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Abstract

Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm

intelligent optimization algorithms have received much attention in recent years. Both of

them have shown outstanding performance for solving NP-Hard optimization problems.

However, they also suffer dramatic performance degradation for some complex high-dimen-

sional optimization problems. Through a lot of experiments, we find that the HS and TLBO

have strong complementarity each other. The HS has strong global exploration power but

low convergence speed. Reversely, the TLBO has much fast convergence speed but it is

easily trapped into local search. In this work, we propose a hybrid search algorithm named

HSTLBO that merges the two algorithms together for synergistically solving complex optimi-

zation problems using a self-adaptive selection strategy. In the HSTLBO, both HS and

TLBO are modified with the aim of balancing the global exploration and exploitation abilities,

where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly

exploit high-precision solutions in the known regions. Our experimental results demonstrate

better performance and faster speed than five state-of-the-art HS variants and show better

exploration power than five good TLBO variants with similar run time, which illustrates that

our method is promising in solving complex high-dimensional optimization problems. The

experiment on portfolio optimization problems also demonstrate that the HSTLBO is effec-

tive in solving complex read-world application.

1 Introduction

With the scientific and social progress, new complex problems are more and more encoun-

tered in the fields of science and engineering. Especially, many high-dimensional optimization

problems in engineering design, production scheduling and scientific calculation need

urgently to be solved with high performance and high efficiency, for which there are three

challenges: the first one is the very large search space owing to the very high dimensional prob-

lems (e.g., >500), which makes the enormous computation burden; the second one is the large
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number of modals (multi-extremum points), which makes the search algorithm be easily

trapped into local search; the third one is the particularity of optimization problem that may

be discontinuous, non-differentiable and even have no objective function, for which the tradi-

tional mathematical optimization algorithms are powerless due to the requiring of substantial

gradient information. Therefore, it is of great challenge to discover the globally optimal solu-

tion in an efficient time for solving a complex multimodal optimization problem with more

than 1000 dimensions, possibly infinite number of local minima and non-differentiable.

To address complex optimization problems, the swarm intelligent algorithms, mimicking

the collective behavior of decentralized, self-organized systems, natural or artificial, have

received much attention in recent years, most of which are nature inspired, such as genetic

algorithm (GA)[1] inspired by biological evolution, particle swarm optimization (PSO)[2]

mimicking the foraging process of bird flock, differential evolution (DE)[3], artificial bee col-

ony (ABC)[4], Symbiotic organisms Search (SOS)[5] and so on. Comparing with traditional

mathematical optimization algorithms, the swarm intelligent optimization algorithms are not

limited by requiring substantial gradient information and not dependent on an initialization.

Both Harmony Search (HS) [6–7] and Teaching-Learning-Based Optimization (TLBO) [8–

9] are new swarm intelligent optimization methods that have attracted increasing interests

owing to their excellent characteristics, such as less parameters, simplicity, utilizing real-num-

ber encoding and fewer mathematical requirements and so forth. The advantage of HS is that

it maintains population diversity very well during the search process; it has strong exploration

power for exploring the unknown space. TLBO is powerful in obtaining extraordinary preci-

sion solution due to having very strong convergence ability. However, the HS and TLBO algo-

rithms also have some limitations for solving high-dimensional optimization problems with

multimodality. The HS has disadvantages on convergence speed, precision of globally optimal

solution over TLBO; conversely the TLBO is easy to fall into a local search owing to conver-

gence speed very rapid, which easily results in globally optimal solution lost for some multi-

modal problems.

In the case, several HS variants [10–25] and modified TLBO algorithms [26–29] have been

presented to improve the performance for solving complex optimization problems in recent

years, such as, SGHS[11], IHS[12], ITHS[14], EHS[15], NGHS[18], DIHS[19], NDHS[20],

DSHS[23], ATLBO [26], WTLBO[27], TLBO_GC[28], ITLBO[29] and so on [30–31]. How-

ever, these improved variants still are not competent enough to tackle the optimization prob-

lems with high-dimensionality (larger than 500) and multimodality. For example, the solution

precision of IHS is not satisfactory; NGHS, SGHS and NDHS are easy to trap into local

search. EHS and DSHS require taking much time for high-dimensional problems; WTLBO,

TLBO_GC and ITLBO cannot avoid premature convergence for complex optimization prob-

lems with multimodality. The reason is these state-of-the-art intelligent algorithms have not

considered an important that, with the increase of dimensionality, the probability that all val-

ues of one of dimensions in population became assimilated and lost the diversity will increase,

which will make the algorithm lose exploration power if the algorithm has not good distur-

bance strategy for escaping from the local search. In this work, we find from the merit and

demerit of HS and TLBO that the HS and TLBO have many complementary performance each

other. We think it is a viable way in solving the high-dimensional optimization problems with

multimodality if a good integration of HS and TLBO can be realized.

Commonly, to solve multimodal optimization problems that have one globally optimal

solution and many local minimum (maximum) values by employing swarm intelligent algo-

rithm, the overarching goal is to effectively implement the balance between exploration power

and exploitation power, where the mission of exploration is to discover the unexplored regions

at the early stage of search process, and the exploitation aims to obtain high precision optimal

HSTLBO

PLOS ONE | https://doi.org/10.1371/journal.pone.0175114 April 12, 2017 2 / 23

(No. fckt201509). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0175114


solution in a known region that has been found in the exploration stage. As a consequence,

balancing the exploration and the exploitation is very important for solving a high-dimen-

sional optimization with multimodality. Generally, the exploration power is strongly required

before discovering the region in which the globally optimal solution is contained inside, how-

ever, after the globally optimal region has been found, the exploitation power should be inten-

sified immediately and the exploration power is degraded gradually.

To address the balance, in this study, we propose a hybrid optimization algorithm (HSTLBO)

based on HS and TLBO, in which a self-adaptive selection strategy is designed to balance the

exploration power and the exploitation power. At the early stage of search, the HS algorithm

obtains higher probability for exploring the region that contains the globally optimal solution.

