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Short‑term inhalation of isoflurane 
improves the outcomes 
of intraportal hepatocyte 
transplantation
Hiroyasu Nishimaki1, Yoshikatsu Saitoh1, Akiko Inagaki2, Yasuhiro Nakamura3, 
Takehiro Imura2, Ibrahim Fathi2, Hiroki Yamana1, Kazuo Ohashi4, Shigehito Miyagi1, 
Takashi Kamei1, Michiaki Unno1 & Masafumi Goto1,2*

Clinical hepatocyte transplantation (HTx) is only performed without general anesthesia, while 
inhalation anesthetics are usually used in animal experiments. We hypothesized that isoflurane may 
be a possible reason for the discrepancy between the results of animal experiments and the clinical 
outcomes of HTx. Syngeneic rat hepatocytes (1.0 × 107) were transplanted to analbuminemic rats with 
(ISO group) and without (AW group) isoflurane. The serum albumin, AST, ALT, LDH levels and several 
inflammatory mediators were analyzed. Immunohistochemical staining and ex vivo imaging were 
also performed. The serum albumin levels of the ISO group were significantly higher in comparison 
to the AW group (p < 0.05). The serum AST, ALT, LDH levels of the ISO group were significantly 
suppressed in comparison to the AW group (p < 0.0001, respectively). The serum IL-1β, IL-10, IL-18, 
MCP-1, RNTES, Fractalkine and LIX levels were significantly suppressed in the ISO group. The ischemic 
regions of the recipient livers in the ISO group tended to be smaller than the AW group; however, the 
distribution of transplanted hepatocytes in the liver parenchyma was comparable between the two 
groups. Isoflurane may at least in part be a reason for the discrepancy between the results of animal 
experiments and the clinical outcomes of HTx.
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IL-18	� Interleukin-18
IP-10	� Induced protein-10
ISO	� Isoflurane
IVIS	� In vivo imaging system
LDH	� Lactate dehydrogenase
LIX	� LPS-induced CXC chemokine
MCP-1	� Monocyte chemotactic protein-1
MIP-1α	� Macrophage inflammatory protein-1α
MIP-2	� Macrophage inflammatory protein-2
RANTES	� Regulated upon activation, normal T-cell expressed and secreted.
TNF-α	� Tumor necrosis factor-α
VEGF	� Vascular endothelial growth factor

Liver transplantation is currently well-recognized as an established treatment for endo-stage liver disease1. 
However, this treatment is considered too invasive for patients suffering from acute liver failure and metabolic 
liver diseases2–4. Furthermore, the long waiting time to liver transplantation due to a shortage of organ donors5, 
has been pointed out as another severe obstacle to be overcome. Hepatocyte transplantation, in which isolated 
hepatocytes are infused to the recipient portal vein through a catheter, is less invasive in comparison to liver 
transplantation, since this approach requires no laparotomy at all, and because the whole procedure can be 
completed within a short period. Moreover, hepatocyte transplantation has the potential advantage of using fatty 
livers and cardiac arrest donor livers that are usually not suitable for liver transplantation6. Thus, hepatocyte 
transplantation is expected to serve as an alternative therapy to liver transplantation, especially for patients with 
metabolic liver diseases.

Hepatocyte transplantation has actually been applied in the clinical setting worldwide7. However, the out-
comes of hepatocyte transplantation are still far from satisfactory8–11. Hepatocyte transplantation is obviously 
associated with many hurdles, including hepatocyte isolation12, graft preservation13, graft quality evaluation14, 
and hepatocyte engraftment15,16. Among these factors, the extremely poor engraftment of hepatocytes is a high-
priority issue that must be overcome. Various animal models of hepatocyte transplantation have been used to 
solve this important issue. In contrast to the clinical situation, certain positive results of hepatocyte transplanta-
tion have actually been reported in animal experiments16–21, suggesting that there is a large discrepancy between 
the experimental results of animal models and clinical outcomes. It should be noted that clinical hepatocyte 
transplantation is only performed without general anesthesia, since this feature has been considered to be one of 
the most attractive advantages of hepatocyte transplantation. However, in animal experiments, it was necessary 
to use some type of general anesthesia during hepatocyte transplantation, due to technical restrictions and for 
the protection of animal welfare. Thus, no reports have demonstrated the direct effects of general anesthetics on 
the results of hepatocyte transplantation. Volatile inhalation gas is one of the most common anesthetics in animal 
hepatocyte transplantation experiments. Isoflurane, which is one of the most widely used volatile inhalation 
anesthetics in animal experiments, is known to have a strong vasodilatory effect22,23, portal pressure inhibitory 
effect24,25, and cytoprotective effect against cytokine-induced injury26–28. Of particular interest, Slehria et al. 
previously reported that the use of vasodilators dramatically increased the entry of transplanted hepatocytes 
into the recipient’s liver tissues, and improved hepatocyte engraftment29.

