of a long periodic attractor is suggested to be
PSPACE-hard [6].

We have seen that singleton attractor detection can be done in
provably faster than in O 2n� �

time (i.e., still exponential, but o 2n� �
time) for some special but reasonably wide classes of BNs such as
AND-OR BNs and BNs consisting of nested canalyzing functions, by
combining recursive assignment techniques with SAT algorithms.
However, these presented algorithms are not necessarily optimal.
Therefore, improvement of the time complexity of these algo-
rithms is left as an open problem. We have also seen that singleton
attractor detection can be done in polynomial time for BNs with
bounded treewidth and bounded maximum degree, using tree
decomposition and dynamic programming as in many other
polynomial-time algorithms for graphs with bounded treewidth.
As for enumeration of singleton attractors, we have reviewed a
simple recursive algorithm that works in o 2n� �

time in the average
case.

Detection of a periodic attractor is much more difficult. We
have seen that detection of an attractor with period two can be
done in o 2n� �

time for AND-OR BNs. However, as far as we know,
there is no o 2n� �

time algorithm that can detect an attractor with
period three (or more) for reasonably wide classes of BNs. There-
fore, development of such an algorithm is left as an open problem.
Recently, in order to cope with this difficulty, an algorithm has
been proposed which detects a long periodic attractor in o 2n� �
expected time, assuming that partial 0� 1 assignments in a
desired attractor is probabilistically given in advance as a priori
[15]. This method succeeded in detecting attractors of large networks
with long periods that were difficult to find by existing methods.

From a practical viewpoint, many methods have been devel-
oped for detection/enumeration of singleton/periodic attractors
for synchronous and asynchronous BNs. However, it is unclear
which methods are the most useful in practice, where it may
depend on structures of the target BNs. Therefore, rigorous com-
parison of state-of-the-art methods should be done. Furthermore,
it seems that detection/enumeration of long attractors remains
quite difficult also in practice. Therefore, practically efficient meth-
ods should be developed for detection/enumeration of long
attractors.
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