When the globally optimal region might have been located, the TLBO algorithm begins to

obtain higher probability at the later stage of search process for intensifying the local search

and exploiting high precision solution. In the HSTLBO, a self-adaptive selection probability is

used to choose HS or TLBO in terms of the population diversity and update-success-rate. The

update-success-rate denotes the proportion that the new generated solutions are superior to the

old ones, which mean the rate that a new generated solution can successfully replace the old one

in one generation.

The rest of this paper is organized as follows: Section 2 introduces the HS and TLBO algo-

rithm. Hybrid HSTLBO algorithm is proposed and self-adaption selection strategy is analyzed

in Section 3. In Section 4, the numerical experiments on twenty complex benchmark test

functions are performed, the results are analyzed by comparing and statistical test. And the

convergence of HSTLBO is also investigated. In Section 5, HSTLBO is used to solve portfolio

optimization problem. Section 6 concludes this work.

Some symbols are explained as Box 1.

2 Harmony Search and Teaching-Learning-Based Optimization

2.1 Optimization model

min
X

f ðXÞ;X ¼ ðx1; x2; . . . ; xDÞ

S:t: xi 2 xL
i ; x

U
i

� �
; i ¼ 1; 2; . . . ;D

Where, X consists of D decision variables (x1, x2, . . ., xD), D denotes the dimensionality (the

number of decision variables) of the optimization problem, xi (i = 1, 2, . . ., D) represents the ith

decision variable. xU
i and xL

i separately indicate the upper and lower bound of xi.

2.2 HS algorithm

HS algorithm mimics the process of improvising a musical harmony, in which X denotes

the harmony, xi(i = 1, 2,. . ., D) indicates the note of harmony, D is the number of notes in a

harmony. Harmony memory (HM) contains HMS harmonies: {X1, X2, . . ., XHMS}, where

Xj ¼ ðxj
1; x

j
2; . . . ; xj

DÞ, HMS denotes the population size. The pseudo code of HS algorithm is as

Fig 1.

In standard HS, three operators (harmony memory consideration, pitch-adjusting and ran-

dom disturbance) are employed to optimize the harmonies in HM (population), which are

good at exploring new region of search space [14]. However, due to the absence of learning-

operator, the convergence speed of HS is much slower than that of TLBO.

HSTLBO
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2.3 TLBO algorithm

A new swarm intelligent optimization algorithm, TLBO, is proposed by R.V.Rao in 2012,

which is inspired by the teaching and learning process of a class [8]. In TLBO, The class

{X1, X2,. . ., XNP} is composed of one teacher and some learners, where Xj ¼ ðxj
1; x

j
2; . . . ; xj

DÞ

(j = 1, 2,. . ., NP) (see Box 1) denotes the jth learner, NP is the class size, D represents the num-

ber of major subjects in the class; the xj
i represents the learning status of jth learner on ith major

subject. The optimization process of TLBO is divided into two stages: “teacher phase” and

“learner phase”.

Teacher phase. In the teacher phase, the learners increase their knowledge depending on

the teacher who tries to improve the mean ability of all learners. The teaching operator is as fol-

low,

Xj;new ¼ Xj;old þ r � ðXteacher � TF �MÞ

M ¼
1

NP

XNP

j¼1

Xj

TF ¼ round ð1þ randð1;DÞÞ

Where Xj,new and Xj,old denote the ith learner’s learning status after and before learning from

teacher Xteacher, TF is teaching factor, r is a uniformly distributed random vector in the range

[xL, xU]. M denotes the mean knowledge level of all learners.

Learner phase. In the learner phase, each learner increases knowledge depending on com-

municating with other learners. The learning operator is as follow,

Xj;new ¼
Xj;old þ r � ðXr � Xj;oldÞ; f ðXrÞ < f ðXj;oldÞ

Xj;old þ r � ðXj;old � XrÞ; otherwise

(

Where r(r 6¼ j) is a random integer in the range [1, NP].

3. Proposed HSTLBO algorithm

To balance the exploration power and the exploitation power during the searching process, we

propose a complementary HSTLBO algorithm.

3.1 HSTLBO algorithm

The flow chart of HSTLBO algorithm is as Fig 2.

Box 1

NP - -The population size which is equal to HMS.

Tmax - -The maximum evaluation times of objective function.

t - -The current iteration times.

SR - -the selection rate that new generated harmony insteads of the worst harmony.

T - -The cycle length for recalculating the SR.

r - -An uniform distributed random number between 0 and 1.

c1/ c2 --The times of updating old solutions successfully of HS/ TLBO in the tth

iteration.

HSTLBO
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In the HSTLBO algorithm, we merge HS and TLBO together to compensate for each other’s

deficiencies, where the HS is mainly used for exploring the search space, and the TLBO aims

to speed up the exploitation process. In the search process of HSTLBO, the HS and the TLBO

compete for the opportunity in each iteration according to a self-adaptive selection rate (SR)

(see Box 1). The selection rate (SR) is dynamically changed in terms of the success times that

new generated solution is superior to the worst solution of population during T cycle. In the

beginning stage, the HS can obtain more opportunity for exploring the unknown regions,

Fig 1. Pseudo code of standard HS algorithm.

https://doi.org/10.1371/journal.pone.0175114.g001

HSTLBO

PLOS ONE | https://doi.org/10.1371/journal.pone.0175114 April 12, 2017 5 / 23

https://doi.org/10.1371/journal.pone.0175114.g001
https://doi.org/10.1371/journal.pone.0175114


when the region containing the globally optimal solution has been found in the later stage, the

TLBO will obtain more opportunity for exploiting high-precision solution.

For a new unknown problem, exploring the unknown space in the beginning stage is the

first consideration for the HSTLBO algorithm, for which the HS is a good choice. As a conse-

quence, a high selection rate SR (� 0.95) is assigned to HS algorithm for exploring unknown

regions in the first half of search. In the remaining time, the value of SR will continue to adapt

the population status. If the global region has not been found before or the space distribution

Fig 2. Flow chart of HSTLBO.

https://doi.org/10.1371/journal.pone.0175114.g002
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of population is still extensive, the HS might be still able to obtain a high SR for exploring the

unknown areas. However, if the HS obtains no or very low selection rate, (in other words, the

TLBO has very high probability), the diversity of population might be lost quickly for high-

dimensional optimization problems owing to the quick convergence of TLBO. Therefore, to

keep the diversity of population in a certain level, in the second half of stage, the HS is also

given more than 0.3 probabilities to run.