Thus, in the present study, we hypothesized that the use of volatile inhalation anesthetics, especially isoflu-
rane, might be one explanation for the discrepancy between the results of animal experiments and the clinical 
outcomes of hepatocyte transplantation. In the present study, we developed a unique animal model for perform-
ing hepatocyte transplantation without general anesthesia. Using this model, we investigated the vasodilatory 
and anti-inflammatory effects of isoflurane on the intrahepatic distribution and engraftment of transplanted 
hepatocytes.

Results
Hepatocyte engraftment after transplantation with and without the short‑term inhalation of 
isoflurane.  Hepatocyte engraftment was evaluated by measuring the serum albumin levels in the recipient. 
In the ISO group, the serum albumin levels gradually increased throughout the whole study period. In contrast, 
in the AW group, the serum albumin levels appeared to plateau at 28 days after hepatocyte transplantation. 
The serum albumin levels of the ISO group (pre-transplantation: 7.8 ± 0.8 μg/mL, day 7: 35.7 ± 10.4 μg/mL, day 
14: 55.5 ± 15.4 μg/mL, day 21: 74.5 ± 27.8 μg/mL, day 28: 80.4 ± 26.9 μg/mL, day 35: 86.2 ± 26.2 μg/mL, day 42: 
91.8 ± 30.9 μg/mL, day 49: 93.0 ± 37.0 μg/mL, day 56: 94.3 ± 34.6 μg/mL) were significantly higher in comparison 
to the AW group (pre-transplantation: 7.7 ± 1.1 μg/mL, day 7: 25.0 ± 5.2 μg/mL, p = 0.031, day 14: 36.6 ± 8.8 μg/
mL, p = 0.004, day 21: 49.7 ± 15.4 μg/mL, p = 0.026, day 28: 56.6 ± 18.5 μg/mL, p = 0.031, day 35: 54.4 ± 16.4 μg/
mL, p = 0.009, day 42: 59.3 ± 18.3 μg/mL, p = 0.025, day 49: 61.7 ± 21.0 μg/mL, p = 0.034, day 56: 56.5 ± 21.2 μg/
mL, p = 0.014) in the present study (*p < 0.05, **p < 0.01) (Fig. 1).

The AST, ALT, and LDH levels after hepatocyte transplantation with and without the 
short‑term inhalation of isoflurane.  The serum AST levels of the ISO group (pre-catheter insertion: 
102.0 ± 20.8 U/l, 0 h: 242.8 ± 54.5 U/L, 1 h: 453.2 ± 108.2 U/L, 2 h: 709.8 ± 259.0 U/L, 4 h: 1541.3 ± 433.2 U/L, 
8  h: 1407.1 ± 409.5  U/L, 24  h: 512.0 ± 136.5  U/L) were significantly lower than those of the AW group (pre-
catheter insertion: 115.2 ± 11.4  U/L, 0  h: 46.7 ± 54.5  U/L, 1  h: 204.9 ± 64.8  U/L, 2  h: 1988.0 ± 533.3  U/L, 4  h: 
2625.2 ± 625.1 U/L, 8 h: 2200.8 ± 315.6 U/L, 24 h: 855.2 ± 224.6 U/L) in the present study (p < 0.0001) (Fig. 2A). 
The serum ALT levels of the ISO group (pre-catheter insertion: 97.2 ± 18.6  U/L, 0  h: 126.4 ± 31.6  U/L, 1  h: 
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Figure 1.   Hepatocyte engraftment after transplantation with and without the short-term inhalation of 
isoflurane. The serum albumin levels of the ISO group (dotted line, n = 10) were significantly higher than those 
of the AW group (solid line, n = 10) (*p < 0.05, **p < 0.01). The error bars represent standard deviation.

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000

pre 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

)L/
U(slevel

TLA
mureS

Time after transplantation (Hours)

AW ISO

0

5,000

10,000

15,000

20,000

25,000

Pre 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Se
ru

m
LD

H
le

ve
ls

(U
/L

)

Time after transplantation (Hours)

AW ISO

***

***

0

500

1,000

1,500

2,000

2,500

3,000

3,500

pre 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Se
ru

m
 A

ST
le

ve
ls 

(U
/L

)

Time after transplantation (Hours)
AW ISO

***

Figure 2.   The AST, ALT, and LDH levels after hepatocyte transplantation with and without the short-term 
inhalation of isoflurane. (A) The serum AST levels of the ISO group (dotted line, n = 9) were significantly 
suppressed in comparison to the AW group (solid line, n = 10) (***p < 0.0001). (B) The serum ALT levels of the 
ISO group (dotted line, n = 9) were significantly suppressed in comparison to the AW group (solid line, n = 10) 
(***p < 0.0001). (C) The serum LDH levels of the ISO group (dotted line, n = 9) were significantly suppressed in 
comparison to the AW group (solid line, n = 10) (***p < 0.0001). The error bars represent standard deviation.
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362.4 ± 80.8 U/L, 2 h: 563.6 ± 178.0 U/L, 4 h: 1508.9 ± 578.5 U/L, 8 h: 1458.7 ± 611.9 U/L, 24 h: 521.8 ± 177.7 U/L) 
were also significantly suppressed in comparison to the AW group (pre-catheter insertion: 102.8 ± 19.0 U/L, 0 h: 
118.4 ± 19.3 U/L, 1 h: 530.4 ± 212.2 U/L, 2 h: 1878.4 ± 568.8 U/L, 4 h: 2602.4 ± 868.8 U/L, 8 h: 2090.8 ± 470.4 U/L, 
24 h: 838.4 ± 217.7 U/L) (p < 0.0001) (Fig. 2B). Likewise, the serum LDH levels of the ISO group (pre-catheter 
insertion: 2300.4 ± 915.9 U/L, 0 h: 5312.4 ± 2101.7 U/L, 1 h: 4152.0 ± 2217.5 U/L, 2 h: 4308.9 ± 2596.6 U/L, 4 h: 
9054.7 ± 3285.4 U/L, 8 h: 2245.8 ± 453.0 U/L, 24 h: 2221.8 ± 428.3 U/L) were significantly lower than those of the 
AW group (pre-catheter insertion: 3054.8 ± 1743.0 U/L, 0 h: 5891.6 ± 2451.2 U/L, 1 h: 7502.8 ± 2654.1 U/L, 2 h: 
17,268.0 ± 5666.3 U/L, 4 h: 10,697.6 ± 4768.1 U/L, 8 h: 3022.4 ± 1632.8 U/L, 24 h: 3746.4 ± 2318.8 U/L) during the 
whole study period (p < 0.0001) (Fig. 2C).

Inflammatory mediators after hepatocyte transplantation with and without the short‑term 
inhalation of isoflurane.  In order to examine the influence of isoflurane inhalation on inflammatory 
mediators in the recipients after hepatocyte transplantation, serum samples were analyzed using the Milli-
plex MAP Rat Cytokine/Chemokine Magnetic Bead Panel. As shown in Fig. 3A–G, the serum levels of IL-1β 
(p < 0.01), IL-10 (p < 0.01), IL-18 (p < 0.01), MCP-1 (p < 0.05), RANTES (p < 0.01), Fractalkine (p < 0.01), and 
LIX (p < 0.05) in the ISO group were significantly downregulated in comparison to the AW group. Notably, the 
serum levels of MCP-1, IP-10, RANTES, LIX, and Fractalkine in the ISO group were already suppressed at time 0 
(before hepatocyte transplantation) in comparison to the AW group, suggesting that isoflurane may regulate the 
inflammatory status of liver tissues not only due to hepatocyte transplantation, but also due to catheter insertion 
into the portal vein.