In the hybrid HSTLBO algorithm, both HS and TLBO are modified as follows.

3.2 Modified HS

In the modified HS algorithm (see Fig 3), all the steps are identical to the steps of standard HS

algorithm except for step 3 (improvising a new harmony). The key difference of step 3 between

modified HS and standard HS are:

1. Standard HS algorithm produces a new harmony in which each element (decision variable)

is generated based on three HS rules (a. harmony memory consideration; b. pitch-adjusting;

c. randomly disturbance). In our proposed algorithm, the producing process of new har-

mony is similar to that of DIHS [19]. Dynamic selection strategy is adopted to select some

elements of the worst harmony with probability SP for adjusting. The formula of SP is

expressed in Eq (1).

SP ¼ min
100

D
�

100

D
�

30

D

� �

�
t

Tmax

� �2

; 1

" #

ð1Þ

The selection probability SP is adjusted dynamically according to current iteration t, which

is introduced in DIHS [19].

2. In the standard HS, parameters PAR and fw are constant values. The modified HSTLBO

algorithm adopts dynamic strategies to change PAR and fw for balancing the exploration

power and the exploitation power (see Eqs (2) and (3)). The fw is divided into two stages. In

the first half of the generation, the fw is dynamically changed with the increasing of itera-

tion, which is the same as the bw in IHS [12]. The overarching goal of fw is to maintain

strong exploration power. In the second half of generations, in order to adapt the character-

istics of problems, the value of fw is changed adaptively in terms of the values of individuals.

PAR ¼ PARmin þ ðPARmax � PARminÞ �
t

Tmax
ð2Þ

fwðiÞ ¼
fwmaxðiÞ � exp

t
Tmax

� �2

� log
fwminðiÞ
fwmaxðiÞ

 !

; t < Tmax

xRa
i � xnew

i

�
�

�
�; t � Tmax

; i ¼ 1; 2; . . . ;D ð3Þ

8
>>><

>>>:

3.3 Modified TLBO

The primary difference between standard TLBO and modified TLBO (see Fig 4) is as follows.

1. In standard TLBO, M is equal to the mean value of learners X. In modified TLBO, it is a

combination vector in which each subject M(i) is randomly chosen from the ith subject of

all learners.

HSTLBO
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2. In each iteration. TLBO performs teacher phase and learner phase, respectively. The modi-

fied TLBO only randomly chooses either teacher phase or learner phase to perform.

3. In standard TLBO, all dimensions of Xnew are produced by learning from teacher or other one

learner. Whereas, in modified TLBO, only a portion of dimensions of Xnew are generated by

learning from teacher or other one learner, and other dimensions inherit from Xold directly,

which is because an excellent learner is also imperfect on some subjects, selective learning on

parts of subjects is more effective for improving knowledge level of learner than learning all

subjects from one learner. The selection probability SP is shown in Eq (1), the selection of

parameters has been explained and analyzed in our proposed DIHS algorithm [19].

4. As we known, in our real lives, selective learning from multiple excellent learners on some

subjects is more effective for improving our knowledge level than learning all subjects only

from one excellent learner. As a consequence, in the modified TLBO, the learner on each

subject will select one other learner from population for better learning new knowledge.

Fig 3. Pseudo code of modified HS algorithm.

https://doi.org/10.1371/journal.pone.0175114.g003
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4. Experimental study

To investigate the performance of proposed HSTLBO algorithm, numerical simulation experi-

ments on twenty benchmark functions [32–35] are tested. Parameter settings are listed for all

compared HS and TLBO variants in Table 1.

Fig 4. Pseudo code of modified TLBO algorithm.

https://doi.org/10.1371/journal.pone.0175114.g004
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Twenty well-known functions are listed in Table 2, which include 16 multimodal func-

tions (F1-F6, F8, F12-F20) and 4 complex uni-modal problems (F7, F9-F11), 4 hybrid functions

(F17-F20) and 10 shift functions (F9-F18).

In the simulation experiment, all the test programs were performed on Windows XP 32 sys-

tem with Intel(R) Core(TM) i3-2120 CPU@3.30 GHz and 4 GB RAM, and all the program

codes were written in MATLAB R2014b.

In our simulation experiments, the dimension of test functions is set to 1000 and each func-

tion is run independently 20 times with 5E+6 function evaluations (FEs) as the termination

Table 1. Algorithm parameter settings.

Algorithm Population size HMCR PAR fw (bw)

HS 10 0.99 0.33 0.01

IHS 10 0.90 PARmax = 0.99; PARmax = 0.1 fwmax = (xU-xL)/1000; fwmin = 0.0001

ITHS 10 0.99 PARmax = 1; PARmax = 0 /

NDHS 10 0.99 PARmax = 0.99; PARmax = 0.1 /

DSHS 10 0.99 PARmax = 0.99; PARmax = 0.1 /

EHS 10 0.99 0.33 /

HSTLBO 10 0.99 PARmax = 0.9; PARmax = 0.1 fwmax = (xU-xL)/1000; fwmin = 1e-10

Algorithm Population size

TLBO 10 /

ATLBO 10 /

WTLBO 10 wmin = 0.1,wmax = 0.9

TLBO-GC 10 /

ITLBO 10 Pc = 0.8; M = 5; (rearrange) m = 100

https://doi.org/10.1371/journal.pone.0175114.t001

Table 2. Sixteen complex benchmark functions (F1-F20).