Immunohistochemical staining of the transplanted hepatocytes.  The albumin-positive hepato-
cyte grafts showed a wide distribution in the liver sinusoid in both groups (Fig. 4A). The total numbers of albu-
min-positive hepatocyte grafts at 1 day after transplantation were comparable between the AW and ISO groups 
(Fig. 4B). Regarding the distribution of transplanted hepatocytes in recipient livers, no significant differences 
were observed between the two groups at zone 1 (AW: 95.0 ± 28.0 vs. ISO: 96.2 ± 40.4, p = 0.936), zone 2 (AW: 
103.2 ± 17.4 vs. ISO: 91.5 ± 6.8, p = 0.388), zone 3 (AW: 20.5 ± 10.8 vs. ISO: 20.0 ± 6.8, p = 0.810), or the portal vein 
(AW: 68.8 ± 66.2 vs. ISO: 108.2 ± 87.0, p = 0.471).

Ex vivo imaging evaluation of the transplanted hepatocytes.  The hepatocytes transplanted via the 
portal vein catheter were only distributed in the liver (data not shown). The survival rate of the fluorescent sig-
nals at 1 day after transplantation was comparable between the AW (89.3 ± 10.8%) and ISO (74.0 ± 7.2%) groups. 
The distribution pattern of the transplanted hepatocytes in the recipient livers appeared to be similar between 
the AW and ISO groups (Fig. 5A–D).

Evaluation of the ischemic liver tissue in the AW and ISO groups.  The ischemic regions, which were 
easily detected in the livers of both groups (Fig. 6A), tended to be more evident in the AW group (3.69 ± 1.05%) 
in comparison to the ISO group (2.42 ± 1.76%), although the difference did not reach statistical significance 
(p = 0.078) (Fig. 6B).

Discussion
In the present study, we demonstrated—for the first time—that short-term inhalation of isoflurane, which is one 
of the most popular and safe anesthetics, could improve the outcomes of intraportal hepatocyte transplantation. 
According to the detailed analyses in this study, the anti-inflammatory effects, rather than vasodilatory effects, 
of isoflurane appeared to be the main mechanism of the abovementioned benefits. Given that clinical hepatocyte 
transplantation is only performed without general anesthesia—unlike animal experiments in which it is only 
performed under general anesthesia—the large discrepancy between the results of animal experiments and the 
clinical outcomes of hepatocyte transplantation may logically be explained by the use of isoflurane.

This study clearly showed that several inflammatory mediators, including IL-1β, IL-10, IL-18, MCP-1, 
RANTES, Fractalkine, and LIX, were effectively suppressed by short-term inhalation of isoflurane in hepatocyte 
transplantation. In accordance with our findings, these beneficial anti-inflammatory effects of isoflurane have 
been widely reported in several fields other than hepatocyte transplantation26,30–33. In addition, Lee et al. recently 
reported that an alpha-1 antitrypsin improved hepatocyte engraftment by regulating IL-1β34. Taken together, 
these findings suggest that the anti-inflammatory effects of isoflurane may play an important role in promoting 
hepatocyte engraftment. On the other hand, the serum levels of IL-2, IL-5, IL-17, and IL-12p70 were upregu-
lated in the ISO group in comparison to the AW group. Although IL-2 and IL-17 were previously reported to 
be induced by isoflurane31,35 and sevoflurane (a similar type of volatile inhalation anesthetic to isoflurane)36, in 
the present study, all values of abovementioned mediators were well controlled to below the pre-values (before 
catheter insertion) throughout the study period, irrespective of the study group. Therefore, the exact reason why 
the levels of the abovementioned mediators were higher in the ISO group remains unknown; however, it is most 
likely based on individual differences among recipient animals.

Unexpectedly, in this study, the distribution of transplanted hepatocytes in the liver parenchyma was com-
parable between the ISO and AW groups. Considering the previous studies that reported that vasodilators 
effectively guide transplanted hepatocytes into the deep areas of recipient liver sinusoids and improve hepatocyte 
engraftment29,37, the vasodilatory effects of isoflurane might have been insufficient in this study. Therefore, iso-
flurane combined with useful vasodilators, such as nitroglycerine29, could synergistically contribute to successful 
hepatocyte transplantation.
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Figure 3.   Inflammatory mediator levels after hepatocyte transplantation with and without the short-
term inhalation of isoflurane. The serum levels of IL-1β (A), IL-10 (B), IL-18 (C), MCP-1 (D), RANTES 
(E), Fractalkine (F), and LIX (G) in the ISO group (dotted line, n = 9) were significantly downregulated in 
comparison to the AW group (solid line, n = 10) (*p < 0.05, **p < 0.01, ***p < 0.0001). The error bars represent 
standard deviation.
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In pancreatic islet transplantation, which shares many aspects with hepatocyte transplantation, poor engraft-
ment is strongly associated with an instant blood-mediated inflammatory reaction (IBMIR), characterized by 
the activation of both coagulation and complement cascades38,39. IBMIR has also been reported to occur in 
hepatocyte transplantation40, since hepatocytes as well as pancreatic islets express a substantial amount of tissue 
factor, which is well recognized as a potent initiator of IBMIR40,41. Thus, avoiding IBMIR is crucial for improv-
ing hepatocyte engraftment. We have thus far reported that gabexate mesylate42, low molecular weight dextran 
sulfate43,44, and C5a inhibitory peptide45 can be useful for inhibiting IBMIR. Given that IBMIR cannot theo-
retically be controlled by isoflurane, the combination between isoflurane and the abovementioned anti-IBMIR 
treatment would be an attractive approach for successful hepatocyte transplantation.

In the present study, the ischemic regions of the recipient livers in the ISO group tended to be smaller than 
those in the AW group, although the difference did not reach statistical significance (p = 0.07) (Fig. 6B). Cor-
roborating this finding, the serum levels of AST, ALT, and LDH, which are strongly associated with the dam-
age of hepatocytes46–48, were also significantly suppressed in the ISO group in comparison to the AW group 
(Fig. 2A–C). The ischemic tissues in the recipient livers are indirectly attributed to the occlusion of portal flow by 
transplanted hepatocytes. However, as shown in Figs. 4B and 5A–D, isoflurane could not contribute to improving 
the distribution of the hepatocyte grafts in the present study. One possible explanation for this discrepancy is that 
isoflurane exerts direct protective effects in liver tissue. Of particular interest, Schmidt et al. previously reported 
that isoflurane efficiently induces heme oxygenase 1, which has a strong cytoprotective effect on hepatocytes, 
and directly protects liver tissues from liver reperfusion injury49,50. In addition, Rao et al. reported that isoflu-
rane directly attenuates liver injury via the restoration of adenosine monophosphate-activated protein kinase/
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Figure 4.   Albumin staining of the transplanted hepatocytes in the AW and ISO groups. (A) A representative 
photomicrograph of the albumin staining. The red arrow shows an albumin-positive hepatocyte in zone 
1. Yellow arrows show albumin-positive hepatocytes in zone 2. The black arrow shows an albumin-
positive hepatocyte in zone 3. The white arrow shows an albumin-positive hepatocyte in the portal vein 
(magnification: × 100, scale bar: 200 μm, P portal vein radicles, CV central vein). Albumin-positive hepatocyte 
grafts were widely distributed in the liver sinusoid in both groups. (B) The total numbers of albumin-positive 
hepatocyte grafts at 1 day after transplantation were comparable between the AW (black bar, n = 6) and ISO 
(white bar, n = 6) groups. Regarding the distribution of the transplanted hepatocytes in the recipient livers, no 
significant differences were observed between the two groups in any area. The error bars represent standard 
deviation.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4241  | https://doi.org/10.1038/s41598-022-08237-6

www.nature.com/scientificreports/

mTOR-mediated hepatocellular autophagy51. Taken together, if short-term inhalation of isoflurane is combined 
with potent vasodilators, the ischemic regions of the recipient livers after hepatocyte transplantation may further 
decrease and contribute to enhancing hepatocyte engraftment.