Function Name Search Range Optimum Value Function Type

Multi/Shifted/Separable/Hybrid

F1:Ackley Function [–32,32] D X* = (0,0,� � �,0), F(X*) = 0 Y/N/Y/N

F2: Griewank Function [–600,600] D X* = (0,0,� � �,0), F(X*) = 0 Y/N/N/N

F3:Levy Function [–10,10] D X* = (1,1,� � �,1), F(X*) = 0 Y/N/N/N

F4:Michalewics Function [-10, π] D unknown Y/N/N/N

F5:Rastrigin Function [-5.12,5.12]D X* = (0,0,� � �,0), F(X*) = 0 Y/N/N/N

F6:Schwefel 2.26 Function [–512,512]D X* = (420.9687,420.9687,� � �,420.9687), F(X*) = 0 Y/N/N/N

F7:Rosenbrock Function [–100,100]D X* = (1,1,� � �,1), F(X*) = 0 N/N/N/N

F8:Schwefel2.22 Function [–5,5]D X* = (0,0,� � �,0), F(X*) = 0 Y/N/N/N

F9:Sphere Shift Function [–100,100]D X* = o, F(X*) = 0 N/Y/N/N

F10:Schwefel_Shift Function [–100,100]D X* = o, F(X*) = 0 N/Y/N/N

F11:Rosenbrock shift Function [–100,100]D X* = o, F(X*) = 0 N/Y/N/N

F12:Griewank Shift Function [–600,600]D X* = o, F(X*) = 0 Y/Y/N/N

F13:Rastrigin Shift Function [-5.12,5.12]D X* = o, F(X*) = 0 Y/Y/N/N

F14:Ackley Shift Function [–32,32]D X* = o, F(X*) = 0 Y/Y/N/N

F15:FastFractal ‘DoubleDip’ unction [–1,1]D Unknown Y/Y/N/N

F16: Schaffer Shift function [–100,100]D X* = o, F(X*) = 0 Y/Y/N/N

F17: Extended_f10 Shift Function [–100,100]D x* = o, F21(x*) = 0 Y/Y/N/Y

F18: Bohachevsky Shift Function [–15,15]D x* = o, F22(x*) = 0 Y/Y/N/Y

F19: Extended Function [–100,100]D x* = o, F21(x*) = 0 Y/N/N/Y

F20: Bohachevsky Function [–15,15]D x* = o, F22(x*) = 0 Y/N/N/Y

https://doi.org/10.1371/journal.pone.0175114.t002
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condition. The precision (=|f(Xbest)−f(X�)|) (Prec), standard deviation of the precision (Std

dev) and mean run time (Mtime) for each function are calculated over 20 independent runs,

where Xbest is the best solution in population when the terminate condition is meet, and X� is

the global optimal solution.

4.1. Comparison with state-of-the-art HS variants

HSTLBO is compared with standard HS algorithm and four state-of-the-art HS variants: IHS

[12], ITHS [14], EHS [15], and NGHS [18]. To ensure the comparison fair, for all compared

algorithms, each test function is run 20 times independently with 5E+6 FEs as the terminal

criterion. The parameters of five HS variants are set the same value as the recommended value

of original paper. The experimental results of six compared algorithms are summarized in

Table 3. Fig 5 displays the convergence curve and box plots of distribution of optimal solutions

after 20 independent runs are displayed in Fig 6.

1. Quality of solution. For twenty test functions with dimension of 1000, the results provided

by the five HS variants are far away from the global optimal solution. However, it can be

found from Table 3 that HSTLBO is obviously superior to other algorithms, and the opti-

mal solutions obtained by the proposed algorithm are very close to the global optimal solu-

tions for all test functions except for F7,F10,F11,F15-F17.

2. CPU runs time. It can be seen from Table 3 that the HSTLBO algorithm takes less run time

for all 20 test functions than other five HS variants.

3. Robustness. From Fig 5, the convergence curves of the HSTLBO is much active in whole

search process, which demonstrates that the HSTLBO algorithm can maintain the strong

search ability during the search process. Nevertheless, the other HS algorithms are easy con-

vergence premature, which demonstrate the algorithms lose the search ability owing to the

stagnation of the search. The boxplots (see Fig 6) indicate that optimal solutions of the

HSTLBO have a more narrow distribution than those of other algorithms, which illustrates

that our method has strong stability and robustness on 20 runs.

4.2 Comparison with TLBO variants

In this section, we compare the HSTLBO with standard TLBO and four state-of-the-art TLBO

variants: ATLBO [26], WTLBO [27], TLBO_GC [28], and ITLBO [29]. In ATLBO, elitist strat-

egy, weight function and acceleration coefficient are employed to improve the performance.

WTLBO introduces a weighted TLBO algorithm for balancing the exploration and the exploi-

tation. In TLBO_GC, a global crossover strategy is proposed for solving global optimization

problems. ITLBO adopts a local learning and self-learning methods for improving the global

search ability of TLBO.

To ensure the comparison fair, for all compared TLBO algorithms, each test function is run

20 times independently with 5E+6 FEs as the terminal criterion. The experimental results of

six compared algorithms are summarized in Table 4. Fig 7 displays the convergence curves

and Fig 8 shows the distribution of optimal solutions on 20 independent runs for six TLBO

algorithms using box plots.

1. Quality of solution. In twenty test functions, our method is the winner on 13 functions and

is very close to the winner algorithm on other seven functions. Especially, for the complex

multimodal functions, such as F3, F6, F9, F13-F15 and F18, the precision of proposed algo-

rithm is much better than other five TLBO variants. For functions F1, F2, F5, F7, F8 and F19,

HSTLBO
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Table 3. Experimental results of HS, IHS, ITHS, NGHS, EHS and HSTLBO over 20 independent runs on 20 test functions of 1000 variables with 5E

+6 FEs. “Prec” and “Std Dev” denote the precision and standard deviation of the function error values in 20 runs, respectively. Time(s) is the mean run time

over 20 independent runs on 5000000 FEs.