Isoflurane has a number of advantages for clinical application. The safety of isoflurane is already established 
as it is one of the most common inhalation anesthetics and is widely used in daily practice. Isoflurane usually has 
not been used for hepatocyte transplantation, and it also has not been previously used for the transplantation 
of several other cell types, including pancreatic islet transplantation, since this aspect has been considered to be 
one of the most attractive advantages of cell transplantation. However, the present data suggest that isoflurane 
can be expected to improve the effectiveness of clinical hepatocyte transplantation at least to the level of animal 
experiments. Thus, it may be justified to replace the advantage of not requiring anesthesia with the use of iso-
flurane. However, in the close future, isoflurane may be replaced by some reagents that exert similar effects. It is 
also important to investigate whether venous anesthesia has the same effects as isoflurane, since in some cases 
although not so common, clinical hepatocyte transplantation has been performed under venous anesthesia.

In conclusion, the present study showed that the anti-inflammatory effects of isoflurane could efficiently 
contribute to successful hepatocyte engraftment. Thus, isoflurane combined with effective anti-coagulants and/

Figure 5.   Ex vivo imaging evaluation of the transplanted hepatocytes. (A,B) A representative ex vivo image of 
the liver in the AW group (n = 3) at 1 day after transplantation (A: downward view of the liver, B: upward view of 
the liver). (C,D) A representative ex vivo image of the liver in the ISO group (n = 4) at 1 day after transplantation 
(C: downward view of the liver, D: upward view of the liver). The distribution pattern of the transplanted 
hepatocytes in the recipient livers appeared to be similar between the AW and ISO groups. The error bars 
represent standard deviation.
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or vasodilators may be a simple yet strong candidate approach to improve the outcomes of clinical hepatocyte 
transplantation.

Materials and methods
Animals.  Rat livers were obtained from male inbred F344/NSLc rats (age 10–18 weeks; weight 180–330 g; 
Japan SLC Inc., Shizuoka, Japan). Analbuminemic rats (age 8–14 weeks; weight 180–280 g) were provided by 
Prof. Yuji Nishizawa (Asahikawa Medical College) and were bred at Tohoku University. These analbuminemic 
rats had a syngeneic background to the donor rats. All rats were maintained under a 12-h light/dark cycle with 
ad libitum access to food and water. All animals were handled according to the Animal Research: Reporting of 
In Vivo Experiments (ARRIVE) guidelines, the Guide for the Care and Use of Laboratory animals52 and the 
guidelines for animal experiments at Tohoku University. The experimental protocol of the present study (proto-
col ID: 2020 MdA-149 was approved by the animal experimental committee in the Tohoku University. All surgi-
cal procedures were performed under anesthesia, and every effort was made to relieve suffering. In the transplant 
procedure for the rats in the AW group, we used “Decapicone bags” (Braintree Scientific, Inc., Braintree, MA, 
USA), which is specifically designed for infusion or administration of several chemicals to the experimental 
animals, to transplant the hepatocytes with minimal restraint. Prior to initiating transplant experiments, we have 
fully acclimatized recipient rats to the “Decapicone bags”. Then, in order to relieve suffering from the recipient 
rats during transplant experiments even under no anesthesia, we have carefully optimized the amount of trans-
plant cells, the volume of transplant solutions, and the duration of transplant procedures, while carefully observ-
ing the animal’s appearance and body movements suggestive of pains. At the end of the observation period, all 
animals were euthanized by dissecting the superior vena cava under anesthesia.