ALG Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s)

F1~F4 HSTLBO 1.34E-

13

4.05E-

15

3.48E

+02

9.33E-

16

6.08E-

17

3.94E

+02

2.18E-

26

1.53E-

27

9.20E

+02

-9.93E

+02

3.96E-

01

1.18E

+03

HS 9.34E

+00

1.44E-

01

7.25E

+02

5.13E

+02

1.39E

+01

8.68E

+02

1.35E

+02

6.20E

+00

1.28E

+03

-2.77E

+02

3.55E

+00

1.63E

+03

IHS 8.55E

+00

8.71E-

02

1.03E

+03

3.71E

+02

2.75E

+01

1.19E

+03

1.39E

+02

4.96E

+00

1.66E

+03

-8.37E

+02

5.79E

+00

1.91E

+03

ITHS 1.62E

+00

1.57E

+00

8.58E

+02

1.45E

+01

2.45E

+01

1.00E

+03

6.96E

+01

7.75E

+00

1.50E

+03

-8.16E

+02

5.46E

+00

1.81E

+03

NGHS 1.01E

+01

8.98E-

02

6.47E

+02

6.29E

+02

1.60E

+01

7.51E

+02

2.21E

+02

7.21E

+00

1.31E

+03

-4.51E

+02

3.25E

+00

1.45E

+03

EHS 1.33E

+01

1.14E-

01

1.39E

+03

1.64E

+03

5.89E

+01

1.52E

+03

2.33E

+03

1.01E

+02

2.04E

+03

-2.43E

+02

1.30E

+00

2.22E

+03

F5~F8 HSTLBO 4.37E-

12

1.63E-

12

2.63E

+02

3.91E-

09

1.77E-

10

3.29E

+02

1.89E

+03

8.93E

+01

2.33E

+02

6.09E-21 1.48E-

21

2.13E

+02

HS 1.44E

+03

7.50E

+00

6.46E

+02

3.18E

+04

1.73E

+03

7.58E

+02

1.03E

+05

5.88E

+03

5.55E

+02

2.02E+02 1.62E

+00

5.88E

+02

IHS 1.57E

+03

3.98E

+01

1.03E

+03

3.17E

+04

1.79E

+03

9.43E

+02

9.35E

+04

1.25E

+03

9.12E

+02

1.37E+02 3.53E

+00

8.99E

+02

ITHS 6.39E

+00

4.60E

+00

8.85E

+02

3.79E

+04

3.35E

+03

9.87E

+02

7.21E

+04

1.61E

+04

8.64E

+02

1.66E+01 1.16E

+01

8.13E

+02

NGHS 4.70E

+03

7.99E

+01

5.76E

+02

1.33E

+05

1.57E

+03

6.88E

+02

9.72E

+04

7.18E

+03

4.86E

+02

2.98E+02 5.58E

+00

4.75E

+02

EHS 1.13E

+04

6.36E

+01

1.35E

+03

3.07E

+05

2.37E

+03

1.22E

+03

3.03E

+06

1.58E

+05

1.18E

+03

3.89E+02 5.60E

+00

1.13E

+03

F9~F12 HSTLBO 5.55E-

24

3.40E-

25

2.08E

+02

2.81E

+01

5.73E-

01

2.11E

+02

1.32E

+03

1.85E

+02

2.58E

+02

5.37E-15 3.73E-

16

4.90E

+02

HS 6.77E

+04

1.24E

+03

5.69E

+02

5.55E

+01

7.77E-

01

5.32E

+02

2.17E

+09

1.68E

+08

6.02E

+02

6.02E+02 2.32E

+01

9.02E

+02

IHS 5.39E

+04

1.21E

+03

9.28E

+02

6.05E

+01

9.71E-

01

8.85E

+02

2.14E

+09

1.45E

+08

9.72E

+02

4.70E+02 1.66E

+01

1.26E

+03

ITHS 4.38E

+05

1.54E

+04

7.96E

+02

6.52E

+01

5.59E-

01

8.02E

+02

8.48E

+10

4.63E

+09

8.62E

+02

3.84E+03 1.90E

+02

1.16E

+03

NGHS 7.70E

+04

4.15E

+03

4.67E

+02

4.40E

+01

4.25E-

01

4.63E

+02

1.63E

+09

1.61E

+08

5.40E

+02

6.97E+02 6.20E

+00

7.50E

+02

EHS 1.63E

+05

6.80E

+03

1.16E

+03

1.28E

+02

1.91E

+00

1.13E

+03

5.22E

+10

4.04E

+09

1.17E

+03

1.46E+03 5.44E

+01

1.41E

+03

F13~F16 HSTLBO 5.90E-

14

1.27E-

14

2.72E

+02

8.11E-

13

2.43E-

14

3.51E

+02

3.02E

+02

9.86E

+00

1.56E

+03

6.63E+02 3.75E

+01

2.13E

+03

HS 1.58E

+03

1.94E

+01

6.25E

+02

9.56E

+00

1.23E-

01

7.27E

+02

3.04E

+03

3.33E

+01

1.87E

+03

4.00E+03 4.54E

+01

2.39E

+03

IHS 1.75E

+03

3.12E

+01

8.50E

+02

9.15E

+00

2.67E-

01

8.44E

+02

1.91E

+03

2.50E

+01

2.25E

+03

3.32E+03 8.09E

+01

3.13E

+03

ITHS 4.53E

+03

1.79E

+02

1.02E

+03

1.58E

+01

1.48E-

01

8.74E

+02

3.03E

+03

7.55E

+01

2.10E

+03

4.78E+03 1.25E

+02

2.85E

+03

NGHS 4.93E

+03

1.10E

+02

6.86E

+02

1.01E

+01

1.26E-

01

5.75E

+02

4.20E

+03

3.28E

+01

1.92E

+03

5.29E+03 7.02E

+01

2.47E

+03

EHS 1.01E

+04

6.64E

+01

1.20E

+03

1.31E

+01

8.10E-

02

1.07E

+03

8.03E

+03

5.64E

+01

2.77E

+03

6.65E+03 7.44E

+01

3.45E

+03

(Continued )
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Table 3. (Continued)

ALG Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s)

F17~F20 HSTLBO 6.53E

+02

2.48E

+01

2.37E

+03

1.02E-

15

1.99E-

16

7.10E

+02

3.94E-

10

6.58E-

11

2.04E

+03

0.00E+00 0.00E

+00

3.86E

+02

HS 4.08E

+03

4.39E

+01

2.56E

+03

4.57E

+03

1.80E

+02

1.22E

+03

4.06E

+03

1.16E

+02

2.40E

+03

4.64E+03 1.22E

+02

9.94E

+02

IHS 3.31E

+03

7.20E

+01

2.87E

+03

3.56E

+03

1.84E

+02

1.59E

+03

3.33E

+03

5.52E

+01

2.72E

+03

3.46E+03 1.08E

+02

1.31E

+03

ITHS 4.73E

+03

7.23E

+01

2.73E

+03

1.41E

+04

3.94E

+02

1.32E

+03

3.85E

+02

2.09E

+02

2.48E

+03

7.33E+02 5.46E

+02

1.09E

+03

NGHS 5.38E

+03

5.13E

+01

2.69E

+03

5.54E

+03

2.14E

+02

1.02E

+03

5.33E

+03

1.45E

+02

2.43E

+03

5.28E+03 2.05E

+02

7.25E

+02

EHS 6.61E

+03

7.71E

+01

3.45E

+03

1.35E

+04

5.02E

+02

1.81E

+03

6.68E

+03

6.27E

+01

3.21E

+03

1.26E+04 1.94E

+02

1.46E

+03

https://doi.org/10.1371/journal.pone.0175114.t003

Fig 5. Convergence curves of four functions.

https://doi.org/10.1371/journal.pone.0175114.g005
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the optimal solution of our method is worse than those of other algorithms, however, the

solutions of our method are on the verge of global optimal solutions, which are acceptable

to the application.

2. Robustness. It can be seen from Fig 7 that, comparing with five TLBO algorithms, the conver-

gence curves of the HSTLBO is also much more active in the search process than those of

other TLBO algorithms, and the HSTLBO has strong exploitation power (the convergence

curve keeps decreasing) in the later stage of search process, which demonstrates that the

HSTLBO can keep diverse distribution of population during the search process. From the box-

plots (see Fig 8), we can find the HSTLBO is more stable on obtaining the optimal solution.

4.3 Statistical test

To investigate the significant difference between our method and ten compared algorithms,

in this section, the Wilcoxon signed rank test is conducted at 5% significance level to judge

Fig 6. Box plots of four functions.

https://doi.org/10.1371/journal.pone.0175114.g006

HSTLBO

PLOS ONE | https://doi.org/10.1371/journal.pone.0175114 April 12, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0175114.g006
https://doi.org/10.1371/journal.pone.0175114


Table 4. Experimental results of TLBO, ATLBO, WTLBO, TLBO_GC, ITLBO and HSTLBO over 20 independent runs on 20 test functions of 1000

variables with 5E+6 FEs. “Prec” and “Std Dev” denote the precision and standard deviation of the function error values in 20 runs, respectively. Time(s) is

the mean run time over 20 independent runs on 5000000 FEs.

ALG Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s)

Prec Std Dev Mtime

(s)