Hepatocyte isolation.  Rat hepatocytes were isolated by two-step collagenase perfusion, as previously 
described13,14. First, Ca2+-free Hanks’ balanced salt solution (HBSS, Sigma-Aldrich, St. Louis, MO, USA) was 
perfused thorough the portal vein at a rate of 14 mL/min for 5 min. Second, Ca2+-containing HBSS with 0.5 mg/
mL of collagenase (Sigma type IV; Sigma-Aldrich) was perfused via the same route at a rate of 14 mL/min for 
7 min. The isolated cells were suspended in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich) containing 
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Figure 6.   Evaluation of ischemic liver tissues in the AW and ISO groups. (A) A representative photomicrograph 
of the ischemic region (red arrow) in the liver parenchyma (magnification: × 100, scale bar: 200 μm). (B) The 
ischemic liver tissues tended to be more evident in the AW group (3.69 ± 1.05%, n = 6) in comparison to the ISO 
group (2.42 ± 1.76%, n = 6), although the difference did not reach statistical significance (p = 0.07). The error bars 
represent standard deviation.
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10% fetal bovine serum (Equitech-Bio Inc., Kerrville, Texas, USA) and 4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid (HEPES) (Gibco, Waltham, MA, USA). The cells were then filtered through a #150 mesh (Ikemoto 
Scientific Technology, Tokyo, Japan) and purified by gradient centrifugation (50×g, 2 min, 4 °C). Density gradi-
ent centrifugation (50×g, 20 min, 4 °C) with concentrations of Percoll which is density medium for gradient 
centrifugation (GE Healthcare Biosciences, Pittsburgh, PA, USA) to obtain a highly purified cell population. 
Hepatocyte viability was evaluated by a trypan blue exclusion assay. For all experiments, we used hepatocytes 
with a viability exceeding 85%.

Catheter insertion.  The catheter was placed 1  day before transplantation. The portal vein catheter was 
made by inserting a 5-mm cutting polyimide tube (Furukawa Electric Co., Ltd., Tokyo, Japan) into the 10 cm 
cutting Silascon tube (Kaneka Corporation, Osaka, Japan). The catheter was flushed with a saline solution con-
taining 1% heparin Na (Mochida Pharmaceutical Co., Ltd. Tokyo, Japan). Small incisions were made in the right 
lateral abdomen of the recipient rat, then a median abdominal incision was made, and a subcutaneous tunnel 
to the lateral incision was created. After exposing and puncturing the portal vein, the catheter was fixed at the 
portal vein using medical grade Aron Alpha A (Sankyo) (Toagosei Co., Ltd., Tokyo, Japan). The catheter was 
guided out of the abdomen, through the right rectus abdominis muscle and further guided to the lateral abdo-
men via a subcutaneous tunnel. The abdomen was closed, and the catheter was implanted subcutaneously in the 
lateral abdomen (Fig. 7A,B).

Hepatocyte transplantation.  Hepatocytes (1.0 × 107) were spontaneously sedimented in the 5  mL 
macro tube (INA OPTICA, Osaka, Japan) on ice for 30 min to avoid damaging hepatocytes by gradient cen-
trifugation, and the supernatant medium was removed to make pellets. The pellets were slowly (approximately 
2 min) injected into the portal vein through the catheter using a 25-G needle with a gastight syringe (Hamilton 
Company, Reno, NV, USA). The catheter was exposed through the lateral abdominal wound. In the ISO group 
(n = 10), hepatocyte transplantation was performed under isoflurane at a concentration of 2.0 L/min for 1 h 
before transplantation, and 2 h after transplantation. In the AW group (n = 10), hepatocyte transplantation was 
performed without anesthesia. During hepatocyte transplantation the recipient rats did not show any attitudes 
to escape any signs suggestive of pains.

Serum albumin.  Blood samples were taken from a tail vein at pre-transplantation and every week after 
transplantation. All transplanted animals were evaluated until 8 weeks after transplantation. The serum albumin 
levels were quantified using a LBIS rat Albumin ELISA kit (AKRAL-220; Fujifilm Wako Shibayagi, Gumma, 
Japan).

Serum AST, ALT, and LDH.  In both groups (AW group: n = 10, ISO group: n = 9), blood samples were 
taken from a tail vein before catheter insertion, at pre-transplantation (time 0), and 1 h, 2 h, 4 h, 8 h, and 24 h 
after transplantation. The serum AST, ALT, and LDH levels were quantified using Fuji DRI-CHEM 7000 V (Fuji-
film Wako Shibayagi).

Milliplex assay.  In both groups (AW group: n = 10, ISO group: n = 9), the IL-1α, IL-1β, IL-2, IL-4, IL-5,IL-6, 
IL-10, IL-12p70, IL-13, IL-17, IL-18, , Eotaxin, Fractalkine, G-CSF, GM-CSF, GRO/KC, IFN-γ, IP-10, LIX, 
MCP-1, MIP-1, MIP-2, RANTES, and TNF-α and levels were measured using the Milliplex MAP Rat Cytokine/
chemokine Magnetic Bead Panel (Millipore Corporation, Billerica, MA, USA) with a Bioplex 200 system (Bio-
Rad, Hercules, CA, USA)16. Blood samples were taken from a tail vein before catheter insertion, at pre-trans-
plantation (time 0), and at 1 h, 2 h, 4 h, and 8 h after transplantation.