1.83E-

15

1.62E

+02

0.00E

+00

0.00E

+00

2.88E

+02

8.53E

+01

1.42E

+00

9.07E

+02

5.70E

+02

1.48E

+02

1.17E

+03

ATLBO 4.44E-

15

0.00E

+00

1.50E

+02

0.00E

+00

0.00E

+00

2.97E

+02

9.14E

+01

1.19E-

02

8.95E

+02

8.43E

+02

1.36E

+01

1.12E

+03

WTLBO 8.88E-

16

1.50E-

15

2.63E

+02

0.00E

+00

0.00E

+00

3.31E

+02

8.92E

+01

2.69E-

01

8.88E

+02

8.49E

+02

5.72E

+00

1.01E

+03

TLBO_GC 7.99E-

15

1.12E-

15

5.51E

+02

0.00E

+00

0.00E

+00

7.09E

+02

9.02E

+01

2.89E-

01

1.25E

+03

7.47E

+02

6.53E

+00

1.53E

+03

ITLBO 7.99E-

15

0.00E

+00

2.79E

+02

1.11E-

16

4.68E-

17

4.28E

+02

7.59E

+01

2.92E

+00

9.67E

+02

6.04E

+02

9.87E

+01

1.28E

+03

HSTLBO 1.36E-

13

4.57E-

15

2.52E

+02

9.99E-

16

7.02E-

17

4.53E

+02

2.16E-

26

1.10E-

27

9.81E

+02

6.35E

+00

3.12E-

01

1.19E

+03

F5~F8 TLBO 0.00E

+00

0.00E

+00

2.06E

+02

2.36E

+05

6.06E

+04

2.22E

+02

9.93E

+02

3.51E-

01

1.80E

+02

0.00E

+00

0.00E

+00

1.49E

+02

ATLBO 0.00E

+00

0.00E

+00

1.80E

+02

1.43E

+05

1.13E

+05

1.90E

+02

9.97E

+02

1.97E

+00

1.46E

+02

0.00E

+00

0.00E

+00

1.21E

+02

WTLBO 0.00E

+00

0.00E

+00

2.11E

+02

3.75E

+05

8.43E

+03

2.47E

+02

9.97E

+02

2.51E-

01

1.75E

+02

0.00E

+00

0.00E

+00

2.46E

+02

TLBO_GC 0.00E

+00

0.00E

+00

5.25E

+02

3.66E

+05

6.10E

+03

6.45E

+02

9.99E

+02

1.06E-

01

5.23E

+02

0.00E

+00

0.00E

+00

4.61E

+02

ITLBO 0.00E

+00

0.00E

+00

2.95E

+02

2.32E

+05

1.45E

+04

3.47E

+02

9.69E

+02

2.71E

+00

2.21E

+02

0.00E

+00

0.00E

+00

2.17E

+02

HSTLBO 3.64E-

12

1.23E-

12

2.94E

+02

3.70E-

09

1.76E-

10

3.08E

+02

1.94E

+03

1.27E

+02

2.41E

+02

5.73E-

21

8.83E-

22

2.18E

+02

F9~F12 TLBO 1.38E

+06

5.25E

+04

1.40E

+02

9.96E

+01

1.05E-

01

1.47E

+02

4.70E

+11

2.84E

+10

2.20E

+02

1.25E

+04

7.99E

+02

4.88E

+02

ATLBO 3.38E

+06

1.39E

+04

1.17E

+02

9.98E

+01

6.15E-

02

1.20E

+02

1.28E

+12

5.11E

+09

2.00E

+02

2.99E

+04

3.14E

+01

4.77E

+02

WTLBO 2.64E

+06

4.16E

+04

1.46E

+02

9.83E

+01

2.20E-

01

1.43E

+02

8.43E

+11

3.98E

+10

2.28E

+02

2.33E

+04

5.80E

+02

4.91E

+02

TLBO_GC 3.22E

+06

4.21E

+04

4.92E

+02

9.96E

+01

1.10E-

01

4.55E

+02

1.18E

+12

2.09E

+10

5.92E

+02

2.85E

+04

3.48E

+02

7.93E

+02

ITLBO 1.07E

+04

6.91E

+03

2.16E

+02

9.91E

+01

3.10E-

01

2.32E

+02

3.17E

+06

3.35E

+07

2.55E

+02

1.21E

+02

6.68E

+01

5.31E

+02

HSTLBO 5.28E-

24

4.72E-

25

1.98E

+02

2.84E

+01

5.99E-

01

2.18E

+02

1.41E

+03

1.13E

+02

2.74E

+02

5.33E-

15

5.73E-

16

4.59E

+02

F13~F16 TLBO 1.23E

+04

1.99E

+02

2.83E

+02

2.02E

+01

6.65E-

02

2.96E

+02

7.28E

+03

7.54E

+02

1.48E

+03

7.36E

+03

3.94E

+02

1.92E

+03

ATLBO 1.81E

+04

1.86E

+02

2.33E

+02

2.11E

+01

1.33E-

02

2.45E

+02

8.69E

+03

4.70E

+01

1.39E

+03

8.99E

+03

3.27E

+01

1.90E

+03

WTLBO 1.66E

+04

1.51E

+02

2.92E

+02

2.10E

+01

4.18E-

02

3.26E

+02

8.33E

+03

2.89E

+01

1.44E

+03

8.72E

+03

4.01E

+01

1.94E

+03

TLBO_GC 1.67E

+04

2.61E

+02

6.83E

+02

2.09E

+01

3.21E-

02

7.45E

+02

7.75E

+03

9.05E

+01

1.85E

+03

8.66E

+03

8.00E

+01

2.25E

+03

ITLBO 8.31E

+03

1.21E

+02

3.56E

+02

1.94E

+01

1.01E-

02

4.18E

+02

5.76E

+03

4.16E

+02

1.64E

+03

6.75E

+03

2.02E

+02

1.97E

+03

HSTLBO 6.31E-

14

9.17E-

15

3.47E

+02

7.78E-

13

2.62E-

14

3.45E

+02

2.98E

+02

1.71E

+01

1.61E

+03

5.50E

+03

2.07E

+01

1.97E

+03

(Continued )
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Table 4. (Continued)

ALG Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s) Prec Std Dev Mtime(s)

F17~F20 TLBO 7.30E

+03

4.75E

+01

2.28E

+03

2.27E

+04

9.10E

+02

7.06E

+02

0.00E

+00

0.00E

+00

7.21E

+02

0.00E

+00

0.00E

+00

2.15E
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Fig 7. Convergence curves of four functions.

https://doi.org/10.1371/journal.pone.0175114.g007
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whether the optimal solutions on 20 independent runs with our method differ significantly

from those of compared algorithms. Table 5 records the corresponding p-values for 20 func-

tions between the proposed algorithm and other algorithms, which indicate that all the p-val-

ues are less than 0.05. The last three lines of Table 5 records the performance of algorithms,

where “+”, “=“, and “-” separately represent the optimal solutions on 20 independent runs of

the corresponding algorithm are better than, similar to, and worse than those of HSTLBO. We

can see from Table 5 that the performance of proposed algorithm is significantly different with

those of other algorithms for each function, and our method is superior to other algorithms

for most of functions.

To further detect the significant differences between HSTLBO and ten compared algo-

rithms, the multiple-problem Wilcoxon’s test is employed to check the comparisons. Table 6

records the statistical results, where “W+” is the number of cases in which the null hypothesis

was rejected and our method shows a statistically superior performance at the 95% significance

level, “W-” denotes the number of cases in which the null hypothesis was rejected and the

Fig 8. Box plots of four functions.

https://doi.org/10.1371/journal.pone.0175114.g008
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HSTLBO displays an inferior performance, “W=“ represents the number of cases in which the

null hypothesis was accepted [36] [37]. We can find from Table 6 that our method has higher

“W+” values than “W-” values in all cases, which demonstrates that our method is significantly

better than other ten algorithms on 20 test functions.

Table 5. Results of Wilcoxon’s rank sum test at 0.05 significance level between HSTLBO and other ten algorithms. The p-value is shown (NaN

denotes no difference).

Functions HS IHS ITHS NGHS EHS TLBO ATLBO WTLBO TLBO_GC ITLBO

F1 1.2E-08 1.2E-08 2.9E-04 1.2E-08 1.2E-08 1.0E-09 6.0E-11 6.0E-11 6.0E-11 6.0E-11

F2 1.0E-08 1.0E-08 2.7E-04 1.0E-08 1.0E-08 1.0E-09 1.0E-09 1.0E-09 1.0E-09 1.0E-09

F3 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F4 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 6.0E-11 6.0E-11 6.0E-11 6.0E-11 6.0E-11

F5 1.0E-08 1.0E-08 1.0E-08 1.0E-08 1.0E-08 5.99E-11 5.99E-11 5.99E-11 5.99E-11 5.99E-11

F6 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F7 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-09 1.2E-09 1.2E-09 1.2E-09 1.2E-09

F8 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F9 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F10 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 2.9E-04

F11 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F12 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F13 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F14 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F15 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F16 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F17 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F18 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08

F19 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-09 1.2E-09 1.2E-09 1.2E-09 1.2E-09

F20 1.2E-08 1.2E-08 1.2E-08 1.2E-08 1.2E-08 NaN NaN NaN NaN NaN

+ 0 0 0 0 0 5 5 5 5 5

= 0 0 0 0 0 1 1 1 1 1

- 20 20 20 20 20 14 14 14 14 14

https://doi.org/10.1371/journal.pone.0175114.t005

Table 6. Multi-problem based statistical pairwise comparison of HSTLBO and other ten algorithms. (α = 0.05, D = 1000).