Immunohistochemical analyses.  In both groups (AW group: n = 6, ISO group: n = 6), recipient livers 
were retrieved at 24 h after transplantation. Recipient livers were fixed with 4% paraformaldehyde, and embed-
ded in paraffin for immunohistochemical staining. Albumin staining was performed using anti-albumin anti-
bodies (MP Biomedicals, Santa Ana, CA, USA) combined with the VECTASTAIN ABC system (Vector Labora-
tories, Inc., CA, USA). In both groups (AW group: n = 6, ISO group: n = 6), the number of albumin-positive cells, 
the location of albumin-positive cells in zones 1, 2, and 3, and the ratio of the ischemic area, which was estimated 
as the percentage of ischemic tissue in the total liver tissue were calculated by microscopy. In both groups, 6 sec-
tions per 1 recipient were examined. When analyzing the number of albumin-positive cells and the location of 
albumin-positive cells in zones 1, 2, and 3, 10 fields of view were randomly selected and counted. The location of 
albumin-positive hepatocytes was analyzed in zones 1, 2, and 3 by a pathologist using a blind method.

Ex vivo imaging.  A lipophilic tracer, 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanineiodide (Xeno-
Light DiR1, Caliper Lifesciences, Hopkinton, MA, USA), was used for labeling hepatocytes53. Hepatocytes were 
labeled according to the manufacturer’s protocol, with slight modifications. The hepatocytes were incubated 
with phosphate-buffered saline (PBS) containing 25 µg/mL XenoLight DiR (Caliper Lifesciences) for 15 min 
at 37 °C, and washed twice with PBS buffer, and then resuspended in transplantation medium. DiR-labeling 
hepatocytes were transplanted into F344 rats (1 × 107 cells/rat). In vivo imaging was performed at 3 h and 24 h 
after transplantation using an IVIS Spectrum CT imaging system (PerkinElmer, Inc., Waltham MA, USA). DiR 
fluorescent signals were detected at wavelengths of 745 nm (excitation) and 800 nm (emission). The regions 
of interest (ROIs) were analyzed, and total quantification of fluorescent signal was quantified using the Living 
Image software program (PerkinElmer Co., Ltd, Inc.). The ROIs at 24 h were shown as the percentage in com-
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parison to the ROIs at 3 h after transplantation. The rats were then euthanized at the 24 h time point and the liver 
was harvested for ex vivo imaging. Imaging of the middle and left lobes of the liver was performed to confirm the 
localization of transplanted hepatocytes.

Statistical analyses.  All values were expressed as the mean ± standard deviation. All statistical analyses 
were performed using the JMP pro 15 software program (SAS institute Inc., Carry, NC, USA). The serum albu-
min levels were analyzed by Mann–Whitney U test. The serum levels of AST/ALT/LDH were analyzed by a two-
way analysis of variance (ANOVA). The number of albumin-positive cells and the ratio of the ischemic area were 
analyzed using a paired Mann–Whitney U test. The serum levels of cytokines were analyzed by Mann–Whitney 
U test. p values of < 0.05 were considered to indicate statistical significance.

Data availability
All data generated or analyzed in the present study were included in this published manuscript.

Figure 7.   Pictures of catheter insertion. The AW and ISO group were inserted catheter under isoflurane at a 
concentration of 2.0 L/min with no adjunctive analgesics. (A) Under isoflurane anesthesia, a 1 cm skin incision 
was made in the right lateral abdomen of the recipient rat, then a median abdominal incision was made. A 
subcutaneous tunnel was created to connect the median abdominal incision to the lateral abdominal incision. 
(B) Under isoflurane anesthesia, the catheter was inserted into the portal vein and fixed using medical Aron 
Alpha. The catheter was guided out of the abdomen, through the right rectus abdominis muscle and further 
guided to the lateral abdomen via a subcutaneous tunnel.
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