HSTLBO vs. Algorithm D = 1000

P-value W+ W- W= Winner

HSTLBO vs. HS 8.86E-05 210 0 0 HSTLBO

HSTLBO vs. IHS 8.86E-05 210 0 0 HSTLBO

HSTLBO vs. ITHS 8.86E-05 210 0 0 HSTLBO

HSTLBO vs. NGHS 8.86E-05 210 0 0 HSTLBO

HSTLBO vs. EHS 8.86E-05 210 0 0 HSTLBO

HSTLBO vs. TLBO 0.004848 120 70 20 HSTLBO

HSTLBO vs. ATLBO 0.004848 120 70 20 HSTLBO

HSTLBO vs. WTLBO 0.004848 120 70 20 HSTLBO

HSTLBO vs. TLBO_GC 0.004848 120 70 20 HSTLBO

HSTLBO vs. ITLBO 0.00621 116 74 20 HSTLBO

https://doi.org/10.1371/journal.pone.0175114.t006
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4.4 Analysis of exploration and exploitation

In this section, we investigate the convergence of HSTLBO by tracing population diversity in

the search process. The population diversity is defined as follows,

Diversity ¼
1

D

XD

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NP

XNP

j¼1

ðXj
i � XiÞ

2

v
u
u
t

Where Xiði ¼ 1; 2; . . . ;DÞ denotes the mean value of ith decision variable in population.

Three complex multimodal optimization problems (F1:Ackley, F3:Levy, F12:Griewank Shift)

are employed to investigate the balance between the exploration power and the exploitation.

During the search process, we trace the changes of population diversity of each compared

algorithm.

The Fig 9 displays the curve changes of population diversity of eleven algorithms, from

which we can easily find that the diversity curves of HSTLBO algorithm decrease gradually

during the search process, which are more asymptotic and stable than other algorithms. In this

way, the HSTLBO possess strong exploration power in the early stage of search for exploring

the unknown search regions, with the search continue, the exploitation power increases and

Fig 9. Curves of population diversity of 11 algorithms.

https://doi.org/10.1371/journal.pone.0175114.g009
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the exploration power decreases gradually, in the later stage, the population has gathered into

the globally optimal region. And by this time HSTLBO should have obtained much high

exploitation power for exploiting the high precision solution. However, compared with

HSTLBO, five HS variations (HS, IHS, ITHS, EHS and NGHS) keep high population diversity

from beginning to end, which make them have strong exploration power but exploitation

power very weak. Conversely, the diversity of five TLBO variations decrease very quickly in

the begin stage, which makes them easily be trapped into local search owing to losing the

exploration power prematurely.

5. HSTLBO for solving complex portfolio optimization problem

To further investigate the performance of HSTLBO algorithm, complex portfolio optimization

problem are employed to test the ability of solving real-world application. The portfolio opti-

mization aims to choose the optimal proportions of various assets for obtaining maximum

portfolio return with minimum risk. In this work, we apply HSTLBO algorithm to choose the

optimal portfolio proportions for Nikkei 225 stock index that maps companies on the Tokyo

Stock Exchange (TSE) (http://en.wikipedia.org/wiki/Nikkei_225) and compare the test results

of HSTLBO with four intelligent algorithms (GA, PSO, TS, SA)[38–40]. We employ mean

Euclidian distance (MED), variance of returns error (VRE) and mean return error (MRE) as

performance indexes that are defined in literatures [39,41].

The test data is from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html and the

experiments are performed on two conditions:

1. Unconstraint. The portfolio proportion and desired number of investment assets are not

constrained.

2. Constraint. The portfolio proportion of each asset xLi ¼ 0:0 and xUi ¼ 1; the desired num-

ber of portfolio selection assets K = 10.

In this work, we employ the same method of constraint handle as the literature [41] which

can handle the boundary constraint of the portfolio proportion and the desired number of

portfolio selection assets very well.

The test results on three evaluation indexes (MED, VRE and MRE) are presented in

Table 7, and The comparison of efficient frontiers for different constraint conditions are

shown in Fig 10. We can see easily from Table 7 that our method obtains more outstanding

performance on MED, VRE and MRE than modified GA, PSO, TS and SA. From Fig 10, we

can find that optimal frontiers of our method are almost overlapped with standard efficient

frontiers for unconstraint CCMV model, and for constraint CCMV model, the optimal fron-

tiers of our algorithm are also very close to the standard efficient frontiers that are obtained

without considering the constraint conditions. Therefore, our approach is effective for solving

complex portfolio optimization problems.

Table 7. Simulation results of five algorithms on Nikkei index 225.

Unconstraint Constraint

GA PSO TS SA HSTLBO GA PSO TS SA HSTLBO

MED 1.50E-03 2.90E-04 1.50E-04 1.90E-04 8.33E-07 9.93E-03 1.90E-03 1.00E-03 1.23E-03 6.63E-05

VRE 2.10E-01 4.30E-01 2.20E-01 2.10E-01 6.36E-02 1.21E+00 2.43E+00 1.24E+00 1.20E+00 5.23E+00

MRE 9.30E-01 1.40E-01 7.40E-02 7.20E-02 1.34E-02 5.33E+00 8.00E-01 4.21E-01 4.13E-01 1.35E+00

https://doi.org/10.1371/journal.pone.0175114.t007
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6. Conclusion

Both Harmony Search and Teaching-Learning-Based Optimization are new swarm intelligent

optimization algorithms, which have got much attention in recent years. In this work, in order

to improve the performance of HS and TLBO, a hybrid HSTLBO algorithm is presented.

In the HSTLBO, both HS and TLBO are improved to enhance the global search ability. A

self-adaptive selection strategy is presented to balance the exploration power and the exploita-

tion power. At the early stage of search process, the HS algorithm gets a higher opportunity

than TLBO, which aims to explore the unknown regions and avoid lose the globally optimal

solution. With the increasing number of iteration, the opportunity of TLBO is raised step by

step. At the later stage of search, when the population has gathered into one region which

maybe contains the global optimal solution, the TLBO has obtained much more opportunity

for exploiting high precision optimal solution.

The experimental results also demonstrate that our method is a promising optimization

algorithm in solving large scale and complex optimization problems.
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